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[E Usage of Large Language Model 22

A ADDITIONAL PRELIMINARY

Group Sequential Policy Optimization. Recently, Zheng et al.[(2025) introduce group sequence
policy optimization (GSPO), a new reinforcement learning algorithm for training large language
models. Following the basic principle of importance sampling, GSPO defines importance ratios
based on sequence likelihood and performs sequence-level clipping, rewarding, and optimization.
The GSPO objective Jgspo () is then defined as:
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The token-level objective variant of GSPO, namely JGspo.token(f) allows token-wise advantage
customization and is defined as:
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and sg[-] denotes only taking the numerical value but stopping the gradient, corresponding to the
detach operation in PyTorch. The gradient of GSPO-token can be derived as:

GSPO demonstrates notably superior training stability, efficiency, and performance compared to
GRPO and exhibits particular efficacy for the large-scale RL training of MoE models. To be specific,

B ADDITIONAL EXPERIMENT DETAILS.

Additional Details for Qwen2.5-0.5B-Ins: For the 0.5B model, training is conducted on two A6000
GPUs with a batch size of 32, a maximum rollout length of 2500 tokens, a learning rate of 5¢~7, and
a mini-batch size of 16—resulting in two iteration updates per training step. For the greedy decoding
performance, we report the best accuracy across multiple checkpoints due to significant fluctuations
during training. For all other settings, we report the performance at the final checkpoint. In addition
to high-THR tokens, we also include those within the top 20% highest-entropy tokens that do not
overlap with high-THR (approximate 4.1 % tokens), and keep their advantage unchanged being AL k-
For formatting, we follow |Zeng et al. (2025), adopting simple prompts since the model struggles with
complex instructions. We use p = 0.2 and p = —0.2 for exploitation and exploration respectively.

Additional Details for Qwen-Math: The Qwen-Math model |Yang et al. (2024) uses its full context
length of 3072 tokens for rollouts. For format, we folow Zeng et al.|(2025) to use Qwen Chat template
and require final answer to be enclosed in a latex command \boxed{ }. Unless otherwise specified,
we set p = 0.1 for exploitation and p = —0.1 for exploration.

Additional Training Details for Llama: For the Llama3.2-3B-Instruct[Dubey et al. (2024) model,
training is carried out on 8 A100 GPUs with a batch size of 256, a maximum rollout length of 3000
tokens, a learning rate of 1 x 10~%, and a mini-batch size of 16. For greedy decoding, we report the
best accuracy across multiple checkpoints due to the substantial fluctuations observed during training,
while for all other settings we report results from the final checkpoint. In addition to high-THR
tokens, we also include those within the top 20% highest-entropy tokens that do not overlap with
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Base Model Method AIME25 AIME24 AMC23 MATH500 Minerva Olympiad Avg.
Base 0.0 33 20.0 39.6 7.7 249 15.9
GRPO 33 13.3 57.5 71.8 29.0 34.1 34.8
Qwen2.5-Math-1.5B  Pos Only 33 10.0 57.5 70.6 30.1 31.0 33.8
THR (p = 0.1) 33 133 62.5 71.4 33.1 34.5 36.3

Table 5: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
and datasets. Bold indicates the best performance, while underline marks the second-best.

high-THR (approximate 3.5 % tokens ), and fix their keep their advantage unchanged being Ai,k.
For formatting, we follow Zeng et al.|(2025), adopting simple prompts since the model struggles with
complex instructions.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY ON POSITIVE AND NEGATIVE-ONLY TRAINING.

We further investigate the impact of training with only positive or negative tokens by modifying 1211-7 k-
In the “Pos Only” setting, we set all values where /12-7 & < 0 to 0, thereby increasing the confidence of
correct responses only. Conversely, in the “Neg Only” setting, we set all values where fll r>0to
0, which reduces the confidence of incorrect responses without reinforcing correct ones. As shown
in Table[5] “Pos Only” results in a 1.3% drop in average performance compared to GRPO, indicating
that negative gradients also contribute to boosting confidence in correct responses.

Method Qwen2.5-0.5B-Instruct Pass@K Qwen2.5-Math-1.5B Pass@K

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
AIME 2025
GRPO 02 04 06 12 25 48 92 171 300 59 99 150 205 265 336 415 498 567
Neg Only 02 04 07 14 28 53 95 162 267 47 81 127 178 234 302 382 462 567
THR(p<0) 02 03 06 1.1 23 46 90 175 333 6.0 101 153 209 268 339 417 500 60.0
AIME 2024
GRPO 04 08 15 29 54 100 172 273 367 114 17.7 243 305 367 434 500 560 633
Neg Only 02 05 09 18 33 59 97 149 233 99 160 231 302 367 428 48.1 529 567
THR(p<0) 04 08 15 29 54 94 149 215 300 119 182 249 312 379 453 529 612 70.0
AMC23
GRPO 114 187 283 39.7 523 645 749 818 850 466 59.1 700 789 855 902 937 960 975
Neg Only 77 137 226 344 484 632 766 875 950 440 569 680 765 830 885 923 943 950
THR (p <0) 12.0 20.1 30.6 42.7 56,5 70.8 827 89.6 925 479 61.0 722 811 873 91.6 951 98.0 100.0
Average
GRPO 40 6.6 101 146 20.1 264 338 421 50.6 213 289 364 433 49.6 557 617 673 725
Neg Only 27 49 81 125 182 248 319 395 483 95 270 346 415 477 538 595 645 684

THR(p<0) 49 74 11.6 156 214 283 355 435 519 219 298 375 444 50.7 573 632 69.7 76.7

Table 6: Comparing exploration ability with Pass@QK . Results for Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B are reported on the AIME 2024, AIME 2025, and AMC23 datasets, along with their average.
Bold indicates the best performance.

As also shown in Table[6] “Neg Only” underperforms in most cases. For example, on AMC23 with
Qwen?2.5-Math-1.5B, it achieves a Pass@256 of 56.7%, compared to 63.3% for both GRPO and vanilla
THR. While “Neg Only” yields moderate improvements over the Base model on average—indicating
that suppressing incorrect responses provides some exploratory value—positive tokens still play a
critical role in enhancing exploration. By selectively incorporating informative tokens, THR with
p < 0 achieves substantially better exploration performance than “Neg Only” alone.

C.2 ADDITIONAL RESULTS ON GSPO

We further show that THR can be seamlessly integrated with other group relative reinforcement
learning objectives. In particular, we apply THR to token level variant of group sequence policy
optimization (GSPO-token) [Zheng et al. (2025), which optimizes at the sequence level through
clipping, rewarding, and optimization while allow token level advantage adjustment (more details in
Appendix Appendix [A). As reported in Table[7, incorporating THR with p < 0 yields substantial
improvements, boosting Pass @K performance across all K with an average improvement by around
0.9% to THR and 1.4% to GSPO.
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Method Qwen2.5-Math-1.5B Pass@K
1 2 4 8 16 32 64 128 256
AIME 2025
GSPO 52 9.0 139 193 249 310 369 414 46.7
GSPO+THR 44 7.8 125 18.0 239 31.1 390 464 50.0
GSPO+THR (p = —0.1) 5.1 89 143 204 266 333 399 469 533
AIME 2024
GSPO 104 168 24.1 313 385 456 524 594 66.7
GSPO+THR 100 162 23.6 308 377 448 528 60.8 66.7
GSPO+THR (p = —-0.1) 11.0 17.2 242 310 37.8 449 518 59.1 66.7
AMC 2023
GSPO 449 58.0 69.0 777 843 89.1 92.0 93.6 950
GSPO+THR 449 58.0 68.7 770 835 888 933 972 1000
GSPO+THR (p = —0.1) 454 582 69.1 779 84.6 90.1 950 987 100.0
Average
GSPO 20.2 279 357 428 492 552 604 648 695
GSPO+THR 198 273 349 419 484 549 617 68.1 722

GSPO+THR (p = —0.1) 20.5 281 359 431 49.7 56.1 622 682 733

Table 7: Performance with GSPO
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AN s Figure 7: Word cloud of the top 50 tokens ranked by
10 20 % THR, generated from Qwen2.5-Math-7B on AMC23.
Font size is proportional to each token’s average
THR. Tokens with high THR represent the key rea-
soning steps most critical in the model’s problem-
solving process.

Figure 6: Response length dynamics
of Llama3.2-3B-Instruct across different
stages of GRPO training.

C.3 ADDITIONAL RESULTS ON LLAMA.

Reduced response length. As shown in Figure[6] the response length of Llama3.2-3B declines
rapidly after a few epochs, with the average length dropping from about 1.5K tokens to roughly
650. This reduction may stem from the model’s limited cognitive behaviors |Gandhi et al. (2025).
Exploitation Results on Llama We report the greedy decoding performance of Llama in Table|8} As
shown in table, while GRPO achieves the best performance, setting p > 0 can improve the greedy
decoding performance compared with vanilla THR by 1.1%.

Exploration Results on Llama As shown in Table E, THR still substantially boosts exploration,
achieving over a 7% Pass@K improvement compared to GRPO. Setting p < 0 amplifies these
exploration gains even further. While baselines such as COV-KL and Pass @K-mixed also provide
exploration improvements, they consistently underperform relative to THR.

C.4 ADDITIONAL THR TOKEN ANALYSIS
We further analyze tokens with high THR values using a word cloud visualization, as shown in

Figure[7] The representative tokens can be organized into five functional categories that correspond
to step-by-step reasoning:
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Base Model Method AIME25 AIME24 AMC23 MATHS500 Minerva Olympiad Avg.
Base 0.0 33 225 402 65 1.9 5.7
GRPO 0.0 26.7 30.0 54.4 22.1 18.1 252
THR 0.0 13.3 325 51.8 2.1 19.9 233
Llama3.2-3B-Instruct  1pyp ) (9 33 6.7 27.5 514 20.6 163 21.0
THR (p = 0.05) 33 13.3 40.0 50.6 224 16.7 244

Table 8: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
and datasets. Bold indicates the best performance, while underline marks the second-best.

Method Llama3.2-3B-Instruct Pass@K
1 2 4 8 16 32 64 128 256
AIME 2025
Base 02 03 0.6 12 24 46 845 142 200
GRPO 03 07 125 24 43 70 102 132 16.7
Cov KL 04 07 14 25 45 74 112 163 233
Pass @K-mixed 0.7 1.3 2.3 39 63 9.1 126 167 20.0
THR 1.0 1.8 34 57 86 120 16.7 240 30.0

THR (p = -0.1) 1.1 2.1 38 67 107 153 197 242 30.0
THR (p=-0.2) 05 09 1.8 34 64 11.1 178 263 36.7

AIME 2024
Base 14 26 48 83 134 203 284 359 400
GRPO 127 175 224 274 31.0 333 349 367 400
Cov KL 11.9 159 204 256 30.6 33.8 358 383 433
Pass @K-mixed 122 172 224 274 308 328 351 382 433
THR 9.8 150 205 257 298 326 350 382 433

THR (p=-0.1) 92 139 190 242 293 335 365 40.0 46.7
THR (p =-0.2) 94 13.6 182 231 279 325 371 416 467

AMC 2023
Base 96 17.0 2777 41.0 557 692 80.1 864 90.0
GRPO 267 369 473 564 636 695 748 796 850
Cov KL 289 393 496 579 647 708 762 81.1 85.0
Pass@K-mixed  28.6 393 499 589 658 713 763 814 875
THR 26.8 379 485 579 670 752 823 875 90.0

THR (p = —-0.1) 26.1 364 470 564 655 742 815 87.0 90.0
THR (p = —0.2) 265 367 476 578 669 744 802 843 875

Average
Base 3.7 6.6 11.0 16.8 238 314 390 455 50.0
GRPO 132 184 237 287 330 366 400 432 472
Cov KL 13.7 18.6 238 287 333 373 41.1 452 505
Pass @K-mixed 13.8 193 249 30.1 343 377 413 454 503
THR 125 182 241 298 351 399 447 499 544

THR (p =—-0.1) 12.1 175 233 291 352 41.0 459 504 55.6
THR (p =-0.2) 12.1 17.1 225 281 337 393 450 50.7 57.0

Table 9: Pass@K performance of different methods using Llama3.2-3B-Instruct .

o Stating the Given Information: tokens that capture the initial conditions or input facts (present,
data, paper).

o Transformation and Operations: tokens that describe conversions, equivalence, or transfers of
knowledge (conversion, transfer, equivalent).

o Constraints and Relationships: tokens indicating dependencies, limitations, or structural relations
(relative, intersects, amount, dimensions).

e Decision and Selection: tokens reflecting choices among alternatives or branching reasoning paths
(determine, instead, alternating, altern, others).

e Verification and Conclusion: tokens signaling validation or consolidation of results (confirms,
systematic, answer).

C.5 RUNNING TIME OF EACH MODULE.

We also track the average time cost of each module during training, as reported in Table {10} Notably,
the data generation (Data Gen) module that using dynamic sampling accounts for the majority of
the total training time. In contrast, the overhead introduced by THR is minimal, e.g. 37 seconds for
Qwen2.5-Math-1.5B, contributing only a small fraction to the overall cost.
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Model+dataset Data Gen | Model Upd | THR | Ref | Old Prob | Total (Sec)
Qwen2.5-Math-1.5B 347 210 37 120 120 834
Qwen2.5-Math-7B 422 371 39 187 187 1206
Llama3.2-3B-Instruction 625 139 26 89 89 968

Table 10: Average running time (per step, in seconds) of each module for different models and tasks.

D DETAILED PROOFS

D.1 PASS@K AS THE QUESTION LEVEL REWEIGHTING

Chen et al. (2025); Mahdavi et al. (2025); Walder & Karkhanis (2025) develop RLVR objectives that
directly target Pass@K optimization. Starting with GRPO’s ancestor, REINFORCE, Mahdavi
et al. (2025); Walder & Karkhanis| (2025) derive reward rescalings by directly optimizing the
Pass@K objective. Mahdavi et al.| (2025) apply the same rescaling to advantages giving a GRPO
version of their approach. These rescalings upweight the gradient contribution of correct responses
that constitute “rare successes”—i.e., responses associated with “hard” questions. Crucially, the
reweighting is uniform across all tokens and responses for a given question, which we term guestion-
level reweighting. More recently, Chen et al.|(2025)) introduce an appealing alternative to optimizing
Pass@K by incorporating the design directly within GRPO’s group structure. Here, we simplify the
formulas in |(Chen et al.| (2025)) and arrive at an explicit formulation of advantage shaping that reveals
its question-level nature. Starting from the defined advantages in Chen et al.|(2025):
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then harder question will have a larger 1 — ¢ thus larger advantage, then we derive the negative
advantage.
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By combining Equation and Equation (I2)), we arrive at Equation (6), completing the derivation.

D.2 RELATIONSHIP BETWEEN THR AND ENTROPY REGULARIZER

Under some mild assumptions, optimizing THR plays a similar role as regularizin the evolution of
the token entropy in a more efficient way. Because, as stated in the main context, THR considers
cross-token influence while current analysis on token entropy consider the influence of learning a
observing token on itself |Cui et al. (2025). We start from Lemma 1 proposed in |Cui et al. (2025),
which is how the Cov-KL regularizer is derived.

Lemma 1 in Cui et al. (2025): Let the actor policy 7y be a tabular softmax policy, the difference of
information entropy given states between two consecutive steps satisfy:

AH" £ H(mp(i41)) — H(mo(r) = —CoVyrmy,y (fa) (l0gToy (y | ), 1F = 1), (13)

where 1 is the logits vector provided by the model after feeding the input . For notational simplicity,
we use the superscript ¢ to denote the training step, rather than an exponent. The equation above
holds as long as a first-order Taylor expansion is valid at the logits level, independent of the specific
model under consideration. In other words, this lemma is agnostic to the mechanism by which 1
evolves, which depends on the particular model architecture or parameterization.

Recall the definition of the covariance:

Covynrn (X,Y) =Eyr [ X - Y] —Eyr [X|Eyr [Y].

’The strength and direction are controlled by the value and sign of hyper-parameter p

19



Under review as a conference paper at ICLR 2026

Equation (13) can then be written as:

AH (x) = =CoVymmy (o) (l0g oy (y | x), 15 = 1)
= Ey""ﬂ'@(t) [IOg 7W(f.)(y ‘ X)]Ey/Nﬂe(t) [1;—”_1 - 1;/] - EyNﬂe(t) [(IZ+1 - l;) IOg 7T@(t)(y | X)]
= _/H(ﬂ-e(t))EyN‘ﬂ'e(t) [IZ+1 - 1)1&/} - Ey’\'ﬂ'e(t) [(lty+1 - 1;) log To(t) (y | X)}

v
= —H(mo) Y o (v = v | (AL = 1)—
v=1
v
Zﬂ-e(t) (y=v]| X)(lf}Jrl —1) log mo(1) (Y = v | X)
v=1
v
- ZW(t)(Z/ =v [ X)ITH + 1) (H(mary) + log may (y = v | X))
v=1

— (M (o)) oy (- | X) + o) (- | x) @ log moesy (- | x), 1 = 17)

1
— T | z) ®logm | @), 1 -1t
H(m(t)) 9(t)( | ) g G(t)( | z)

= —H(mo(t)) <7T0<t)(' [ x) +

V' x1,defined as Q(x)
= c(=Q0x) = T (- | ), 1 () = 1'(x).) (14)

where the operator @ is the element-wise multiplication of two vectors, Y £ @,y is the context for
the prediction of the k-th token, and c is a constant for notation conciseness. In the last equation, we
reintroduce the input  to the notation to remind readers that the entire equation is conditioned on a
given context sequence . That is an important extension, because most existing works on entropy
regularization (e.g., [Cui et al.|(2025)) only focus on the influence introduced by updating the
observing token on itself. In other words, the x for @ and 1 are identical. The Cov—-KL method
compared in Table [ just applies the quantity above to select tokens with high covariances, and then
uses the KL penalty to restrict the update of them.

We here connect THR to entropy in a more systematic way by showing that THR can control the rate
of entropy growth #! (%) through the choice of p. Beyond the simplified tabular softmax setting, our
analysis extends to more realistic models with shared parameters across tokens. In this case, THR
naturally captures the cross-token influences that arise throughout the learning process. In other
words, when tracking the confidence change of 74(+)(y | x), THR accounts for the learning dynamics
of all other tokens across all responses, i.e., y; <, for varying 7 and k.

To make the notations concise, we follow the settings in|Ren & Sutherland (2025) and use x, and .,
to denote the “observing” token and “updating” context, respectively. Then, Equation becomes:

AHt(XO) =c <_Q(X0) - 7T6(1‘/)(' | Xo)s 1t+1(X0) - 1t(XO)> .

Following |Deng et al.|(2025), and under the unconstrained features assumption Deng et al.| (2025);
Mixon et al. (2022), we then represent 1/(x,) = Wth,, where W & RV >4 denotes the shared
read-out layer and h, € R?*! is the feature vector produced by the LLM backbone, conditioned
on the context sequence X/, = T, Yu/o,<k- NOte that while 1*(¢,) shares the same W, the
feature vector h differs across contexts due to variations in input sequences. The difference vector
141 (x,) — 1*(x,) € RV*! can then be expressed as:

1t+1(X0) - lt(X()) = (WtJrl - Wt)ho = —UVWE(O’(Whu), eu)hm

where 1) is the learning rate, o () is the softmax function, and e, is the one-hot distribution determined
by the label of y,,. When the cross-entropy loss is considered, the equation above can be simplified to

IHI(XO) - lt(XO) = (ey — 7Té)(t)(' | Xu)) - h;—ho .
——

Vx1 1x1
Substituting this back to Equation (T4), we can get
AHt(XO) = C<_Q(X0) - 7"'G(t)(' | Xo), €u — 71'0(15)(' ‘ Xu)> ) hq;rho (15)
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Figure 8: The shape of —z log x for 2z € (0, 1), shown in both the original and logarithmic scales.
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Figure 9: Four examples of the distribution of 7, e, — 7 and () + 7.

Now, recall our definition of THR in Definition E.l, where for each k in the summation, the term has
the format (h_ v hy y_,, ), which is just h,! h, above. Combining the definition of « and using
i, < g

the notations in this section, we can rewrite the signed-THR as follows:

Sign(yu) : THR(yoayua k) = Z<eo - 779(15)(' | Xo), €y — 7T9(t)(' | Xu)> : hzhoa

u

(16)

where sign(y,,) depends on whether the completion is correct or not. Now, comparing the inner
product in Equation and Equation , it is clear that the directional similarity between —Q(x,)
and e, determines the effect introduced by THR and the entropy regularizer.

We now show that, under mild assumptions (which typically hold during LLM fine-tuning), —Q(x,)
and e, point to a very similar direction (measured by their cosine similarity).

This observation follows from the shape of the function —z log z, illustrated in Figure[8. In a
distribution where most probability mass is concentrated on few dimensions, the dominant entry of
NG log 6\ (- is significantly larger than the rest. To validate this, we randoml
Wg(t)( | Xo) © Og%(t)( | Xo) is significantly larg > y

generate distributions and compute the cosine similarity between —Q(x,) and e, in Figure Eand
Figure [I0. The results show a clear trend: as both the vocabulary size and the peakiness of the
distribution increase, the alignment between the two vectors becomes stronger.

We now examine the relationship between THR and entropy. Recall that THR is defined as
ATYR® = 1[|THR; 4| > 7] - (1 + sign(THR; 1) - p) - Ai.

When p < 0, tokens with larger THR values receive stronger penalties. Since, in most cases, AH* (x)
and THR point in similar directions, this implies that tokens with higher potential entropy change are
penalized, closely aligning with the intuition behind Cov—-KL. However, as shown in our experiments,
THR achieves greater improvements in exploration performance because it explicitly accounts for
cross-token influence, rather than relying solely on entropy-based signals on a token’s self-influence,
as in COV-KL |Cui et al.| (2025).
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Figure 10: We sweep the value of vocabulary size V' and argmax probability of the distribution 7*.
The distribution is generated by fixing 7* and randomly assign the extra probability mass to other
dimensions. The results show that the cosine similarity between e, — 7 and () + 7 is indeed very
large when V and 7* are large enough.

E USAGE OF LARGE LANGUAGE MODEL

In preparing this paper, we made limited use of ChatGPT to support writing and editing. Specifically,
LLMs were employed for language polishing, grammar refinement, and rephrasing sentences to
improve clarity and readability. Importantly, all technical content, including theoretical analysis,
algorithm design, and experimental results, was conceived, implemented, and validated by the
authors. LLM outputs were always critically reviewed, verified, and revised before inclusion. No
LLM-generated text, figures, or tables were incorporated without careful human oversight.
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