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E Usage of Large Language Model 22

A ADDITIONAL PRELIMINARY

Group Sequential Policy Optimization. Recently, Zheng et al. (2025) introduce group sequence
policy optimization (GSPO), a new reinforcement learning algorithm for training large language
models. Following the basic principle of importance sampling, GSPO defines importance ratios
based on sequence likelihood and performs sequence-level clipping, rewarding, and optimization.
The GSPO objective JGSPO(✓) is then defined as:

E
(x,a)⇠D

{yi}G
i=1⇠⇡✓old (·|x)

h 1
PG

i=1

GX

i=1

min
�
si(✓)Âi,k, Âi,k · clip (si(✓), 1� ", 1 + ")

�i
(7)

where the defined the importance ratio si(✓) is based on sequential likelihood:

si(✓) = (
⇡✓(yi|x)

⇡✓old(yi|x)
)

1
|yi| = exp(

1

|yi|

|yi|X

k=1

�i,k(✓)) (8)

The token-level objective variant of GSPO, namely JGSPO-token(✓) allows token-wise advantage
customization and is defined as:

E
(x,a)⇠D

{yi}G
i=1⇠⇡✓old (·|x)

2

4 1

G

GX

i=1

1

|yi|

|yi|X

k=1

min
⇣
si,k(✓)Âi,k, clip(si,k(✓), 1� ✏, 1 + ✏)Âi,k

⌘
3

5 , (9)

where
si,k(✓) = sg[si(✓)] ·

⇡✓(yi,k|x,yi,<k)

sg[⇡✓(yi,k|x,yi,<k)]
, (10)

and sg[·] denotes only taking the numerical value but stopping the gradient, corresponding to the
detach operation in PyTorch. The gradient of GSPO-token can be derived as:

GSPO demonstrates notably superior training stability, efficiency, and performance compared to
GRPO and exhibits particular efficacy for the large-scale RL training of MoE models. To be specific,

B ADDITIONAL EXPERIMENT DETAILS.
Additional Details for Qwen2.5-0.5B-Ins: For the 0.5B model, training is conducted on two A6000
GPUs with a batch size of 32, a maximum rollout length of 2500 tokens, a learning rate of 5e�7, and
a mini-batch size of 16—resulting in two iteration updates per training step. For the greedy decoding
performance, we report the best accuracy across multiple checkpoints due to significant fluctuations
during training. For all other settings, we report the performance at the final checkpoint. In addition
to high-THR tokens, we also include those within the top 20% highest-entropy tokens that do not
overlap with high-THR (approximate 4.1 % tokens), and keep their advantage unchanged being Âi,k.
For formatting, we follow Zeng et al. (2025), adopting simple prompts since the model struggles with
complex instructions. We use p = 0.2 and p = �0.2 for exploitation and exploration respectively.

Additional Details for Qwen-Math: The Qwen-Math model Yang et al. (2024) uses its full context
length of 3072 tokens for rollouts. For format, we folow Zeng et al. (2025) to use Qwen Chat template
and require final answer to be enclosed in a latex command \boxed{}. Unless otherwise specified,
we set p = 0.1 for exploitation and p = �0.1 for exploration.

Additional Training Details for Llama: For the Llama3.2-3B-Instruct Dubey et al. (2024) model,
training is carried out on 8 A100 GPUs with a batch size of 256, a maximum rollout length of 3000
tokens, a learning rate of 1⇥ 10�6, and a mini-batch size of 16. For greedy decoding, we report the
best accuracy across multiple checkpoints due to the substantial fluctuations observed during training,
while for all other settings we report results from the final checkpoint. In addition to high-THR
tokens, we also include those within the top 20% highest-entropy tokens that do not overlap with

14
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Base Model Method AIME25 AIME24 AMC23 MATH500 Minerva Olympiad Avg.

Qwen2.5-Math-1.5B

Base 0.0 3.3 20.0 39.6 7.7 24.9 15.9
GRPO 3.3 13.3 57.5 71.8 29.0 34.1 34.8
Pos Only 3.3 10.0 57.5 70.6 30.1 31.0 33.8
THR (p = 0.1) 3.3 13.3 62.5 71.4 33.1 34.5 36.3

Table 5: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
and datasets. Bold indicates the best performance, while underline marks the second-best.

high-THR (approximate 3.5 % tokens ), and fix their keep their advantage unchanged being Âi,k.
For formatting, we follow Zeng et al. (2025), adopting simple prompts since the model struggles with
complex instructions.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY ON POSITIVE AND NEGATIVE-ONLY TRAINING.

We further investigate the impact of training with only positive or negative tokens by modifying Âi,k.
In the “Pos Only” setting, we set all values where Âi,k < 0 to 0, thereby increasing the confidence of
correct responses only. Conversely, in the “Neg Only” setting, we set all values where Âi,k > 0 to
0, which reduces the confidence of incorrect responses without reinforcing correct ones. As shown
in Table 5, “Pos Only” results in a 1.3% drop in average performance compared to GRPO, indicating
that negative gradients also contribute to boosting confidence in correct responses.

Method Qwen2.5-0.5B-Instruct Pass@K Qwen2.5-Math-1.5B Pass@K
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

AIME 2025
GRPO 0.2 0.4 0.6 1.2 2.5 4.8 9.2 17.1 30.0 5.9 9.9 15.0 20.5 26.5 33.6 41.5 49.8 56.7
Neg Only 0.2 0.4 0.7 1.4 2.8 5.3 9.5 16.2 26.7 4.7 8.1 12.7 17.8 23.4 30.2 38.2 46.2 56.7
THR (p < 0) 0.2 0.3 0.6 1.1 2.3 4.6 9.0 17.5 33.3 6.0 10.1 15.3 20.9 26.8 33.9 41.7 50.0 60.0
AIME 2024
GRPO 0.4 0.8 1.5 2.9 5.4 10.0 17.2 27.3 36.7 11.4 17.7 24.3 30.5 36.7 43.4 50.0 56.0 63.3
Neg Only 0.2 0.5 0.9 1.8 3.3 5.9 9.7 14.9 23.3 9.9 16.0 23.1 30.2 36.7 42.8 48.1 52.9 56.7
THR (p < 0) 0.4 0.8 1.5 2.9 5.4 9.4 14.9 21.5 30.0 11.9 18.2 24.9 31.2 37.9 45.3 52.9 61.2 70.0
AMC23
GRPO 11.4 18.7 28.3 39.7 52.3 64.5 74.9 81.8 85.0 46.6 59.1 70.0 78.9 85.5 90.2 93.7 96.0 97.5
Neg Only 7.7 13.7 22.6 34.4 48.4 63.2 76.6 87.5 95.0 44.0 56.9 68.0 76.5 83.0 88.5 92.3 94.3 95.0
THR (p < 0) 12.0 20.1 30.6 42.7 56.5 70.8 82.7 89.6 92.5 47.9 61.0 72.2 81.1 87.3 91.6 95.1 98.0 100.0
Average
GRPO 4.0 6.6 10.1 14.6 20.1 26.4 33.8 42.1 50.6 21.3 28.9 36.4 43.3 49.6 55.7 61.7 67.3 72.5
Neg Only 2.7 4.9 8.1 12.5 18.2 24.8 31.9 39.5 48.3 9.5 27.0 34.6 41.5 47.7 53.8 59.5 64.5 68.4
THR (p < 0) 4.9 7.4 11.6 15.6 21.4 28.3 35.5 43.5 51.9 21.9 29.8 37.5 44.4 50.7 57.3 63.2 69.7 76.7

Table 6: Comparing exploration ability with Pass@K. Results for Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B are reported on the AIME 2024, AIME 2025, and AMC23 datasets, along with their average.
Bold indicates the best performance.

As also shown in Table 6, “Neg Only” underperforms in most cases. For example, on AMC23 with
Qwen2.5-Math-1.5B, it achieves a Pass@256 of 56.7%, compared to 63.3% for both GRPO and vanilla
THR. While “Neg Only” yields moderate improvements over the Base model on average—indicating
that suppressing incorrect responses provides some exploratory value—positive tokens still play a
critical role in enhancing exploration. By selectively incorporating informative tokens, THR with
p < 0 achieves substantially better exploration performance than “Neg Only” alone.

C.2 ADDITIONAL RESULTS ON GSPO

We further show that THR can be seamlessly integrated with other group relative reinforcement
learning objectives. In particular, we apply THR to token level variant of group sequence policy
optimization (GSPO-token) Zheng et al. (2025), which optimizes at the sequence level through
clipping, rewarding, and optimization while allow token level advantage adjustment (more details in
Appendix Appendix A). As reported in Table 7, incorporating THR with p < 0 yields substantial
improvements, boosting Pass@K performance across all K with an average improvement by around
0.9% to THR and 1.4% to GSPO.
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Method Qwen2.5-Math-1.5B Pass@K
1 2 4 8 16 32 64 128 256

AIME 2025
GSPO 5.2 9.0 13.9 19.3 24.9 31.0 36.9 41.4 46.7
GSPO+THR 4.4 7.8 12.5 18.0 23.9 31.1 39.0 46.4 50.0
GSPO+THR (p = �0.1) 5.1 8.9 14.3 20.4 26.6 33.3 39.9 46.9 53.3

AIME 2024
GSPO 10.4 16.8 24.1 31.3 38.5 45.6 52.4 59.4 66.7
GSPO+THR 10.0 16.2 23.6 30.8 37.7 44.8 52.8 60.8 66.7
GSPO+THR (p = �0.1) 11.0 17.2 24.2 31.0 37.8 44.9 51.8 59.1 66.7

AMC 2023
GSPO 44.9 58.0 69.0 77.7 84.3 89.1 92.0 93.6 95.0
GSPO+THR 44.9 58.0 68.7 77.0 83.5 88.8 93.3 97.2 100.0
GSPO+THR (p = �0.1) 45.4 58.2 69.1 77.9 84.6 90.1 95.0 98.7 100.0

Average
GSPO 20.2 27.9 35.7 42.8 49.2 55.2 60.4 64.8 69.5
GSPO+THR 19.8 27.3 34.9 41.9 48.4 54.9 61.7 68.1 72.2
GSPO+THR (p = �0.1) 20.5 28.1 35.9 43.1 49.7 56.1 62.2 68.2 73.3

Table 7: Performance with GSPO

Figure 6: Response length dynamics
of Llama3.2-3B-Instruct across different
stages of GRPO training.

Figure 7: Word cloud of the top 50 tokens ranked by
THR, generated from Qwen2.5-Math-7B on AMC23.
Font size is proportional to each token’s average
THR. Tokens with high THR represent the key rea-
soning steps most critical in the model’s problem-
solving process.

C.3 ADDITIONAL RESULTS ON LLAMA.

Reduced response length. As shown in Figure 6, the response length of Llama3.2-3B declines
rapidly after a few epochs, with the average length dropping from about 1.5K tokens to roughly
650. This reduction may stem from the model’s limited cognitive behaviors Gandhi et al. (2025).
Exploitation Results on Llama We report the greedy decoding performance of Llama in Table 8. As
shown in table, while GRPO achieves the best performance, setting p > 0 can improve the greedy
decoding performance compared with vanilla THR by 1.1%.
Exploration Results on Llama As shown in Table 9, THR still substantially boosts exploration,
achieving over a 7% Pass@K improvement compared to GRPO. Setting p < 0 amplifies these
exploration gains even further. While baselines such as COV-KL and Pass@K-mixed also provide
exploration improvements, they consistently underperform relative to THR.

C.4 ADDITIONAL THR TOKEN ANALYSIS

We further analyze tokens with high THR values using a word cloud visualization, as shown in
Figure 7. The representative tokens can be organized into five functional categories that correspond
to step-by-step reasoning:
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Base Model Method AIME25 AIME24 AMC23 MATH500 Minerva Olympiad Avg.

Llama3.2-3B-Instruct

Base 0.0 3.3 22.5 40.2 16.5 11.9 15.7
GRPO 0.0 26.7 30.0 54.4 22.1 18.1 25.2
THR 0.0 13.3 32.5 51.8 22.1 19.9 23.3
THR (p = �0.2) 3.3 6.7 27.5 51.4 20.6 16.3 21.0
THR (p = 0.05) 3.3 13.3 40.0 50.6 22.4 16.7 24.4

Table 8: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
and datasets. Bold indicates the best performance, while underline marks the second-best.

Method Llama3.2-3B-Instruct Pass@K
1 2 4 8 16 32 64 128 256

AIME 2025
Base 0.2 0.3 0.6 1.2 2.4 4.6 8.45 14.2 20.0
GRPO 0.3 0.7 1.25 2.4 4.3 7.0 10.2 13.2 16.7
Cov KL 0.4 0.7 1.4 2.5 4.5 7.4 11.2 16.3 23.3
Pass@K-mixed 0.7 1.3 2.3 3.9 6.3 9.1 12.6 16.7 20.0
THR 1.0 1.8 3.4 5.7 8.6 12.0 16.7 24.0 30.0
THR (p = �0.1) 1.1 2.1 3.8 6.7 10.7 15.3 19.7 24.2 30.0
THR (p = �0.2) 0.5 0.9 1.8 3.4 6.4 11.1 17.8 26.3 36.7

AIME 2024
Base 1.4 2.6 4.8 8.3 13.4 20.3 28.4 35.9 40.0
GRPO 12.7 17.5 22.4 27.4 31.0 33.3 34.9 36.7 40.0
Cov KL 11.9 15.9 20.4 25.6 30.6 33.8 35.8 38.3 43.3
Pass@K-mixed 12.2 17.2 22.4 27.4 30.8 32.8 35.1 38.2 43.3
THR 9.8 15.0 20.5 25.7 29.8 32.6 35.0 38.2 43.3
THR (p = �0.1) 9.2 13.9 19.0 24.2 29.3 33.5 36.5 40.0 46.7
THR (p = �0.2) 9.4 13.6 18.2 23.1 27.9 32.5 37.1 41.6 46.7

AMC 2023
Base 9.6 17.0 27.7 41.0 55.7 69.2 80.1 86.4 90.0
GRPO 26.7 36.9 47.3 56.4 63.6 69.5 74.8 79.6 85.0
Cov KL 28.9 39.3 49.6 57.9 64.7 70.8 76.2 81.1 85.0
Pass@K-mixed 28.6 39.3 49.9 58.9 65.8 71.3 76.3 81.4 87.5
THR 26.8 37.9 48.5 57.9 67.0 75.2 82.3 87.5 90.0
THR (p = �0.1) 26.1 36.4 47.0 56.4 65.5 74.2 81.5 87.0 90.0
THR (p = �0.2) 26.5 36.7 47.6 57.8 66.9 74.4 80.2 84.3 87.5

Average
Base 3.7 6.6 11.0 16.8 23.8 31.4 39.0 45.5 50.0
GRPO 13.2 18.4 23.7 28.7 33.0 36.6 40.0 43.2 47.2
Cov KL 13.7 18.6 23.8 28.7 33.3 37.3 41.1 45.2 50.5
Pass@K-mixed 13.8 19.3 24.9 30.1 34.3 37.7 41.3 45.4 50.3
THR 12.5 18.2 24.1 29.8 35.1 39.9 44.7 49.9 54.4
THR (p = �0.1) 12.1 17.5 23.3 29.1 35.2 41.0 45.9 50.4 55.6
THR (p = �0.2) 12.1 17.1 22.5 28.1 33.7 39.3 45.0 50.7 57.0

Table 9: Pass@K performance of different methods using Llama3.2-3B-Instruct .

• Stating the Given Information: tokens that capture the initial conditions or input facts (present,

data, paper).
• Transformation and Operations: tokens that describe conversions, equivalence, or transfers of
knowledge (conversion, transfer, equivalent).
• Constraints and Relationships: tokens indicating dependencies, limitations, or structural relations
(relative, intersects, amount, dimensions).
• Decision and Selection: tokens reflecting choices among alternatives or branching reasoning paths
(determine, instead, alternating, altern, others).
• Verification and Conclusion: tokens signaling validation or consolidation of results (confirms,

systematic, answer).

C.5 RUNNING TIME OF EACH MODULE.

We also track the average time cost of each module during training, as reported in Table 10. Notably,
the data generation (Data Gen) module that using dynamic sampling accounts for the majority of
the total training time. In contrast, the overhead introduced by THR is minimal, e.g. 37 seconds for
Qwen2.5-Math-1.5B, contributing only a small fraction to the overall cost.
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Model+dataset Data Gen Model Upd THR Ref Old Prob Total (Sec)
Qwen2.5-Math-1.5B 347 210 37 120 120 834
Qwen2.5-Math-7B 422 371 39 187 187 1206
Llama3.2-3B-Instruction 625 139 26 89 89 968

Table 10: Average running time (per step, in seconds) of each module for different models and tasks.

D DETAILED PROOFS

D.1 PASS@K AS THE QUESTION LEVEL REWEIGHTING

Chen et al. (2025); Mahdavi et al. (2025); Walder & Karkhanis (2025) develop RLVR objectives that
directly target Pass@K optimization. Starting with GRPO’s ancestor, REINFORCE, Mahdavi
et al. (2025); Walder & Karkhanis (2025) derive reward rescalings by directly optimizing the
Pass@K objective. Mahdavi et al. (2025) apply the same rescaling to advantages giving a GRPO
version of their approach. These rescalings upweight the gradient contribution of correct responses
that constitute “rare successes”—i.e., responses associated with “hard” questions. Crucially, the
reweighting is uniform across all tokens and responses for a given question, which we term question-

level reweighting. More recently, Chen et al. (2025) introduce an appealing alternative to optimizing
Pass@K by incorporating the design directly within GRPO’s group structure. Here, we simplify the
formulas in Chen et al. (2025) and arrive at an explicit formulation of advantage shaping that reveals
its question-level nature. Starting from the defined advantages in Chen et al. (2025):
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then harder question will have a larger 1 � q thus larger advantage, then we derive the negative
advantage.
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By combining Equation (11) and Equation (12), we arrive at Equation (6), completing the derivation.

D.2 RELATIONSHIP BETWEEN THR AND ENTROPY REGULARIZER

Under some mild assumptions, optimizing THR plays a similar role as regularizing2 the evolution of
the token entropy in a more efficient way. Because, as stated in the main context, THR considers
cross-token influence while current analysis on token entropy consider the influence of learning a
observing token on itself Cui et al. (2025). We start from Lemma 1 proposed in Cui et al. (2025),
which is how the Cov-KL regularizer is derived.

Lemma 1 in Cui et al. (2025): Let the actor policy ⇡✓ be a tabular softmax policy, the difference of
information entropy given states between two consecutive steps satisfy:

�H
t , H(⇡✓(t+1))�H(⇡✓(t)) = �Covy⇠⇡✓(t)(·|x)

�
log ⇡✓(t)(y | x), lt+1

y � lty
�
, (13)

where l is the logits vector provided by the model after feeding the input x. For notational simplicity,
we use the superscript t to denote the training step, rather than an exponent. The equation above
holds as long as a first-order Taylor expansion is valid at the logits level, independent of the specific
model under consideration. In other words, this lemma is agnostic to the mechanism by which l
evolves, which depends on the particular model architecture or parameterization.

Recall the definition of the covariance:

Covy⇠⇡(X,Y ) = Ey⇠⇡[X · Y ]� Ey⇠⇡[X]Ey0⇠⇡[Y ].

2The strength and direction are controlled by the value and sign of hyper-parameter p
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Equation (13) can then be written as:

�H
t(�) = �Covy⇠⇡✓(t)(·|�)

�
log ⇡✓(t)(y | �), lt+1

y � lty
�

= Ey⇠⇡✓(t)
[log ⇡✓(t)(y | �)]Ey0⇠⇡✓(t)

[lt+1

y0 � lty0 ]� Ey⇠⇡✓(t)

⇥
(lt+1

y � lty) log ⇡✓(t)(y | �)
⇤

= �H(⇡✓(t))Ey⇠⇡✓(t)
[lt+1

y � lty]� Ey⇠⇡✓(t)

⇥
(lt+1

y � lty) log ⇡✓(t)(y | �)
⇤

= �H(⇡✓(t))
VX

v=1

⇡✓(t)(y = v | �)(lt+1

v � ltv)�

VX

v=1

⇡✓(t)(y = v | �)(lt+1

v � ltv) log ⇡✓(t)(y = v | �)

= �

VX

v=1

⇡✓(t)(y = v | �)(lt+1

v + ltv)
�
H(⇡✓(t)) + log ⇡✓(t)(y = v | �)

�

= �
⌦
H(⇡✓(t))⇡✓(t)(· | �) + ⇡✓(t)(· | �)� log ⇡✓(t)(· | �), l

t+1
� lt

↵

= �H(⇡✓(t))

*
⇡✓(t)(· | �) +

1

H(⇡✓(t))
⇡✓(t)(· | x)� log ⇡✓(t)(· | x)

| {z }
V⇥1,defined as Q(�)

, lt+1
� lt

+

= c
⌦
�Q(�)� ⇡✓(t)(· | �), l

t+1(�)� lt(�).
↵

(14)

where the operator � is the element-wise multiplication of two vectors, � , x,y<k is the context for
the prediction of the k-th token, and c is a constant for notation conciseness. In the last equation, we
reintroduce the input � to the notation to remind readers that the entire equation is conditioned on a
given context sequence �. That is an important extension, because most existing works on entropy
regularization (e.g., Cui et al. (2025)) only focus on the influence introduced by updating the
observing token on itself. In other words, the � for Q and l are identical. The Cov-KL method
compared in Table 4 just applies the quantity above to select tokens with high covariances, and then
uses the KL penalty to restrict the update of them.

We here connect THR to entropy in a more systematic way by showing that THR can control the rate
of entropy growth H

t(�) through the choice of p. Beyond the simplified tabular softmax setting, our
analysis extends to more realistic models with shared parameters across tokens. In this case, THR
naturally captures the cross-token influences that arise throughout the learning process. In other
words, when tracking the confidence change of ⇡✓(t)(y | �), THR accounts for the learning dynamics
of all other tokens across all responses, i.e., yi,<k for varying i and k.

To make the notations concise, we follow the settings in Ren & Sutherland (2025) and use �o and �u

to denote the “observing” token and “updating” context, respectively. Then, Equation (14) becomes:

�H
t(�o) = c

⌦
�Q(�o)� ⇡✓(t)(· | �o), l

t+1(�o)� lt(�o)
↵
.

Following Deng et al. (2025), and under the unconstrained features assumption Deng et al. (2025);
Mixon et al. (2022), we then represent lt(�o) = Wtho, where W 2 RV⇥d denotes the shared
read-out layer and ho 2 Rd⇥1 is the feature vector produced by the LLM backbone, conditioned
on the context sequence �u/o = x,yu/o,<k. Note that while lt(�o) shares the same Wt, the
feature vector h differs across contexts due to variations in input sequences. The difference vector
lt+1(�o)� lt(�o) 2 RV⇥1 can then be expressed as:

lt+1(�o)� lt(�o) = (Wt+1
�Wt)ho = �⌘rWL(�(Whu), eu)ho,

where ⌘ is the learning rate, �(·) is the softmax function, and eu is the one-hot distribution determined
by the label of yu. When the cross-entropy loss is considered, the equation above can be simplified to

lt+1(�o)� lt(�o) = (eu � ⇡✓(t)(· | �u))| {z }
V⇥1

·h>
u ho| {z }
1⇥1

.

Substituting this back to Equation (14), we can get

�H
t(�o) = c

⌦
�Q(�o)� ⇡✓(t)(· | �o), eu � ⇡✓(t)(· | �u)

↵
· h>

u ho (15)
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Figure 8: The shape of �x log x for x 2 (0, 1), shown in both the original and logarithmic scales.

Figure 9: Four examples of the distribution of ⇡, eo � ⇡ and Q+ ⇡.

Now, recall our definition of THR in Definition 4.1, where for each k in the summation, the term has
the format hhx,y+

i,<k
,hx,y<k0 i, which is just h>

u ho above. Combining the definition of ↵ and using
the notations in this section, we can rewrite the signed-THR as follows:

sign(yu) · THR(yo,yu, k) =
X

u

heo � ⇡✓(t)(· | �o), eu � ⇡✓(t)(· | �u)i · h
>
u ho, (16)

where sign(yu) depends on whether the completion is correct or not. Now, comparing the inner
product in Equation (15) and Equation (16), it is clear that the directional similarity between �Q(�o)
and eo determines the effect introduced by THR and the entropy regularizer.

We now show that, under mild assumptions (which typically hold during LLM fine-tuning), �Q(�o)
and eo point to a very similar direction (measured by their cosine similarity).

This observation follows from the shape of the function �x log x, illustrated in Figure 8. In a
distribution where most probability mass is concentrated on few dimensions, the dominant entry of
⇡t
✓(t)(· | �o) � log ⇡t

✓(t)(· | �o) is significantly larger than the rest. To validate this, we randomly
generate distributions and compute the cosine similarity between �Q(�o) and eo in Figure 9 and
Figure 10. The results show a clear trend: as both the vocabulary size and the peakiness of the
distribution increase, the alignment between the two vectors becomes stronger.

We now examine the relationship between THR and entropy. Recall that THR is defined as

ÂTHR(p)

i,k = [|THRi,k| > ⌧ ] · (1 + sign(THRi,k) · p) · Âi,k.

When p < 0, tokens with larger THR values receive stronger penalties. Since, in most cases, �H
t(�)

and THR point in similar directions, this implies that tokens with higher potential entropy change are
penalized, closely aligning with the intuition behind Cov-KL. However, as shown in our experiments,
THR achieves greater improvements in exploration performance because it explicitly accounts for
cross-token influence, rather than relying solely on entropy-based signals on a token’s self-influence,
as in COV-KL Cui et al. (2025).
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Figure 10: We sweep the value of vocabulary size V and argmax probability of the distribution ⇡⇤.
The distribution is generated by fixing ⇡⇤ and randomly assign the extra probability mass to other
dimensions. The results show that the cosine similarity between eo � ⇡ and Q+ ⇡ is indeed very
large when V and ⇡⇤ are large enough.

E USAGE OF LARGE LANGUAGE MODEL

In preparing this paper, we made limited use of ChatGPT to support writing and editing. Specifically,
LLMs were employed for language polishing, grammar refinement, and rephrasing sentences to
improve clarity and readability. Importantly, all technical content, including theoretical analysis,
algorithm design, and experimental results, was conceived, implemented, and validated by the
authors. LLM outputs were always critically reviewed, verified, and revised before inclusion. No
LLM-generated text, figures, or tables were incorporated without careful human oversight.
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