

648	CONTENTS	
649		
650		
651	1 Introduction	1
652		
653	2 Related Work	2
654		
655	3 Preliminary	3
656		
657	3.1 Group Relative Policy Optimization	3
658	3.2 Likelihood Change of Correct Response in GRPO	3
659		
660	4 Token Hidden Reward	4
661		
662	4.1 Definition of THR	4
663	4.2 Connecting THR with Exploration and Exploitation.	4
664		
665	5 THR-Guided Token Advantage Adjustment	5
666		
667		
668	6 Experiments & Analysis	5
669		
670	6.1 Effectiveness of THR in exploitation and exploration	6
671	6.2 THR vs. Pass@K Training: Token-Level vs. Question-Level Reweighting	7
672	6.3 On the Relation of THR with Entropy	8
673	6.4 Generalizing THR to other RL objectives and model families	9
674		
675		
676	7 Conclusion	9
677		
678	8 Ethics Statement	10
679		
680	9 Reproducibility Statement	10
681		
682		
683	Appendix	13
684		
685	A Additional Preliminary	14
686		
687	B Additional Experiment Details.	14
688		
689	C Additional Experiments	15
690		
691	C.1 Ablation Study on Positive and Negative-Only Training.	15
692	C.2 Additional Results on GSPO	15
693	C.3 Additional Results on Llama	16
694	C.4 Additional THR Token Analysis	16
695	C.5 Running time of each module.	17
696		
697		
698		
699	D Detailed Proofs	18
700		
701	D.1 Pass@K as the question level reweighting	18
	D.2 Relationship between THR and Entropy Regularizer	19

702 **E Usage of Large Language Model**703 **22**704 **A ADDITIONAL PRELIMINARY**

707 **Group Sequential Policy Optimization.** Recently, [Zheng et al. \(2025\)](#) introduce group sequence
 708 policy optimization (GSPO), a new reinforcement learning algorithm for training large language
 709 models. Following the basic principle of importance sampling, GSPO defines importance ratios
 710 based on sequence likelihood and performs sequence-level clipping, rewarding, and optimization.
 711 The GSPO objective $\mathcal{J}_{\text{GSPO}}(\theta)$ is then defined as:

$$712 \quad \mathbb{E}_{\substack{(\mathbf{x}, \mathbf{a}) \sim \mathcal{D} \\ \{\mathbf{y}_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{x})}} \left[\frac{1}{\sum_{i=1}^G} \sum_{i=1}^G \min \left(s_i(\theta) \hat{A}_{i,k}, \hat{A}_{i,k} \cdot \text{clip}(s_i(\theta), 1 - \varepsilon, 1 + \varepsilon) \right) \right] \quad (7)$$

716 where the defined the importance ratio $s_i(\theta)$ is based on sequential likelihood:

$$717 \quad s_i(\theta) = \left(\frac{\pi_\theta(\mathbf{y}_i | \mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}_i | \mathbf{x})} \right)^{\frac{1}{|\mathbf{y}_i|}} = \exp \left(\frac{1}{|\mathbf{y}_i|} \sum_{k=1}^{|\mathbf{y}_i|} \gamma_{i,k}(\theta) \right) \quad (8)$$

720 The token-level objective variant of GSPO, namely $\mathcal{J}_{\text{GSPO-token}}(\theta)$ allows token-wise advantage
 721 customization and is defined as:

$$724 \quad \mathbb{E}_{\substack{(\mathbf{x}, \mathbf{a}) \sim \mathcal{D} \\ \{\mathbf{y}_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{x})}} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|\mathbf{y}_i|} \sum_{k=1}^{|\mathbf{y}_i|} \min \left(s_{i,k}(\theta) \hat{A}_{i,k}, \text{clip}(s_{i,k}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,k} \right) \right], \quad (9)$$

727 where

$$729 \quad s_{i,k}(\theta) = \text{sg}[s_i(\theta)] \cdot \frac{\pi_\theta(\mathbf{y}_{i,k} | \mathbf{x}, \mathbf{y}_{i,<k})}{\text{sg}[\pi_\theta(\mathbf{y}_{i,k} | \mathbf{x}, \mathbf{y}_{i,<k})]}, \quad (10)$$

731 and $\text{sg}[\cdot]$ denotes only taking the numerical value but stopping the gradient, corresponding to the
 732 `detach` operation in PyTorch. The gradient of GSPO-token can be derived as:

734 GSPO demonstrates notably superior training stability, efficiency, and performance compared to
 735 GRPO and exhibits particular efficacy for the large-scale RL training of MoE models. To be specific,

736 **B ADDITIONAL EXPERIMENT DETAILS.**

738 **Additional Details for Qwen2.5-0.5B-Ins:** For the 0.5B model, training is conducted on two A6000
 739 GPUs with a batch size of 32, a maximum rollout length of 2500 tokens, a learning rate of $5e^{-7}$, and
 740 a mini-batch size of 16—resulting in two iteration updates per training step. For the greedy decoding
 741 performance, we report the best accuracy across multiple checkpoints due to significant fluctuations
 742 during training. For all other settings, we report the performance at the final checkpoint. In addition
 743 to high-THR tokens, we also include those within the top 20% highest-entropy tokens that do not
 744 overlap with high-THR (approximate 4.1 % tokens), and keep their advantage unchanged being $\hat{A}_{i,k}$.
 745 For formatting, we follow [Zeng et al. \(2025\)](#), adopting simple prompts since the model struggles with
 746 complex instructions. We use $p = 0.2$ and $p = -0.2$ for exploitation and exploration respectively.

747 **Additional Details for Qwen-Math:** The Qwen-Math model [Yang et al. \(2024\)](#) uses its full context
 748 length of 3072 tokens for rollouts. For format, we follow [Zeng et al. \(2025\)](#) to use Qwen Chat template
 749 and require final answer to be enclosed in a latex command `\boxed{}`. Unless otherwise specified,
 750 we set $p = 0.1$ for exploitation and $p = -0.1$ for exploration.

751 **Additional Training Details for Llama:** For the Llama3.2-3B-Instruct [Dubey et al. \(2024\)](#) model,
 752 training is carried out on 8 A100 GPUs with a batch size of 256, a maximum rollout length of 3000
 753 tokens, a learning rate of 1×10^{-6} , and a mini-batch size of 16. For greedy decoding, we report the
 754 best accuracy across multiple checkpoints due to the substantial fluctuations observed during training,
 755 while for all other settings we report results from the final checkpoint. In addition to high-THR
 tokens, we also include those within the top 20% highest-entropy tokens that do not overlap with

756	Base Model	Method	AIME25	AIME24	AMC23	MATH500	Minerva	Olympiad	Avg.
757	Qwen2.5-Math-1.5B	Base	0.0	3.3	20.0	39.6	7.7	24.9	15.9
		GRPO	3.3	13.3	57.5	71.8	29.0	34.1	34.8
		Pos Only	3.3	10.0	57.5	70.6	30.1	31.0	33.8
		THR ($p = 0.1$)	3.3	13.3	62.5	<u>71.4</u>	<u>33.1</u>	34.5	36.3

761 Table 5: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
762 and datasets. **Bold** indicates the best performance, while underline marks the second-best.

764 high-THR (approximate 3.5 % tokens), and fix their keep their advantage unchanged being $\hat{A}_{i,k}$.
765 For formatting, we follow [Zeng et al. \(2025\)](#), adopting simple prompts since the model struggles with
766 complex instructions.

768 C ADDITIONAL EXPERIMENTS

770 C.1 ABLATION STUDY ON POSITIVE AND NEGATIVE-ONLY TRAINING.

772 We further investigate the impact of training with only positive or negative tokens by modifying $\hat{A}_{i,k}$.
773 In the “Pos Only” setting, we set all values where $\hat{A}_{i,k} < 0$ to 0, thereby increasing the confidence of
774 correct responses only. Conversely, in the “Neg Only” setting, we set all values where $\hat{A}_{i,k} > 0$ to
775 0, which reduces the confidence of incorrect responses without reinforcing correct ones. As shown
776 in Table 5, “Pos Only” results in a 1.3% drop in average performance compared to GRPO, indicating
777 that negative gradients also contribute to boosting confidence in correct responses.

779	Method	Qwen2.5-0.5B-Instruct Pass@K										Qwen2.5-Math-1.5B Pass@K									
		1	2	4	8	16	32	64	128	256	1	2	4	8	16	32	64	128	256		
AIME 2025																					
781	GRPO	0.2	0.4	0.6	1.2	2.5	4.8	9.2	17.1	30.0	5.9	9.9	15.0	20.5	26.5	33.6	41.5	49.8	56.7		
782	Neg Only	0.2	0.4	0.7	1.4	2.8	5.3	9.5	16.2	26.7	4.7	8.1	12.7	17.8	23.4	30.2	38.2	46.2	56.7		
783	THR ($p < 0$)	0.2	0.3	0.6	1.1	2.3	4.6	9.0	17.5	33.3	6.0	10.1	15.3	20.9	26.8	33.9	41.7	50.0	60.0		
AIME 2024																					
784	GRPO	0.4	0.8	1.5	2.9	5.4	10.0	17.2	27.3	36.7	11.4	17.7	24.3	30.5	36.7	43.4	50.0	56.0	63.3		
785	Neg Only	0.2	0.5	0.9	1.8	3.3	5.9	9.7	14.9	23.3	9.9	16.0	23.1	30.2	36.7	42.8	48.1	52.9	56.7		
786	THR ($p < 0$)	0.4	0.8	1.5	2.9	5.4	9.4	14.9	21.5	30.0	11.9	18.2	24.9	31.2	37.9	45.3	52.9	61.2	70.0		
AMC23																					
787	GRPO	11.4	18.7	28.3	39.7	52.3	64.5	74.9	81.8	85.0	46.6	59.1	70.0	78.9	85.5	90.2	93.7	96.0	97.5		
788	Neg Only	7.7	13.7	22.6	34.4	48.4	63.2	76.6	87.5	95.0	44.0	56.9	68.0	76.5	83.0	88.5	92.3	94.3	95.0		
789	THR ($p < 0$)	12.0	20.1	30.6	42.7	56.5	70.8	82.7	89.6	92.5	47.9	61.0	72.2	81.1	87.3	91.6	95.1	98.0	100.0		
Average																					
790	GRPO	4.0	6.6	10.1	14.6	20.1	26.4	33.8	42.1	50.6	21.3	28.9	36.4	43.3	49.6	55.7	61.7	67.3	72.5		
791	Neg Only	2.7	4.9	8.1	12.5	18.2	24.8	31.9	39.5	48.3	9.5	27.0	34.6	41.5	47.7	53.8	59.5	64.5	68.4		
792	THR ($p < 0$)	4.9	7.4	11.6	15.6	21.4	28.3	35.5	43.5	51.9	21.9	29.8	37.5	44.4	50.7	57.3	63.2	69.7	76.7		

792 Table 6: Comparing exploration ability with Pass@K. Results for Qwen2.5-Math-1.5B and Qwen2.5-
793 Math-7B are reported on the AIME 2024, AIME 2025, and AMC23 datasets, along with their average.
794 **Bold** indicates the best performance.

795 As also shown in Table 6, “Neg Only” underperforms in most cases. For example, on AMC23 with
796 Qwen2.5-Math-1.5B, it achieves a Pass@256 of 56.7%, compared to 63.3% for both GRPO and vanilla
797 THR. While “Neg Only” yields moderate improvements over the Base model on average—indicating
798 that suppressing incorrect responses provides some exploratory value—positive tokens still play a
799 critical role in enhancing exploration. By selectively incorporating informative tokens, THR with
800 $p < 0$ achieves substantially better exploration performance than “Neg Only” alone.

802 C.2 ADDITIONAL RESULTS ON GSPO

804 We further show that THR can be seamlessly integrated with other group relative reinforcement
805 learning objectives. In particular, we apply THR to token level variant of group sequence policy
806 optimization (GSPO-token) [Zheng et al. \(2025\)](#), which optimizes at the sequence level through
807 clipping, rewarding, and optimization while allow token level advantage adjustment (more details in
808 Appendix [Appendix A](#)). As reported in Table 7, incorporating THR with $p < 0$ yields substantial
809 improvements, boosting Pass@K performance across all K with an average improvement by around
0.9% to THR and 1.4% to GSPO.

Method	Qwen2.5-Math-1.5B Pass@K								
	1	2	4	8	16	32	64	128	256
AIME 2025									
GSPO	5.2	9.0	13.9	19.3	24.9	31.0	36.9	41.4	46.7
GSPO+THR	4.4	7.8	12.5	18.0	23.9	31.1	39.0	46.4	50.0
GSPO+THR ($p = -0.1$)	5.1	8.9	14.3	20.4	26.6	33.3	39.9	46.9	53.3
AIME 2024									
GSPO	10.4	16.8	24.1	31.3	38.5	45.6	52.4	59.4	66.7
GSPO+THR	10.0	16.2	23.6	30.8	37.7	44.8	52.8	60.8	66.7
GSPO+THR ($p = -0.1$)	11.0	17.2	24.2	31.0	37.8	44.9	51.8	59.1	66.7
AMC 2023									
GSPO	44.9	58.0	69.0	77.7	84.3	89.1	92.0	93.6	95.0
GSPO+THR	44.9	58.0	68.7	77.0	83.5	88.8	93.3	97.2	100.0
GSPO+THR ($p = -0.1$)	45.4	58.2	69.1	77.9	84.6	90.1	95.0	98.7	100.0
Average									
GSPO	20.2	27.9	35.7	42.8	49.2	55.2	60.4	64.8	69.5
GSPO+THR	19.8	27.3	34.9	41.9	48.4	54.9	61.7	68.1	72.2
GSPO+THR ($p = -0.1$)	20.5	28.1	35.9	43.1	49.7	56.1	62.2	68.2	73.3

Table 7: Performance with GSPO

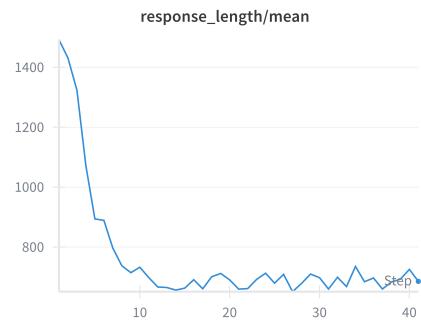


Figure 6: Response length dynamics of Llama3.2-3B-Instruct across different stages of GRPO training.

C.3 ADDITIONAL RESULTS ON LLAMA.

Reduced response length. As shown in Figure 6, the response length of Llama3.2-3B declines rapidly after a few epochs, with the average length dropping from about 1.5K tokens to roughly 650. This reduction may stem from the model's limited cognitive behaviors (Gandhi et al., 2023).

Exploitation Results on Llama We report the greedy decoding performance of Llama in Table 8. As shown in table, while GRPO achieves the best performance, setting $p > 0$ can improve the greedy decoding performance compared with vanilla THR by 1.1%.

Exploration Results on Llama As shown in Table 9, THR still substantially boosts exploration, achieving over a 7% Pass@K improvement compared to GRPO. Setting $p < 0$ amplifies these exploration gains even further. While baselines such as COV-KL and Pass@K-mixed also provide exploration improvements, they consistently underperform relative to THR.

C.4 ADDITIONAL THR TOKEN ANALYSIS

We further analyze tokens with high THR values using a word cloud visualization, as shown in Figure 7. The representative tokens can be organized into five functional categories that correspond to step-by-step reasoning:

Figure 7: Word cloud of the top 50 tokens ranked by THR, generated from Qwen2.5-Math-7B on AMC23. Font size is proportional to each token’s average THR. Tokens with high THR represent the key reasoning steps most critical in the model’s problem-solving process.

864	Base Model	Method	AIME25	AIME24	AMC23	MATH500	Minerva	Olympiad	Avg.
865		Base	0.0	3.3	22.5	40.2	16.5	11.9	15.7
866		GRPO	0.0	26.7	30.0	54.4	22.1	18.1	25.2
867	Llama3.2-3B-Instruct	THR	0.0	13.3	32.5	51.8	22.1	19.9	23.3
868		THR ($p = -0.2$)	3.3	6.7	27.5	51.4	20.6	16.3	21.0
		THR ($p = 0.05$)	3.3	13.3	40.0	50.6	22.4	16.7	<u>24.4</u>

869
870 Table 8: Exploitation Results. Pass@1 accuracy (%) using greedy decoding across different methods
871 and datasets. **Bold** indicates the best performance, while underline marks the second-best.

872	873	Method	Llama3.2-3B-Instruct Pass@K							
			1	2	4	8	16	32	64	128
875 AIME 2025										
876	Base	0.2	0.3	0.6	1.2	2.4	4.6	8.45	14.2	20.0
877	GRPO	0.3	0.7	1.25	2.4	4.3	7.0	10.2	13.2	16.7
878	Cov KL	0.4	0.7	1.4	2.5	4.5	7.4	11.2	16.3	23.3
879	Pass@K-mixed	0.7	1.3	2.3	3.9	6.3	9.1	12.6	16.7	20.0
880	THR	1.0	1.8	3.4	5.7	8.6	12.0	16.7	24.0	30.0
	THR ($p = -0.1$)	1.1	2.1	3.8	6.7	10.7	15.3	19.7	24.2	30.0
	THR ($p = -0.2$)	0.5	0.9	1.8	3.4	6.4	11.1	17.8	26.3	36.7
881 AIME 2024										
882	Base	1.4	2.6	4.8	8.3	13.4	20.3	28.4	35.9	40.0
883	GRPO	12.7	17.5	22.4	27.4	31.0	33.3	34.9	36.7	40.0
884	Cov KL	11.9	15.9	20.4	25.6	30.6	33.8	35.8	38.3	43.3
885	Pass@K-mixed	12.2	17.2	22.4	27.4	30.8	32.8	35.1	38.2	43.3
886	THR	9.8	15.0	20.5	25.7	29.8	32.6	35.0	38.2	43.3
	THR ($p = -0.1$)	9.2	13.9	19.0	24.2	29.3	33.5	36.5	40.0	46.7
	THR ($p = -0.2$)	9.4	13.6	18.2	23.1	27.9	32.5	37.1	41.6	46.7
887 AMC 2023										
888	Base	9.6	17.0	27.7	41.0	55.7	69.2	80.1	86.4	90.0
889	GRPO	26.7	36.9	47.3	56.4	63.6	69.5	74.8	79.6	85.0
890	Cov KL	28.9	39.3	49.6	57.9	64.7	70.8	76.2	81.1	85.0
891	Pass@K-mixed	28.6	39.3	49.9	58.9	65.8	71.3	76.3	81.4	87.5
892	THR	26.8	37.9	48.5	57.9	67.0	75.2	82.3	87.5	90.0
	THR ($p = -0.1$)	26.1	36.4	47.0	56.4	65.5	74.2	81.5	87.0	90.0
	THR ($p = -0.2$)	26.5	36.7	47.6	57.8	66.9	74.4	80.2	84.3	87.5
893 Average										
894	Base	3.7	6.6	11.0	16.8	23.8	31.4	39.0	45.5	50.0
895	GRPO	13.2	18.4	23.7	28.7	33.0	36.6	40.0	43.2	47.2
896	Cov KL	13.7	18.6	23.8	28.7	33.3	37.3	41.1	45.2	50.5
897	Pass@K-mixed	13.8	19.3	24.9	30.1	34.3	37.7	41.3	45.4	50.3
898	THR	12.5	18.2	24.1	29.8	35.1	39.9	44.7	49.9	54.4
	THR ($p = -0.1$)	12.1	17.5	23.3	29.1	35.2	41.0	45.9	50.4	55.6
	THR ($p = -0.2$)	12.1	17.1	22.5	28.1	33.7	39.3	45.0	50.7	57.0

899
900 Table 9: Pass@K performance of different methods using Llama3.2-3B-Instruct .
901

902 • **Stating the Given Information:** tokens that capture the initial conditions or input facts (*present, data, paper*).
903 • **Transformation and Operations:** tokens that describe conversions, equivalence, or transfers of knowledge (*conversion, transfer, equivalent*).
904 • **Constraints and Relationships:** tokens indicating dependencies, limitations, or structural relations (*relative, intersects, amount, dimensions*).
905 • **Decision and Selection:** tokens reflecting choices among alternatives or branching reasoning paths (*determine, instead, alternating, altern, others*).
906 • **Verification and Conclusion:** tokens signaling validation or consolidation of results (*confirms, systematic, answer*).

913 C.5 RUNNING TIME OF EACH MODULE.

914
915 We also track the average time cost of each module during training, as reported in Table 10. Notably,
916 the data generation (Data Gen) module that using dynamic sampling accounts for the majority of
917 the total training time. In contrast, the overhead introduced by THR is minimal, e.g. 37 seconds for
918 Qwen2.5-Math-1.5B, contributing only a small fraction to the overall cost.

Model+dataset	Data Gen	Model Upd	THR	Ref	Old Prob	Total (Sec)
Qwen2.5-Math-1.5B	347	210	37	120	120	834
Qwen2.5-Math-7B	422	371	39	187	187	1206
Llama3.2-3B-Instruction	625	139	26	89	89	968

Table 10: Average running time (per step, in seconds) of each module for different models and tasks.

D DETAILED PROOFS

D.1 PASS@K AS THE QUESTION LEVEL REWEIGHTING

Chen et al. (2025); Mahdavi et al. (2025); Walder & Karkhanis (2025) develop RLVR objectives that directly target Pass@K optimization. Starting with GRPO’s ancestor, REINFORCE, Mahdavi et al. (2025); Walder & Karkhanis (2025) derive reward rescalings by directly optimizing the Pass@K objective. Mahdavi et al. (2025) apply the same rescaling to advantages giving a GRPO version of their approach. These rescalings upweight the gradient contribution of correct responses that constitute “rare successes”—i.e., responses associated with “hard” questions. Crucially, the reweighting is uniform across all tokens and responses for a given question, which we term *question-level reweighting*. More recently, Chen et al. (2025) introduce an appealing alternative to optimizing Pass@K by incorporating the design directly within GRPO’s group structure. Here, we simplify the formulas in Chen et al. (2025) and arrive at an explicit formulation of advantage shaping that reveals its question-level nature. Starting from the defined advantages in Chen et al. (2025):

$$\bar{R}^{\text{group}} = 1 - \frac{\binom{N^-}{K}}{\binom{G}{K}}, \sigma^{\text{group}} = \sqrt{\bar{R}^{\text{group}} \times (1 - \bar{R}^{\text{group}})}$$

$$A_{\text{pos}}^{\text{@}K} = \frac{1 - \bar{R}^{\text{group}}}{\sigma^{\text{group}}}, A_{\text{neg}}^{\text{@}K} = \left(1 - \bar{R}^{\text{group}} - \frac{\binom{N^- - 1}{K - 1}}{\binom{G - 1}{K - 1}}\right) \times (\sigma^{\text{group}})^{-1}.$$

Since $N^- = (1 - q)G$ then we can obtain:

$$\begin{aligned} A_{\text{pos}}^{\text{@}K} &= \frac{\binom{N^-}{K}}{\binom{G}{K} \sigma^{\text{group}}} \\ &= \frac{\prod_{i=0}^{K-1} ((1 - q)G - i)}{\prod_{i=0}^{K-1} (G - i) \sigma^{\text{group}}}, \\ &= \sqrt{\frac{\binom{N^-}{K} / \binom{G}{K}}{1 - \binom{N^-}{K} / \binom{G}{K}}} \\ &= \sqrt{\frac{\binom{N^-}{K} / \binom{G}{K}}{1 - \binom{N^-}{K} / \binom{G}{K}} \cdot \sqrt{\frac{q}{1 - q}}} \cdot \sqrt{\frac{1 - q}{q}} \\ &= \sqrt{\frac{\binom{N^-}{K} / \binom{G}{K}}{1 - \binom{N^-}{K} / \binom{G}{K}} \cdot \sqrt{\frac{q}{1 - q}}} \cdot \hat{A}_{\text{pos}} \end{aligned} \tag{11}$$

972 then harder question will have a larger $1 - q$ thus larger advantage, then we derive the negative
 973 advantage.
 974

$$\begin{aligned}
 A_{\text{neg}}^{\text{@}K} &= \left(\frac{\binom{N^-}{K}}{\binom{G}{K}} - \frac{\binom{N^- - 1}{K-1}}{\binom{G-1}{K-1}} \right) \frac{1}{\sigma^{\text{group}}} \\
 &= \left(\frac{\prod_{i=0}^{K-1} (N^- - i)}{\prod_{i=0}^{K-1} (N - i)} - \frac{\prod_{i=1}^{K-1} (N^- - i)}{\prod_{i=1}^{K-1} (N - i)} \right) \frac{1}{\sigma^{\text{group}}} \\
 &= \left(1 - \frac{G}{N^-} \right) \frac{\prod_{i=0}^{k-1} (N^- - i)}{\prod_{i=0}^{k-1} (G - i)} \frac{1}{\sigma^{\text{group}}} \\
 &= -\frac{q}{1-q} A_{\text{pos}}^{\text{@}K} \\
 &= (A_{\text{pos}}^{\text{@}K} \cdot \sqrt{\frac{q}{1-q}}) \cdot \left(-\sqrt{\frac{q}{1-q}} \right) \\
 &= \sqrt{\frac{\binom{N^-}{K}/\binom{G}{K}}{1 - \binom{N^-}{K}/\binom{G}{K}}} \cdot \sqrt{\frac{q}{1-q}} \cdot \hat{A}_{\text{neg}}
 \end{aligned} \tag{12}$$

994 By combining Equation (11) and Equation (12), we arrive at Equation (6), completing the derivation.
 995

998 D.2 RELATIONSHIP BETWEEN THR AND ENTROPY REGULARIZER

1000 Under some mild assumptions, optimizing THR plays a similar role as regularizing² the evolution of
 1001 the token entropy in a more efficient way. Because, as stated in the main context, THR considers
 1002 cross-token influence while current analysis on token entropy consider the influence of learning a
 1003 observing token on itself Cui et al. (2025). We start from Lemma 1 proposed in Cui et al. (2025),
 1004 which is how the Cov-KL regularizer is derived.

1005 **Lemma 1 in Cui et al. (2025):** Let the actor policy π_θ be a tabular softmax policy, the difference of
 1006 information entropy given states between two consecutive steps satisfy:
 1007

$$\Delta \mathcal{H}^t \triangleq \mathcal{H}(\pi_{\theta(t+1)}) - \mathcal{H}(\pi_{\theta(t)}) = -\text{Cov}_{\mathbf{y} \sim \pi_{\theta(t)}(\cdot | \mathbf{x})} (\log \pi_{\theta(t)}(\mathbf{y} | \mathbf{x}), \mathbf{l}_y^{t+1} - \mathbf{l}_y^t), \tag{13}$$

1012 where \mathbf{l} is the logits vector provided by the model after feeding the input \mathbf{x} . For notational simplicity,
 1013 we use the superscript t to denote the training step, rather than an exponent. The equation above
 1014 holds as long as a first-order Taylor expansion is valid at the logits level, independent of the specific
 1015 model under consideration. In other words, this lemma is agnostic to the mechanism by which \mathbf{l}
 1016 evolves, which depends on the particular model architecture or parameterization.
 1017

1018 Recall the definition of the covariance:

$$\text{Cov}_{y \sim \pi}(X, Y) = \mathbb{E}_{y \sim \pi}[X \cdot Y] - \mathbb{E}_{y \sim \pi}[X]\mathbb{E}_{y' \sim \pi}[Y].$$

1022 ²The strength and direction are controlled by the value and sign of hyper-parameter p

1026 Equation (13) can then be written as:
 1027

$$\begin{aligned}
 1028 \Delta \mathcal{H}^t(\chi) &= -\text{Cov}_{y \sim \pi_{\theta(t)}(\cdot | \chi)} (\log \pi_{\theta(t)}(y | \chi), \mathbf{l}_y^{t+1} - \mathbf{l}_y^t) \\
 1029 &= \mathbb{E}_{y \sim \pi_{\theta(t)}} [\log \pi_{\theta(t)}(y | \chi)] \mathbb{E}_{y' \sim \pi_{\theta(t)}} [\mathbf{l}_{y'}^{t+1} - \mathbf{l}_{y'}^t] - \mathbb{E}_{y \sim \pi_{\theta(t)}} [(\mathbf{l}_y^{t+1} - \mathbf{l}_y^t) \log \pi_{\theta(t)}(y | \chi)] \\
 1030 &= -\mathcal{H}(\pi_{\theta(t)}) \mathbb{E}_{y \sim \pi_{\theta(t)}} [\mathbf{l}_y^{t+1} - \mathbf{l}_y^t] - \mathbb{E}_{y \sim \pi_{\theta(t)}} [(\mathbf{l}_y^{t+1} - \mathbf{l}_y^t) \log \pi_{\theta(t)}(y | \chi)] \\
 1031 &= -\mathcal{H}(\pi_{\theta(t)}) \sum_{v=1}^V \pi_{\theta(t)}(y = v | \chi) (\mathbf{l}_v^{t+1} - \mathbf{l}_v^t) - \\
 1032 &\quad \sum_{v=1}^V \pi_{\theta(t)}(y = v | \chi) (\mathbf{l}_v^{t+1} - \mathbf{l}_v^t) \log \pi_{\theta(t)}(y = v | \chi) \\
 1033 &= -\sum_{v=1}^V \pi_{\theta(t)}(y = v | \chi) (\mathbf{l}_v^{t+1} + \mathbf{l}_v^t) (\mathcal{H}(\pi_{\theta(t)}) + \log \pi_{\theta(t)}(y = v | \chi)) \\
 1034 &= -\langle \mathcal{H}(\pi_{\theta(t)}) \pi_{\theta(t)}(\cdot | \chi) + \pi_{\theta(t)}(\cdot | \chi) \odot \log \pi_{\theta(t)}(\cdot | \chi), \mathbf{l}^{t+1} - \mathbf{l}^t \rangle \\
 1035 &= -\mathcal{H}(\pi_{\theta(t)}) \underbrace{\left\langle \pi_{\theta(t)}(\cdot | \chi) + \frac{1}{\mathcal{H}(\pi_{\theta(t)})} \pi_{\theta(t)}(\cdot | \chi) \odot \log \pi_{\theta(t)}(\cdot | \chi), \mathbf{l}^{t+1} - \mathbf{l}^t \right\rangle}_{V \times 1, \text{defined as } Q(\chi)} \\
 1036 &= c \langle -Q(\chi) - \pi_{\theta(t)}(\cdot | \chi), \mathbf{l}^{t+1}(\chi) - \mathbf{l}^t(\chi) \rangle. \tag{14}
 1037
 \end{aligned}$$

1048 where the operator \odot is the element-wise multiplication of two vectors, $\chi \triangleq \mathbf{x}, \mathbf{y}_{<k}$ is the context for
 1049 the prediction of the k -th token, and c is a constant for notation conciseness. In the last equation, we
 1050 reintroduce the input χ to the notation to remind readers that the entire equation is conditioned on a
 1051 given context sequence χ . That is an important extension, because most existing works on entropy
 1052 regularization (e.g., Cui et al. (2025)) **only focus on the influence introduced by updating the**
 1053 **observing token on itself**. In other words, the χ for Q and \mathbf{l} are identical. The Cov-KL method
 1054 compared in Table 4 just applies the quantity above to select tokens with high covariances, and then
 1055 uses the KL penalty to restrict the update of them.

1056 We here connect THR to entropy in a more systematic way by showing that THR can control the rate
 1057 of entropy growth $\mathcal{H}^t(\chi)$ through the choice of p . Beyond the simplified tabular softmax setting, our
 1058 analysis extends to more realistic models with shared parameters across tokens. In this case, THR
 1059 naturally captures the **cross-token** influences that arise throughout the learning process. In other
 1060 words, when tracking the confidence change of $\pi_{\theta(t)}(y | \chi)$, THR accounts for the learning dynamics
 1061 of all other tokens across all responses, i.e., $\mathbf{y}_{i,<k}$ for varying i and k .

1062 To make the notations concise, we follow the settings in Ren & Sutherland (2025) and use χ_o and χ_u
 1063 to denote the ‘‘observing’’ token and ‘‘updating’’ context, respectively. Then, Equation (14) becomes:

$$\Delta \mathcal{H}^t(\chi_o) = c \langle -Q(\chi_o) - \pi_{\theta(t)}(\cdot | \chi_o), \mathbf{l}^{t+1}(\chi_o) - \mathbf{l}^t(\chi_o) \rangle.$$

1064 Following Deng et al. (2025), and under the unconstrained features assumption Deng et al. (2025);
 1065 Mixon et al. (2022), we then represent $\mathbf{l}^t(\chi_o) = \mathbf{W}^t \mathbf{h}_o$, where $\mathbf{W} \in \mathbb{R}^{V \times d}$ denotes the shared
 1066 read-out layer and $\mathbf{h}_o \in \mathbb{R}^{d \times 1}$ is the feature vector produced by the LLM backbone, conditioned
 1067 on the context sequence $\chi_{u/o} = \mathbf{x}, \mathbf{y}_{u/o,<k}$. Note that while $\mathbf{l}^t(\chi_o)$ shares the same \mathbf{W}^t , the
 1068 feature vector \mathbf{h} differs across contexts due to variations in input sequences. The difference vector
 1069 $\mathbf{l}^{t+1}(\chi_o) - \mathbf{l}^t(\chi_o) \in \mathbb{R}^{V \times 1}$ can then be expressed as:

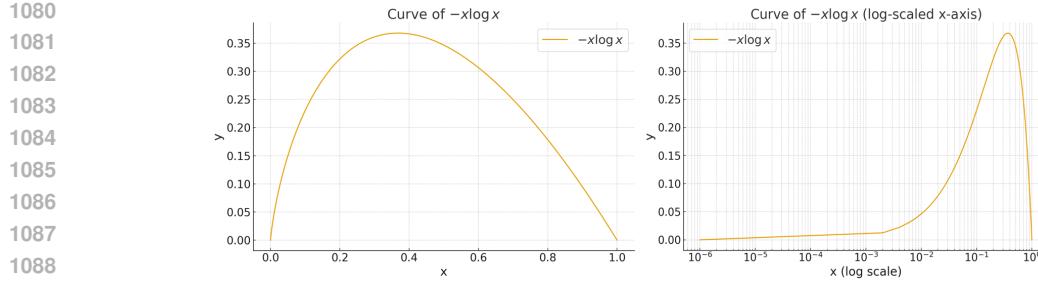
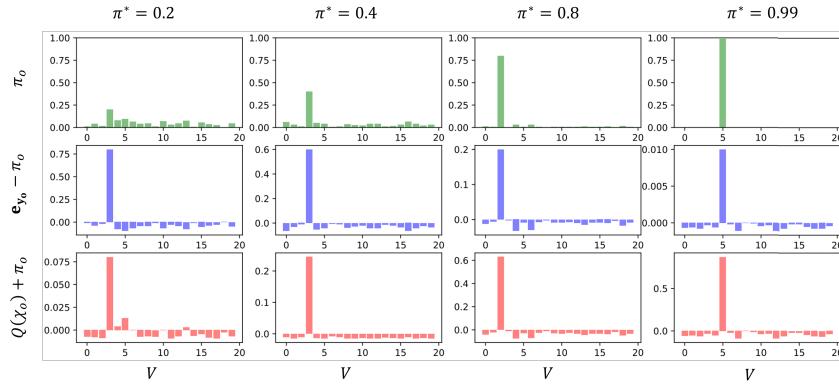
$$\mathbf{l}^{t+1}(\chi_o) - \mathbf{l}^t(\chi_o) = (\mathbf{W}^{t+1} - \mathbf{W}^t) \mathbf{h}_o = -\eta \nabla_{\mathbf{W}} \mathcal{L}(\sigma(\mathbf{W} \mathbf{h}_u), \mathbf{e}_u) \mathbf{h}_o,$$

1073 where η is the learning rate, $\sigma(\cdot)$ is the softmax function, and \mathbf{e}_u is the one-hot distribution determined
 1074 by the label of y_u . When the cross-entropy loss is considered, the equation above can be simplified to

$$\mathbf{l}^{t+1}(\chi_o) - \mathbf{l}^t(\chi_o) = \underbrace{(\mathbf{e}_u - \pi_{\theta(t)}(\cdot | \chi_u))}_{V \times 1} \cdot \underbrace{\mathbf{h}_u^\top \mathbf{h}_o}_{1 \times 1}.$$

1075 Substituting this back to Equation (14), we can get
 1076

$$\Delta \mathcal{H}^t(\chi_o) = c \langle -Q(\chi_o) - \pi_{\theta(t)}(\cdot | \chi_o), \mathbf{e}_u - \pi_{\theta(t)}(\cdot | \chi_u) \rangle \cdot \mathbf{h}_u^\top \mathbf{h}_o \tag{15}$$

Figure 8: The shape of $-x \log x$ for $x \in (0, 1)$, shown in both the original and logarithmic scales.Figure 9: Four examples of the distribution of π , $e_o - \pi$ and $Q + \pi$.

Now, recall our definition of THR in Definition 4.1 where for each k in the summation, the term has the format $\langle \mathbf{h}_{\mathbf{x}, \mathbf{y}_{i, < k}^+}, \mathbf{h}_{\mathbf{x}, \mathbf{y}_{i, < k}} \rangle$, which is just $\mathbf{h}_u^\top \mathbf{h}_o$ above. Combining the definition of α and using the notations in this section, we can rewrite the signed-THR as follows:

$$\text{sign}(\mathbf{y}_u) \cdot \text{THR}(\mathbf{y}_o, \mathbf{y}_u, k) = \sum_u \langle e_o - \pi_{\theta(t)}(\cdot | \chi_o), e_u - \pi_{\theta(t)}(\cdot | \chi_u) \rangle \cdot \mathbf{h}_u^\top \mathbf{h}_o, \quad (16)$$

where $\text{sign}(\mathbf{y}_u)$ depends on whether the completion is correct or not. Now, comparing the inner product in Equation (15) and Equation (16), it is clear that the directional similarity between $-Q(\chi_o)$ and e_o determines the effect introduced by THR and the entropy regularizer.

We now show that, under mild assumptions (which typically hold during LLM fine-tuning), $-Q(\chi_o)$ and e_o point to a very similar direction (measured by their cosine similarity).

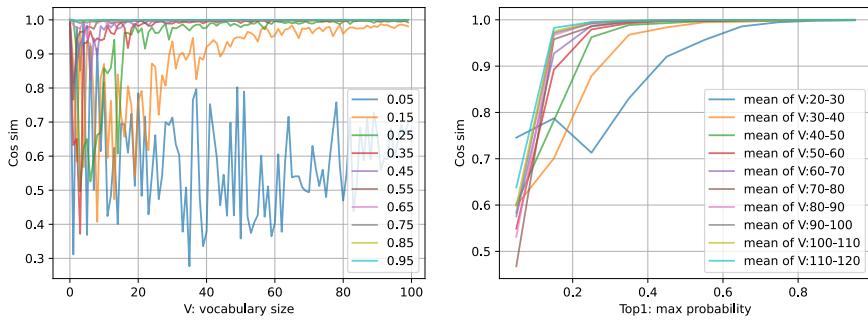
This observation follows from the shape of the function $-x \log x$, illustrated in Figure 8. In a distribution where most probability mass is concentrated on few dimensions, the dominant entry of $\pi_{\theta(t)}^t(\cdot | \chi_o) \odot \log \pi_{\theta(t)}^t(\cdot | \chi_o)$ is significantly larger than the rest. To validate this, we randomly generate distributions and compute the cosine similarity between $-Q(\chi_o)$ and e_o in Figure 9 and Figure 10. The results show a clear trend: as both the vocabulary size and the peakiness of the distribution increase, the alignment between the two vectors becomes stronger.

We now examine the relationship between THR and entropy. Recall that THR is defined as

$$\hat{A}_{i,k}^{\text{THR}(\text{p})} = \mathbb{1}[|\text{THR}_{i,k}| > \tau] \cdot (1 + \text{sign}(\text{THR}_{i,k}) \cdot p) \cdot \hat{A}_{i,k}.$$

When $p < 0$, tokens with larger THR values receive stronger penalties. Since, in most cases, $\Delta \mathcal{H}^t(\chi)$ and THR point in similar directions, this implies that tokens with higher potential entropy change are penalized, closely aligning with the intuition behind Cov-KL. However, as shown in our experiments, THR achieves greater improvements in exploration performance because it explicitly accounts for **cross-token** influence, rather than relying solely on entropy-based signals on a token's self-influence, as in COV-KL [Cui et al. (2025)].

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145



1146 Figure 10: We sweep the value of vocabulary size V and argmax probability of the distribution π^* .
 1147 The distribution is generated by fixing π^* and randomly assign the extra probability mass to other
 1148 dimensions. The results show that the cosine similarity between $e_o - \pi$ and $Q + \pi$ is indeed very
 1149 large when V and π^* are large enough.

E USAGE OF LARGE LANGUAGE MODEL

1150
1151
1152
1153 In preparing this paper, we made limited use of ChatGPT to support writing and editing. Specifically,
 1154 LLMs were employed for language polishing, grammar refinement, and rephrasing sentences to
 1155 improve clarity and readability. Importantly, all technical content, including theoretical analysis,
 1156 algorithm design, and experimental results, was conceived, implemented, and validated by the
 1157 authors. LLM outputs were always critically reviewed, verified, and revised before inclusion. No
 1158 LLM-generated text, figures, or tables were incorporated without careful human oversight.
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187