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ABSTRACT

Existing score-based adversarial attacks mainly focus on crafting top-1 adversarial
examples against classifiers with single-label classification. Their attack success
rate and query efficiency are often less than satisfactory, particularly under small
perturbation requirements; moreover, the vulnerability of classifiers with multi-
label learning is yet to be studied. In this paper, we propose a comprehensive
surrogate free score-based attack, named geometric score-based black-box attack

(GSBAX), to craft adversarial examples in an aggressive top-K setting for both
untargeted and targeted attacks, where the goal is to change the top-K predictions
of the target classifier. We introduce novel gradient-based methods to find a good
initial boundary point to attack. Our iterative method employs novel gradient esti-
mation techniques, particularly effective in top-K setting, on the decision bound-
ary to effectively exploit the geometry of the decision boundary. Additionally,
GSBAX can be used to attack against classifiers with top- K multi-label learning.
Extensive experiential results on ImageNet and PASCAL VOC datasets validate
the effectiveness of GSBAX in crafting top-K adversarial examples.

1 INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial examples (Goodfellow et al.| 2014;
Moosavi-Dezfooli et al.| 2016 |Carlini & Wagner, [2017). In white-box attacks (Szegedy et al.,
2013; (Carlini & Wagner, [2017}; [Moosavi-Dezfooli et al., [2016; Madry et al., |2017), an adversary
possesses complete access to the internal structure and parameters of the target DNN, whereas in
black-box attacks, this information is not available, making them more practical in real-world sce-
narios. Black-box attacks can be of two types: transfer-based (Dong et al., 2018;|Wang & He, 2021}
Wang et al., 2024; |Li et al., 2020c; |Wei et al., 2023) and query-based, where the former crafts ad-
versarial examples exploiting a surrogate model, and the latter makes queries for the outputs from
the target classifier to craft adversarial examples intended to deceive it. Within query-based black-
box attacks, two subcategories exist: decision-based (Chen et al.l 2020; Ma et al., [2021}; |Reza et al.,
2023)) and score-based (Guo et al.,|2019a; [[lyas et al.| [2018bfja; | Andriushchenko et al.| 2020)) attacks.
In the former, the adversary has access to the top-1 predicted label from the target model, while in
the latter, the adversary can retrieve the full set of prediction probabilities for all classes.

Numerous endeavors have been undertaken towards effective score-based black-box attacks (Chen
et al.,[2017;Bhagoji et al., 2018 Ilyas et al.,|2018a; Guo et al.,[2019a)) against classifiers with single-
label multi-class classification, where the classifiers’ goal is to predict the top-1 classification label
corresponding to an input. Score-based adversarial attacks can be either gradient-based (Ilyas et al.,
2018aib; |Chen et al.,[2017;|Bhagoji et al., [2018]), or gradient-free (Andriushchenko et al.,[2020; |Guo
et al., [2019a; |Li et al., 2020b). Gradient-based methods rely on small perturbations in the gradient
direction to steer the input towards the adversarial region, while gradient-free methods use some
predefined random directions for the same purpose. While Square Attack Andriushchenko et al.
(2020), in score-based setting, offers state-of-the-art performance, it suffers from low success rates
and query inefficiency, particularly when constrained by small perturbation thresholds.

In recent years, leveraging the geometry of the decision boundary has proven to enhance the effi-
ciency and effectiveness of decision-based black-box attacks (Liu et al., 2019; Rahmati et al., 2020;
Reza et al.| 2023). Geometric decision-based attacks, starting from a random point on the decision
boundary, iteratively refine the adversarial example exploring this boundary. However, such efforts
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are largely lacking for score-based attacks. A simple comparison between the usual approach of
existing score-based attacks and the state-of-the-art decision-based attack CGBA (Reza et al.| [2023)
in finding adversarial examples considering a linear boundary in a 2D space is shown in Fig.[I} Con-
sidering imperfect gradient estimation, the geometric-based attack CGBA finds a better adversarial
example along a semicircular path, starting from a random boundary point x;,, by exploring the
decision boundary. This raises an important open question: can the geometric properties of high-
dimensional image space boundaries be harnessed to advance the field of score-based attacks?

Traditionally, adversarial attacks have predomi-
nantly focused on generating top-1 adversarial ) _
examples against single-label multi-class clas- *o WPy
sifiers for untargeted and/or targeted attacks, Xaav P

wherein a well-crafted adversarial example re- g 5
places the single true label of the input image with
an arbitrary label for untargeted attacks and a spe-
cific target label for targeted attacks. However,
in numerous real-world applications such as web
search engines, image annotation, recommen-
dation systems, and computer vision APIs like (a) b)
Google Cloud Vision, Microsoft Azure Computer
Vision, Amazon Rekognition, and IBM Watson
Visual Recognition, the top-K predictions pro-
vide valuable information about the input. Thus,
recently, a couple of white-box attacks (Zhang &
Wu,. 2020; Hu et al., 2021; [Tursynbek et al., 2,022; weighted based on the increase in confidence
Paniagua et al., 2023) have been proposed in an oy ard the adversarial region. (b) Geometric-
aggressive top-I setting where the top-K pre-  pyged approach CGBA (Reza et all, [2023) in

diction labels of an input are replaced by an ar- finding a better adversarial example exploring
bitrary set of mutually exclusive wrong labels for 1o decision boundary.

untargeted attacks (Tursynbek et al.l 2022), and

by a given set of target labels for targeted attacks (Zhang & Wu| [2020; |Paniagua et al.| 2023).
Among these attacks, Ty ML-AP (Hu et al.,[202 1)) targets classifiers with multi-label learning, where
the classifiers’ goal is to learn multiple meaningful true labels from an image. These white-box
attacks, having full access to the target classifier, can calculate the true gradient to navigate towards
the adversarial region and craft top-K adversarial examples with high attack success rate (ASR),
demonstrating the underlying vulnerability of DNNs. However, this task becomes much more chal-
lenging in the more practical black-box setting with only predicted probabilities of all classes are
available, as we lack accurate intermediate gradients for navigation in the high-dimensional con-
tinuous space. In this case, identifying an initial boundary point satisfying the top-K target-label
constraints may be akin to finding a needle in an ocean. On top of that, we need to further refine
the obtained adversarial example to meet the perturbation threshold constraint across the highly
irregular adversarial region.

Adversarial region Adversarial region

Non-adversarial region Non-adversarial region

Figure 1: (a) Traditional score-based attack
approach: adversarial example x,q4, is gener-
ated by iteratively adding perturbations in the
direction of the estimated gradient or random
directions with source x,. Perturbations are

Benign Input

10*Perturbation Adv. Example (best)
To address the aforementioned < 2
challenges, we introduce a com-
prehensive query-efficient geo-
metric score-based top-K black-
box attack, GSBAX, that employs
distinct approaches to approxi-
mate gradients by querying the tar- 4=
get classifier, aiming to efficiently

identify good initial boundary

points for both untargeted and tar- Figure 2: Crafted top-2 adversarial examples against
geted attacks rather than starting Inception-V3 (Szegedy et al} 2016) with top-2 multi-label
from a random boundary point learning on the PASCAL VOC 2012 dataset (Everinghaml
as done by geometric decision- |et all [2015) by considering the best and worst target-label sets
based attacks. However, the ob- (Sec.[5.2). The prediction order based on confidence scores
tained initial boundary points, uti- of the benign input is: [person, dog, cow, potted plant, horse,
lizing the estimated gradient di- chair, car, dining table, bottle, sofa, cat, tv/monitor, bicycle,
rection, often significantly deviate  sheep, boat, motorbike, bird, bus, train, aeroplane).

Top-2 predictions:
cow, potted plant

gk

Top-2 predictions:

person, dog

10*Perturbation
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from the optimal. Thus, we further introduce more accurate gradient estimation techniques at bound-
ary points by leveraging the prediction probabilities. Guided by the estimated gradient on the deci-
sion boundary, GSBAX conducts a boundary point search along a semicircular trajectory, motivated
by the state-of-the-art (SOTA) decision-based attack CGBA (Reza et al., 2023)), to explore the de-
cision boundary and further optimize the perturbation. GSBA* is designed to perform attacks not
only on traditional single-label multi-class classification problems but also on classifiers with top- K
multi-label learning capabilities; see Fig. [2)for crafted top-2 adversarial examples. The contributions
of this paper are summarized as follows:

» We propose GSBAX, a comprehensive and query-efficient geometric score-based attack in an
aggressive top-K setting. GSBAX incorporates novel gradient estimation techniques to locate
a better initial boundary point and leverages the geometric properties of decision boundaries to
enhance both query efficiency and attack versatility.

* In the difficult top-K targeted attack, our gradient estimators assess the impact of each query on
the individual target classes and assign adaptive weights based on their significance.

* We adapt the SOTA score-based Square Attack (SA) (Andriushchenko et al., [2020) to the top-K
setting to serve as a baseline. Comprehensive experiments on ImageNet (Deng et al.l [2009) and
PASCAL VOC 2012 (Everingham et al.|[2015) datasets against popular classifiers underscore the
efficacy of GSBAX in handling both top-1 and complicated top- K, including multi-label learning
scenario, across untargeted and targeted settings.

2 RELATED WORK

Black-box adversarial attacks. The top-1 classification label is the sole piece of information
available to an adversary in decision-based attacks. These attacks can be either gradient-free (Bren-
del et al., 2017; |[Brunner et al., 2019; |Li1 et al.| 2021} [Dong et al., [2019; Maho et al., 2021) or they
can involve estimating the gradient on the decision boundary (Chen et al., 2020; [Li et al., 2020a;
Rahmati et al.|[2020; |[Reza et al.||2023). Based on the use of the geometric properties of the decision
boundary, decision-based adversarial attacks can also be categorized as geometric decision-based
adversarial attacks (Rahmati et al., [2020; [Maho et al., 2021; Ma et al., 2021; Wang et al., 2022}
Reza et al 2023). While Tangent Attack (Ma et all 2021) considers the decision boundary as a
virtual hemisphere to refine the boundary point, Triangle Attack (Wang et al., [2022)) used the trian-
gle inequality to refine it. GeoDA (Rahmati et al., 2020) and SurFree (Maho et al.l |2021)) focus on
the hyperplane boundary, with GeoDA using estimated gradient information to execute the attack,
while SurFree is gradient-free. In contrast, CGBA (Reza et al.,2023) demonstrates the difference in
curvature of the decision boundaries for untargeted and targeted attacks, based on which algorithms
are proposed that go beyond the simplified hyperplane boundary model and exploit the distinct cur-
vatures of the decision boundary for improved attack performance.

In score-based attacks, an adversary avails itself of the information of prediction probabilities of all
the classes when querying the target classifier. Although most score-based attacks operate without
surrogate models, some approaches (Guo et al.,[2019b; |Cheng et al.,|2019; |Yang et al., 2020) incor-
porate surrogate models to improve efficiency. Among the surrogate free attacks, ZOO (Chen et al.|
2017) employs the finite difference method with dimension-wise estimation to approximate the gra-
dient, requiring 2d queries per iteration, where d is the dimension of the image. To improve the query
efficiency of gradient estimation, (Bhagoji et al., 2018)) reduces the search space using PCA of the
input data, while AutoZOOM (Tu et al., 2019) samples noise from the low-dimensional latent space
of a trained auto-encoder. NES (Ilyas et al.,|2018a) uses finite differences through natural evolution
strategies for gradient estimation. In the quest for further improved query efficiency, Bandits (Ilyas
et al.,2018b) incorporates two priors: a time-dependent prior and a data-dependent prior. All the
aforementioned gradient-based attacks iteratively add noise toward the estimated gradient direction
to craft adversarial examples. SimBA (Guo et al.|[2019a), however, queries along a set of orthonor-
mal directions to obtain adversarial perturbations. Despite its simplicity, SimBA outperforms the
gradient-based methods. PPBA (L1 et al., [2020b)) introduces a projection and probability-driven un-
targeted attack, focusing on reducing the solution space by employing a low-frequency constrained
sensing matrix to enhance query efficiency. Conversely, SA (Andriushchenko et al., [2020) samples
a small block of noise at some random locations of the image and add the noise with the image if it
increases the confidence towards the adversarial region. There is another line of research that crafts
sparse adversarial examples (Croce & Hein| [2019; Croce et al.,[2022), focusing on attacks that limit
the number of perturbed pixels to minimize detection. Nevertheless, SA offers SOTA performance
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in crafting untargeted and targeted top-1 adversarial examples satisfying £o-norm constraint among
the existing surrogate-free score-based attacks (Li et al., 2024)).

Top-K white-box attacks. Up to date, the vast majority of adversarial attacks in literature have
been focused on the top-1 setting, except for some pioneering white-box attacks. An ordered top-K
white-box attack is proposed in (Zhang & Wul |2020), which uses an adversarial distillation frame-
work in crafting adversarial examples by minimizing the Kullback-Leibler divergence between the
prediction probability distribution and the adversarial distribution. Ty ML (Hu et al.|[2021) proposes
a white-box method to create top- K untargeted and targeted adversarial perturbation for the multi-
label learning problem. The DeepFool attack (Moosavi-Dezfooli et al.,|2016) that was proposed for
top-1 adversarial examples is extended in (Tursynbek et al.l[2022) to compute top- K untargeted ad-
versarial examples. Moreover, (Paniagua et al., [2023)) introduces a quadratic programming method
to learn ordered top-K adversarial examples that addresses attack constraints within the feature
embedding space.

3 THREAT MODEL

Consider a classifier P(z) : [0, 1]»*W*H _ RC where C,, W, H are the channel, width, height
of an arbitrary input x, and C' denotes the number of output classes. The classifier outputs predic-
tion probabilities for all classes in response to a query. To be more precise, P.(x) represents the

probability that « belongs to class ¢, with the constraint that Zle P.(x) = 1. For a given input x,
the set of top-K predicted labels by the classifier can be expressed as follows:

3>K(a:) = {[argsort P.(x)); fil, (1)
c€e[C]

where arg sort ¢ ¢ returns indices of sorted elements in decreasing order of probability, and [C] =
{1,2,...,C} denotes the label set. For instance, [argsort,c(c) Pe(2)]; contains the label index of
the class with the i*" highest prediction probability.

An adversary’s objective is to generate an imperceptible adversarial example, without using surro-
gate models, from a benign input image s which is correctly classified by the classifier. While
the true label set of x4 for the classic single-label multi-class classification problem is expressed as

Cs = )A)l(:cs), for top-K multi-label learning it is expressed as Cs = )AiK(mg) In a score-based
attack, having the information of the prediction probabilities by querying the target classifier, the

adversary aims to identify a unit direction ® in which x, is moved into the adversarial region with
minimal perturbation. A query x4 = s + 7(©) in the direction © is considered in the adversarial
region if 1(x,) = 1, where r(©) = ||z, — ;|2 © represents the perturbation added in the direction

©. The indicator function 1(x4) informs whether the query x, falls within the adversarial region or
not. For an untargeted attack, aiming to move the true label set outside the top- K predicted classes,
the query success indicator function takes the following form:

L if C & V()
1 =47 1 2

(@q) {—17 otherwise. @
In contrast, a fargeted attack seeks to replace the top- K predictions of the input x; with a predefined
set of K target classes, yﬁ? C [C]\ Cs. Thus, the query success indicator function for a targeted

attack is:
1, if Yr(zg) =YY
1 _ ’ q K 3
(@q) {—17 otherwise. ®)

If ©* represents the optimal direction to obtain the desired adversarial image x4, = s + r(é)*),
the optimisation problem can be formulated as:
©* = argmin ||r(0©)]2, st 1(xz,+r(O)) = 1. (4)
<)

4 OUR PROPOSED GSBAX

The proposed GSBAX, guided by the approximated gradient direction in crafting adversarial exam-
ples, involves three key steps, as depicted in Fig. 3} (a) Estimating the gradient in the non-adversarial
region to approach the decision boundary and find a better initial boundary point; (b) Estimating the
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X,

gxs& xbn-ﬂ
__ Xs ®x ®x,
{xq |11(xq) =-1} x| Il(xq) =—1 xq I]l(xq) _

(a) Step 1 (b) Step 2 (c) Step 3
Figure 3: (a) Estimated gradient g, on source image x using Eq. . 12| for targeted and Eq.
for untargeted attacks in the non-adversarial region; (b) Approximated gradient g, ~at a decision
boundary point x;,, using Eq.[7) for targeted and Eq. [9] for untargeted attacks; and (c) Subsequent

boundary point x;,,, , search in the 2D plane spanned by (g, , wn), where ’an denotes direction
of xp,, from x,. While the light green and the light orange regions indicate non-adversarial and
adversarial regions, respectively, the dark green (dark orange) arrows indicate directions to increase
(decrease) confidence toward the adversarial region.

G,
(g 11(xq) = 13 {xq 11(xg) = 13 \NZ/ wxll) - \/
/l b

gradient at the boundary point by leveraging the prediction scores; (c) Finding the next boundary
point with reduced perturbation along a semicircular trajectory under the guidance by the estimated
gradient on decision boundary. The key novelty of GSBAX is its ability to more accurately esti-
mate gradients both within the adversarial region and at the decision boundary in the aggres-
sive top- K setting, enabling efficient boundary exploration to enhance ASR. This section details the
gradient estimation on the decision boundary, followed by inside the adversarial region, and ends
with a summary of the GSBAX algorithm.

4.1 GRADIENT ESTIMATION ON DECISION BOUNDARY

Gradient estimation on the decision boundary plays a pivotal role in our proposed approach, enabling
us to leverage the decision boundary to locate the subsequent boundary point with reduced perturba-
tion. The low-frequency subspace via Discrete Cosine Transformation (DCT) encapsulates critical
information of an image, including the gradient information (Guo et al., 2018; |Li et al., [2020a)). To
estimate the gradient at a boundary point x;,_, we generate I,, number of noises {zi}fgl from the
low-frequency subspace as discussed in Appendix [El For each z;, we query for ¢, = x;,, + z; and
avail the prediction probabilities from the target classifier to estimate the gradient direction at xy,, .

For a targeted attack, the gradient is estimated at a boundary point x;,, by querying around it in
each iteration to find the next boundary point x;,,,,. However, estimating the gradient for top-
K targeted attacks, targeting a narrow adversarial region, is complicated as it requires finding the

direction that increases the confidence towards a set of predefined target classes, y}?. Not all ad-
versarial queries contribute equally to this goal. Some queries may behave anomalously, leading to
a reduction in confidence across all target classes, while others may improve confidence for only
a subset of the target classes. Ideally, the most effective queries are those that increase confidence
across all the target classes. For instance, consider that the prediction probabilities of the target
classes yét), for a top-3 attack, at x;, are {Pc(mbn)}ceyét) = {0.10,0.08,0.12}. After applying
three random perturbations, the resulting prediction probabilities are [{ P.(xp, + zi)}c ey 2, =
[{0.09,0.07,0.11},{0.09,0.07,0.15}, {0.11,0.09,0.13}]; 1 (s, + 2;) = 1,Vi € [3]. In this exam-
ple, the first perturbation is anomalous, as it reduces the overall confidence in the target classes. The
second perturbation biases the result towards a particular class, while the third perturbation increases
confidence in all target classes, making it the most effective for achieving the adversarial goal. Thus,
we propose an effective gradient estimation technique by leveraging the available information for
the challenging top-K setting that filters out anomalous queries and assigns greater weight to per-
turbations that have a higher impact on achieving the adversarial goal. For this purpose, we define

wwbn,c,zi = Pc(wbn + zi) - Pc(mbn)a (5)
where a positive (or negative) value of wg, . -, indicates the increase (or decrease) in confidence
towards a class ¢ due to the added z; to x;, . Next, we introduce an indicator function that assesses

whether the query =, + z; is adversarial and leads to increased confidence to the class ¢ € y“)

1, if L(xp, + 2i))Way cz; >0
Ty, ,CoZ5 — " no 6
Conn o {0, otherwise. ©
Note that it also includes the case when the query is non-adversarial (1(x;, + 2z;) = —1) while

leading to a decrease in confidence towards the class ¢, i.e. wg, . =, < 0, which will be incorporated
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in the gradient estimate as, with a very high probability, experimentally it is observed that Cz, ¢z, =
Cmbn .¢,—z;- The gradient for the intricate top-K targeted attack is thus estimated as:

I,
Zill (ZCE)}%) Cwbnvcvzi) ’ (Zce)}%) ’ijbn G %4 Cwbnvcvzi) 2
Iy :
” Zi:l (Zceyﬁﬁ) thn,cyzz‘) : (Zcey;;) wmbnvcazicmbn,cyzi) . ZiH2

Here, Ecey;t) Cay,, e,z and Zcey;t) Wz, c,z:Cmy, c,z; A€ Weights assigned to z; to estimate the

9z, = (N

gradient. The former counts the number of target classes for which 1(xp,, + 2;)wg, ¢ 2, > 0, while

the latter captures the strength of increased (or decreased) confidence towards the adversarial region

if the query is adversarial (or non-adversarial). Additionally, ZC cy® Cas. c,z; = 0 indicates the
(t %

query is anomalous. The proposed method offers improved gradient estimation by emphasizing the
impact of the added noise z; on each of the target classes comparing the prediction probabilities of
the boundary point x;,, and the perturbed x; + z;. It assigns more weight to z; in estimating the

gradient, if z; impacts more target classes in yﬁ?, while filtering out anomalous queries that do not
correctly contribute to the adversarial goal. For a more detailed discussion of the rationale behind
Eq. [/} including the impact of each component in it on gradient estimation and comparisons with
other possible choices of gradient estimation, please refer to Appendix

In an untargeted attack, where adversarial queries can take any set of top-K classes from [C] \ Cs,
the adversarial region becomes significantly broader. Since the attack transitions from a small set
of source classes to any top-K classes in [C] \ Cj, the likelihood of anomalous queries is greatly
reduced. In this scenario, it suffices to evaluate the impact of the added noise z; based on how effec-
tively it enhances confidence toward the adversarial region compared to its non-adversarial counter-
part. For any query @4, let v = [argsort ;¢\ ¢, Pj(2¢)|x denote the index of the class other than
Cs with the K-th largest prediction probability. Additionally, let ¢, = argmax; . Pj(x,) denote
the source class with the highest prediction probability. For a top- K untargeted attack, we define:

Fo (2q) = Py (mq) — Pe,(xq). ®)
With this definition, {z | F,,(x) > 0} indicates the adversarial region, and the decision boundary
between the adversarial and non-adversarial region for a top- K untargeted attack is: {x | Fy,,(x) =
0}. Under this setting, the gradient can be can be straightforwardly approximated as:

Zfll Fy,(xy, +2;) - 2

| i Fe (0, + 21) - 2ill2

Intuitively, a positive value of F_(xp, + z;) indicates the increase in confidence towards the ad-
versarial region. The larger the positive value of Fy_(xp, + z;), the greater the confidence shift
towards the adversarial region relative to the non-adversarial one, and more weight is assigned to z;
if the change is higher. Note, Eq. ] also incorporates z;, which results in non-adversarial queries
(Fy. (@b, + z;) < 0) and weights them accordingly, following the same logic as in the targeted
attack. The impact of non-adversarial queries on attack performance is discussed in Appendix[A.3]

9

gwbn =

4.2 GRADIENT ESTIMATION IN NON-ADVERSARIAL REGION

Finding a good initial boundary point x;, is crucial for the success of a geometric attack. Unlike
geometric decision-based attacks (Chen et al.| 2020; Reza et al., |2023), which employ a random
direction for the untargeted attack and binary search between the source image and a random target
image for the targeted attack to locate x,, our approach utilizes the estimated gradient direction to
find a better xp,. We estimate the gradient at & by querying around it and iteratively shift  in the
gradient direction using a fixed larger step size € to locate x;, with a reduced query cost.

In targeted attacks, estimating the gradient inside the non-adversarial region at a point acgo to it-
eratively and efficiently locate the initial boundary x;, is also challenging as it involves finding the
direction towards the narrow adversarial region constraint by a predefined top-K target-label set
yﬁ?. While querying around the boundary point x, , the decision boundary separates adversarial
from non-adversarial queries, querying within the non-adversarial region around wgo will result in
all queries being non-adversarial, as they fall outside the adversarial region, as depicted in Fig.
Since the adversarial objective is to iteratively increase the confidence of the target classes, to es-
timate gradient at aj , the adversary may target the region {a;, + z;|(min_ ey P.(xy, + z;) —
min Pc(wgo)) > 0} that ensures a gradient direction to enhance the minimum confidence
K
among target classes. Thus, we define the following indicator function to check whether a query
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Algorithm 1: GSBAKX

Input: benign image x, query budget (), base query number Iy, step size ¢, tolerance 7.

Qutput: adversarial image g4y .

:1:20 =z, Q = 1.

while 1(z;,) = —1 do

sz . based on Eq.|12|and Eq.|13|for targeted and untargeted attacks, respectively, using I queries.

x), :w§,0+e*gmgo,Q’=Q +Io+ 1.

Xy, Qvin < BinarySearch(wm,,xp,, 1(.),7) .

Q' =Q + Quin, n=0.

while Q' < Q do

estimate g, ~based on Eq. for targeted and Eq. E]for untargeted attacks using | Ioy/n + 1| queries.

Tp

direction of the boundary point from the source image: v, = ﬁ, as shown in Fig.
n s

Tb,, 1, Qos < next boundary point along a semi-circular path guided by gz, —and 1/37“ and
corresponding query cost, as discussed in CGBA (Reza et al.,[2023).

| Q' =Q + [ lovn+1|+Qvs, n=n+1

return: .4, = s,

around mgo satisfies the adversary’s goal:

B (z) o 1, if mincey;(t) Pc(xgo + zi) — mincey;(f,) PC(.’BZO) >0 (10)
T T —1, otherwise.

Building on the discussion of top-K targeted gradient estimation at x;, , we also incorporate the
impact of the noise z; on the prediction scores of each of the target classes comparing Pc(ar:go) and

Pc(:/cg(J + z;), Ve € y}?. Hence, we further introduce another indicator function to determine if a
query mgo + z; increases the confidence towards a particular class ¢ satisfying ¢ (z) = 1.
0

1, 1f¢m§70 (z”wmg(’,c’zi >0

. (11)
0, otherwise,
where Wa} e,z is defined in Eq. 5| Having these indicator functions, following Eq. [/} the gradient

Xw{)o CoZi

in the non-adversarial region for the top- K targeted attack can be estimated as:
I
Zii1 (Zcey%) Xw{)o,c,zqy) : (Zcey%) wm;)o,c,ziX:c;)o,c,zi) ©Z

= T
I 210:1 (Zceyﬁ) Xm,’,O,C,zl') : (Zceyﬁj) wwgovc,zl-Xwgo,C,Zi) “zi|2
where ZC ey Xaj .z counts the number of target classes with increased (or decreased) confi-

; (12)

/7
9a;,

dence when ¢/ (z;) =1 (or qbw;j (z;) = —1), and Zcey“) Wg! ez Xz, e,z captures the change
0 0 K 0 0

in confidence of these classes. Eq.[I2] provides a gradient direction that effectively increases the

confidence of the minimum prediction probability among y}? and iteratively finds a boundary point

Ty, . It is effective in finding x, as it considers the impact of z; on each of the target classes in y}?
and assigns weight to z; accordingly. Additional analysis showing the impact of each component in
Eq.[T2)and the rationale behind it is provided in Appendix[A.2]

Turning to untargeted attacks, we cannot employ Eq. [0} tailored for estimating the gradient on
the decision boundary, to estimate gradient at a point :cgo within the non-adversarial region due
to the reason discussed above. Instead, to find the gradient at a:go, we consider the impact of z;
on the enhancement of confidence towards the adversarial region relative to the non-adversarial
counterpart. The gradient to iteratively locate x, on the decision boundary of the wider adversarial

region is approximated as: I
21'0:1 (Fazﬁ (502,0 + zi) - Fa:S (SU;;O)) T2

= T ,
15252 (Fa. (@, + 2i) — Fo(x,)) - 2il2
where Fy (), + 2i) — Fe, () > 0 signifies increased confidence towards the adversarial region

in relative to the non-adversarial region, due to perturbed mgo + z; compared to :cgn, and vice versa.
This strategy leverages the available prediction probabilities, enhancing the possibility of finding a

good x, for the untargeted attack such that Vi (x3,) € [C] \ Cs.
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Figure 4: ASR(%) vs. queries in crafting top-1 adv. examples against ResNet-50 on ImageNet.

The steps of GSBAX are outlined in Algorithm [I} Line Line E] are used to iteratively shift x,
into the adversarial region with a step size e. Then, a binary search between the obtained point
inside the adversarial region and x; is conducted to locate the initial boundary point xp, within a
certain tolerance 7. From Line E]-Line GSBAX iteratively finds boundary point with reduced
perturbation using the similar semicircular boundary as CGBA (Reza et al., [2023)) guided by the
proposed estimated gradient g, on the decision boundary for both untargeted and targeted attacks.

5 EXPERIMENTS

In this section, we first outline the baselines, evaluation metrics, and hyperparameters employed for
both the baselines and GSBAX . Subsequently, we present the experimental results on ImageNet and
PASCAL VOC 2012 datasets, illustrating the efficacy of GSBAX in executing top-K attacks. The
limitations and potential negative impacts of GSBAX are addressed in the supplementary material.
Baselines, evaluation metrics and hyperparameters. To evaluate the performance of GSBAX,
we choose score-based attacks SImBA-DCT (Guo et al.l 2019a), PPBA (Li et al., [2020b) and
SA (Andriushchenko et al., 2020) as baselines. To the best of our knowledge, SA offers SOTA
performance in score-based setting. The baselines are only designed to craft top-1 adversarial
examples against classifiers with single-label multi-class classification. While SA and SimBA-
DCT can generate both untargeted and targeted adversarial examples, PPBA is restricted to un-
targeted attacks. Nonetheless, the proposed GSBAX is versatile in crafting top-K adversarial
examples for both untargeted and targeted attacks, and both single-label and multi-label learn-
ing. To have a strong baseline in the top-K setting, we adapt the loss function of SA (An-
driushchenko et al.| [2020) for both untargeted and targeted attacks, enabling its application in
crafting top-K adversarial examples, coined as SAX. For untargeted attacks, we modify the
loss function in (Andriushchenko et al.| 2020) to L(f(xq),¢s) = fe,(®q) — for (@q), Where ¢,
and vk are defined in Sec. @ Likewise, for targeted attacks, the loss function is modified to

(t) . . .
L(f(xq), Vi) = — min ;) fi(zq) + MAX, o) (0 fj(zq) for K > 1. This adaptation enables
the effective crafting of top-K adversarial examples using SAX as a baseline.

We evaluate our method primarily using the metric Attack Success Rate (ASR). An attack is deemed
successful if it crafts an adversarial example below a specified ¢5-norm perturbation threshold, 7y,
using queries within the allocated budget, ). The lower the r;;, the more queries are required to
make an attack successful, and vice versa. We also assess the effectiveness of an attack using the
median /5-norm of the perturbation. A lower median perturbation value across all crafted adversarial
examples within the allocated query budget indicates greater attack effectiveness.

Baseline implementations leverage the codes provided by the respective authors, with some suitable
parameter adjustments. While SA accounts for constraints both in @) and r, in defining attack
success, SimBA-DCT and PPBA only consider the constraint in (), potentially giving a false sense
of success. Empirically, it is observed that the crafted perturbations in the default setting of SimBA-
DCT and PPBA are often large and suffer from low ASR for a small r;;. To address this, we set
€ = 0.1 for SiImBA-DCT and p = 0.001 for PPBA, where € and p control the magnitude of noises
added at each query step for the respective methods, while retaining other parameters at their default
settings. For SOTA SA, we use the default parameters. In the case of GSBAX, we use reduced-
dimensional frequency subspace with a dimension reduction factor f = 4 to sample low-frequency
noise {z;}. We set the base query number Iy = 30, step size ¢ = 6, and tolerance 7 = 0.0001.

5.1 RESULTS AGAINST SINGLE-LABEL MULTI-CLASS CLASSIFICATION

We assess GSBAX by conducting attacks against three widely used pre-trained classifiers—ResNet-
50 (He et al., |2016)), ResNet-101 (He et al.l 2016), and VGG-16 (Simonyan & Zisserman, [2014)
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Table 1: ASR(%) for different perturbation thresholds (745 ) and query budgets ((Q) against ResNet-
50 on ImageNet.

‘ Attack Type ‘ Untargeted Attack ‘ ‘ ‘ Targeted Attack ‘
| @ | 1000 5000 10000 20000 30000 || [75000 10000 20000 30000 40000 |
SA® ooy | 2650 502 S8 712 761 oo | 32 8.1 162 220 296
GSBA! T 292 614 768 845 879 th= 84 234 475 624 699
top-1 SAT o, | 07 758 856 936 93 b4 | 3 355 555 704 796
GSBA! T2 504 853 946 987 993 T 363 716 922 913 986
SAT .o 4| 52 956 988 997 998 oo | 374 60l 845 913 94.0
GSBA! T 749 980 996 1000 100.0 T 632 905 992 999 1000
SA2 bz | 1030 289 412 487 ss4 ||| 09 31 6.6 129 16.0
GSBA? th= 128 405 555 69.7 74.8 th= 2.5 9.8 26.8 39.1 46.8
top2 | SA oo | 307 S6l 6l 788 850 || | 76 9.1 322 448 524
GSBA? T 256 687 837 949 972 T 166 451 756 876 920
SA ;o4 | 554 84l 938 980 989 o6 | P9 366 575 674 730
GSBA? T 505 892 972 995 1000 I 367 716 924 971 98.2
SA® b | 520 174 219 370 445 oo | 08 1.1 24 4.0 5.1
GSBA® th= 57 305 471 634 6718 th= 0.9 4.8 148 265 338
top-3 | SA ;o | P8 459 568 683 723 oo | 37 93 193 270 318
GSBA® th 173 626 713 90.2 93.9 h 8.2 27.3 555 712 78.8
SA o4 | 468 777 885 948 974 o e | 0T 223 332 446 511
GSBA® I 431 848 950 99.1 99.6 I 219 492 778 88.7 92.8
sAt sool | 25 1260 186 269 300 oo | 0 0.8 12 1.6 29
GSBA* th= 36 247 405 568 613 th= 04 15 9.9 15.7 22.0
topd | SAT oo | 143 374 505 629 6638 | 14 30 15 16.6 9.7
GSBA* th= 124 556 723 853 926 th= 43 150 392 557 634
SAT | 13 e sl 922 9.1 6| 50 109 222 290 339
GSBA* | 342 786 937 989 994 =100 3500 615 744 814

trained for multi-class classification on the ImageNet (Deng et al., 2009) dataset. The pre-trained
ResNet-50, ResNet-101 and VGG-16 models are sourced from PyTorch. In the case of untargeted
attacks against a classifier on ImageNet, we randomly select 1000 images that are correctly classified
by the respective classifier. For targeted attacks, we create 1000 sets of images, each comprising a
benign image x; and a target image x;. The top-K target labels are extracted from the target image
3>K(:ct). The input image size for all classifiers on the ImageNet dataset is set as 3 x 224 x 224.
Comparison with top-1 baselines. We compare the performance of the proposed GSBA! with
SimBA-DCT (Guo et al., 2019a), PPBA (L1 et al., 2020b) and SA (Andriushchenko et al., [2020) in
crafting top-1 adversarial examples against classifiers with multi-class classification. Fig.[4]depicts
the variation of ASR against ResNet-50 on ImageNet with differing query budgets across various 7y,
values. From Fig. E], for untargeted attacks, the ASR of SA is comparable with GSBA! for r;, = 4
and reaches around 100% ASR. However, GSBA! offers better ASR than SA with reduced 7.
Experimentally, it is observed that with a higher value of 7., than 4, both SA and GSBA! converge
faster towards the 100% ASR. Conversely, for targeted attacks, GSBA! outperforms the baseline by
a considerable margin in ASR. Additional results for other classifiers are provided in Appendix
Results on crafting top-K adversarial
examples. The ASR in crafting up to
top-4 adversarial examples for both untar-
geted and targeted attacks against ResNet-
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ASR(%)
ASR(%)

40

50 classifier on the ImageNet dataset is e [ -

presented in Table[I] considering different i | ok i oseas Y7

query budgets and Perturbation threshold 0 5000 IOOQO‘OJe‘I;ObO"?dEZ?OO 25000 30600 0 IODUOQueigﬂbﬂ‘fdge[BDﬂﬂo 40000
r¢p,. The corresponding curves for ResNet-

50, with 7, = 2 for untargeted attacks and (a) Untargeted (b) Targeted

T, = 4 for targeted attacks, are depicted
in Fig.[5] The obtained ASR for different
r¢n, and query budgets against other regu-
lar classifiers are given in Appendix [C] Additional evaluations against a number of robust classifiers
are provided in Appendix [ﬁ We choose SAX for performance comparison as it offers SOTA per-
formance in top-1 setting.

Figure 5: ASR(%) versus queries for the attack against
ResNet-50 on ImageNet.

In the context of untargeted attacks, it is noteworthy that while the ASR is comparable to SAK
when the query budget is relatively low, the proposed GSBA’ method notably outperforms SAX
as the query budget increases. Furthermore, for a given query budget and fixed K, the relative ASR
of GSBAX compared to SAX increases as 1, decreases. Additionally, with a fixed query budget
and 7, the relative ASR of GSBAX compared to SAX improves as K increases. For the targeted
attack, by contrast, GSBAX demonstrates significantly higher ASR compared to SAX across the
board, specifically in crafting adversarial examples with reduced perturbation. Moreover, GSBAX
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Source top-1[£;:1.08  top-2|£:4.16  top-3|/;:5.09 Source top-1]£,:3.46  top-2|£:4.17  top-3|£,:4.48

10*perturbatlon 10*perturbat|on 10*perturbat|on Target 10*perturbat|on 10*perturbat|on

(a) Untargeted; Query budget = 2000. (b) Targeted; Query budget = 20000.
Figure 6: Different top- K adversarial examples against ResNet50 for a benign input.

Table 2: ASR(%) against Inception-V3 with top-2 multi-label learning on the PASCAL VOC 2012
dataset.

10*pertu rbat\on

| Target type | Best | Random | Worst |
‘ ‘ Tth | Q ‘ 10000 20000 30000 40000 ‘ 10000 20000 30000 40000 ‘ 10000 20000 30000 40000 ‘
4 SAl 79.0 89.0 92.0 94.0 320 42.0 49.0 58.0 10.0 17.0 22.0 28.0
GSBA* 81.0 92.0 94.0 96.0 41.0 57.0 70.0 75.0 15.0 42.0 54.0 63.0
top-1 6 SAT 91.0 94.0 96.0 96.0 47.0 60.0 68.0 73.0 20.0 31.0 39.0 46.0
GSBA! 89.0 97.0 99.0 99.0 56.0 73.0 7.0 84.0 34.0 59.0 72.0 78.0
3 SAT 94.0 98.0 100.0 100.0 52.0 67.0 76.0 79.0 27.0 39.0 51.0 59.0
GSBA® 94.0 98.0 99.0 99.0 62.0 76.0 84.0 85.0 45.0 68.0 78.0 80.0
4 SA? 32.0 51.0 58.0 66.0 6.0 9.0 12.0 15.0 0.0 0.0 1.0 3.0
GSBA? 40.0 65.0 78.0 83.0 9.0 28.0 48.0 53.0 5.0 26.0 46.0 53.0
top-2 6 SA . 51.0 73.0 77.0 82.0 11.0 23.0 27.0 32.0 2.0 8.0 10.0 11.0
GSBA? 53.0 80.0 83.0 89.0 24.0 44.0 53.0 62.0 17.0 50.0 57.0 67.0
8 SA’ 67.0 80.0 84.0 87.0 15.0 25.0 41.0 46.0 7.0 14.0 19.0 21.0
GSBA? 64.0 82.0 89.0 93.0 31.0 55.0 62.0 69.0 29.0 54.0 65.0 75.0

achieves substantially higher ASR than SA¥ in crafting top-K targeted adversarial examples with
higher K. The crafted adversarial examples and their corresponding perturbation with different K
for a benign input are depicted in Fig.[6] For additional top-K adversarial examples and detailed
insights, please refer to Appendix [G|

5.2 ATTACK AGAINST MULTI-LABEL LEARNING

We employ the proposed GSBAX to attack against top-K multi-label learning, a task aimed at
identifying the top K prediction labels for a given input. To execute an attack against a target model
with top-K multi-label learning, we use Inception-V3 (Szegedy et al.l 2016), obtained from the
GitHub repository of (Hu et al.l [2021)). This model is pre-trained on ImageNet (Deng et al., [2009)
and fine-tuned on the PASCAL VOC 2012 dataset (Everingham et al., [2015)). We focus on targeted
top-K attacks, and categorize the possible target sets into three types: best, random, and worst.
For a benign input, the best target labels refer to a set of K labels, excluding true labels, with the
highest prediction scores; conversely, the worst target labels denote those with the lowest prediction
scores, and Random target labels represent a set of K randomly selected mutually exclusive labels,
excluding true labels. To perform the top- K attacks, we use 100 benign samples with K true labels
from the PASCAL VOC 2012 validation set and perform attacks considering the aforementioned
three categories of target sets. The input images are resized to 3 x 300 x 300 dimensions before
being fed into the target model.

Table 2] demonstrates the ASR in crafting top-1 and top-2 adversarial examples for different query
budgets and perturbation thresholds, considering the best, random and the worst target label sets.
As seen from these results, GSBAX outperforms SAX across the board. Specifically, with the
consideration of random and worst target labels, GSBAX notably outperforms SAX. Importantly,
while SA? fails to converge to the desired perturbation for the worst target labels within the given
query budgets, GSBA? maintains a significantly higher ASR.

6 CONCLUSION

In this work, we propose a geometric score-based attack, GSBAX | to effectively generate strong top-
K untargeted and targeted adversarial examples against classifiers with both single-label multi-class
classification and multi-label learning tasks. It introduces novel gradient estimation techniques for
the challenging top-K setting, efficiently finding the initial boundary point and effectively exploit-
ing the decision boundary to iteratively refine the adversarial example by leveraging the estimated
gradient direction. Experiments on large-scale benchmark datasets demonstrate that GSBAX offers
state-of-the-art performance and would be a strong baseline in crafting top- K adversarial examples.

10
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Appendix

In this supplementary material, we provide the rationale for the design of proposed gradient esti-
mation techniques for complicated top-K scenarios in Appendix [A] Additionally, we conduct an
ablation study to assess the impact of non-adversarial queries on gradient estimation, and the influ-
ence of gradient-based initialization on performance, which are also discussed in Appendix [A] The
additional results showing the comparison of the proposed GSBA® with top-1 baselines are given in
Appendix while the performance comparison between GSBAX and SA” against ResNet-101 (He
et al.,|2016) and VGG-16 (Simonyan & Zisserman,2014), and several robust single-label multi-class
classifiers can be found in Appendix [Cland Appendix D] respectively. A brief discussion of the noise
sampling process from a low-dimensional frequency space is presented in Appendix [E} while po-
tential negative impacts and limitations of GSBAX are covered in Appendix [F Finally, a number of
crafted adversarial examples against single-label multi-class classification and multi-label learning
are depicted in Appendix [G]

A ABLATION STUDY

In this section, we present an ablation study to analyze the design of the proposed gradient estima-
tion techniques presented in Eq. [7] and Eq. [I2} which estimate gradients on the decision boundary
and within the adversarial regions, respectively, for the top-K targeted attack. We also examine
the influence of non-adversarial queries on gradient estimation at the decision boundary and how
this influences the performance of the proposed attack, as discussed in Sec. [d.1]in the main text.
Furthermore, we demonstrate that our gradient-based initial boundary-finding method significantly
improves attack performance when compared to random boundary point initialization.

A.1 DETAILED BREAKDOWN OF EQ.

The proposed gradient estimation for the top-K targeted attack at a decision boundary point, x;, ,

involves two key components: the count of target classes with increased (or decreased) confidence

ZC ey Cz,. ,c,z; and the sum of the increased (or decreased) prediction probability of these classes
ey noCZi

presented as ZC ey Way, ez Cwbn .¢,z; if the query is adversarial (or non-adversarial). Before delv-
(¢ ,

ing into the impact of these components on attack performance, we explore alternative possible
gradient estimation approaches.

Approach 1: In this scenario, we consider a more challenging setting for the gradient estimation,
where an adversary only knows whether a query is within the adversarial region without obtaining
prediction probabilities from the classifier as employed by CGBA (Reza et al.,2023)). The estimated
gradient on x,, in this challenging setting is expressed as:

A Zf& L(zxp, + 2i) - 2
T n - n :
TS W, + 2i) - 22

(14)

Approach 2: In this approach, the adversary has access to prediction probabilities of all the
classes, and the gradient estimation is done by summing the changes in predictions of all the target

classes in y}?. The gradient estimation using this approach is given as:
I’!L
Zi:l (ZCGJJ%) U)wbnq,c,zi) ©Z;

I b
| 2121 (Zceyg) ww%#»%y) AP

where Wy, ¢z, = Pe(®p, + 2i) — Pe(®s,) is defined in Eq. |5} More weight is assigned to z;, if

9x,, = 15)

the aggregated change across y§§) is higher.

Approach 3: To estimate the gradient at the boundary point x;,, we may compare the minimum

confidence among the target classes in yﬁ? at x,, with that of the queries around it by adding noise
z; to xp,_, and it can be represented as:

Zfll (minceyg) Pc(mbn =+ Zi) — min () Pc(a:bn)) ©Z;

[ASNZ%

I Zilzl (minc€y§;> P.(xp, + zi) — minceyﬁ(” P.(x,)) - zils
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Figure 7: Comparing the variation of /5-norm of perturbations with queries of different gradient
estimation approaches on the decision boundary with our proposed gradient estimation in Eq.[/|in
crafting diverse top-K targeted adversarial examples.

This gradient estimator estimates the direction to enhance the minimum confidence among y}?.

Approach 4: Having the access to the prediction probabilities of all the classes, the misclassifi-
cation objective of the popular Carlini-Wagner (CW) (Carlint & Wagner, |2017) can be adapted to
estimate the gradient at x;,, for the top-K attack, and it is given as follows:

Zfll (minC w Pe(xp, + 2i) — max P.(xyp, + zl)) %

gm n N .
b ISk (mlncey;;) P.(zy, + zi) — Max 1,0 Pz, +2i)) - zil2

Approach 5: The CW adversarial objective in optimizing the ¢2-norm of perturbation is originally
given in-terms of logits £ of the classifier that is related with the prediction probabilities for a given
input x as: P(x) = softmax(L(x)). With the access of logits, Eq.[17]can be rewritten as:

Zfll (minc (t) ,Cc(acbn + Zi) — max_, ., [:C(.’I}bn + Zz)) -2

gm n N .
A (D S (mlncey;(t) Le(y, + 2i) —max 0 Le(ap, + 2i)) - zill2

Approach 6: Considering only the first component of the weight to z; in Eq. [/} the estimated
gradient can be expressed as:

Zfll (Z(:Eyg) sz,“,c,zi) . ]]_(-’an + Zi) ©Z;

I, ’
H Zi:l (Zcey;;ﬂ) Ca:;,n :C,Zi) . ]l(il?bn + Zi) . Zi||2
where Zceyﬁ{” Cay, ,c,z; counts the number of target classes with increased (or decreased) confi-

19)

gmbn =

dence towards the adversarial region if the query @y, + z; is adversarial (or non-adversarial).

Approach 7: In this case, we consider the second component of the weight to z; in Eq.[7] which
aggregates the changes in confidence of the classes ¢ € y}? such that (g, ¢ =, = 1, to estimate the

gradient at . Thus, I
Zi;1 (Zcey§§> Way,, e,z ° Cwbnvcvzi) 2

7 .
| 21;1 (Zceyé(ﬂ Wy, e,z Cwbn,v:,zl') - zill2

gmbn = (20)

Comparative analysis. We present a comparative analysis of the aforementioned gradient esti-
mation approaches with our proposed gradient estimation, as expressed in Eq. [/} on the decision
boundary for targeted attacks. To facilitate the comparison, we randomly choose 100 images from
the ImageNet (Deng et al.,|2009) dataset and perform attacks against the popular pre-trained ResNet-
50 (He et al., |2016) classifier. For a particular top-K and a source image, all the attacks using
different estimation techniques start from a same randomly chosen initial boundary point.

In Fig. it is evident that all attacks utilizing prediction probabilities for gradient estimation out-
perform Approach-1, which solely relies on the classifier’s decision to estimate the gradient for
crafting top-1 adversarial examples. In this top-1 setting, the gradient estimation with Approach-
6 closely resembles that of the decision-based (Approach-1). The weight associated with z; us-
ing Approach-6 reduces to (Cz, ..z L(s, + 2:)) € {—1,0,1}, where y, is the target la-
bel. The key advantage of gradient estimation using Approach-6 is that it excludes anomalous
queries— those are non-adversarial but increase the confidence toward the target class, and vice
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versa. In multi-class classification problems, there might be scenarios, for a target class y;, though
P, (xp, + zi) — Py, (xp,) > 0, the query @, + 2; is still non-adversarial (P.(zp, + z;) >
P, (xy, + z;) forac € [C]\ {y:}). Since the decision-based approach (Approach-1) treats all
queries equally by assigning unit absolute value weights of either -1 or 1 to z; based on whether a
query is adversarial, irrespective of considering the discussed phenomenon, the inclusion of anoma-
lous queries negatively impacts the performance of the attack using it.

In the fop-1 setting, attacks with Approach-2, Approach-3, Approach-7, and the proposed gradi-
ent estimation offer quite strong performance. Approach-2 and Approach-3, essentially reduce
to the same expression in fop-1 setting, account for all queries by evaluating the increase or de-
crease in confidence toward the target class from the decision boundary, using this change in
confidence as a weight for z;. Both Approach-7 and the proposed method (essentially both re-
duce to the same expression under fop-1 setting) also assign weights based on the change in
confidence, similar to Approach-2 and Approach-3, but they exclude anomalous queries. How-
ever, Approach-2 and Approach-3 still perform comparably to the proposed gradient estimation
method, as the weights associated with the anomalous queries are relatively small. Now, turn-
ing to Approach-4 and Approach-5, which are based on CW adversarial objective, gradient esti-
mation using these approaches is not optimal. With these approaches, on the decision boundary,
miIlceyE(t) P.(xzy, + zi) — max, P.(xzp, +z;) >0 = 1(xp, + 2;)), and vice versa.
Thus, there are no difficulties with anomalous queries. The possible reasons behind this sub-optimal
performance by these approaches because the weights that are calculated based on the difference
between the minimum prediction score among the target classes and the maximum prediction score
among the other classes. This weighting does not accurately reflect the increase in confidence toward
the target class from the decision boundary, leading to less effective gradient estimations.

Turning to Figs. [7b] [7c|and[7d] we observed that when K > 1, Approach-2, which sums the changes

in prediction probability across all target classes in y}?, performs well for top-1 attacks but suffers

a significant performance drop, even bellow Approach-1, when K increases. The degradation in

performance for Approach-2 is attributed to the fact that the likelihood of Zcey“) Way,c,z; > 0
K

when the query x;, + z; is adversarial decreases with the increase of K, while the expectation
is with an adversarial query, the weight assigned to z; should be positive. Consequently, as K
grows, gradient estimation with Approach-2 becomes less accurate and struggles to converge. Like-
wise, Approach-3 also suffers from a similar performance drop with K. This is because, on the
decision boundary, the difference between min_ ey(® Pe(zp, + 2;) and min_ ey(® P.(xy, ) does

not carry too much information of whether the query x;_ + z; is adversarial. The probability of

min__. ) Pe(@p, + 2;) —min__. ) P.(xp,) > 0 when a query is adversarial reduces as well with
CEyK n CGyK n

higher K using this approach that enhances the likelihood of the anomalous queries. Approaches
based on the CW adversarial objective, such as Approach-4 and Approach-5, continue to exhibit
sub-optimal performance for higher K due to the issues previously discussed.

For Approach-6 and Approach-7—where Approach-6 counts the number of target classes with in-
creased (or decreased) confidence if the query is adversarial (or non-adversarial), and Approach-7
sums the confidence increases (or decreases) for these classes— while Approach-6 consistently out-
performs all other aforementioned approaches for higher K, Approach-7 outperforms those when
K is smaller. For a query at x;, with added z; on the decision boundary, these approaches focus on
the impact of z; on each of the target classes rather than looking at a whole. For example, they do

not consider the impact of z; on the class arg minc cy® P.(xp, + z;), but all classes in yﬁ?_ They
K

assign more weight to z; in estimating gradient, if it impacts more target classes. By incorporating
the indicator function (g, . ., they exclude queries that are adversarial but do not positively impact

any c € y}?. Notably, our proposed gradient estimation method, which integrates the strengths of
both Approach-6 and Approach-7, outperforms all other approaches when K > 1.

A.2 DETAILED BREAKDOWN OF EQ.[12]
Finding a good initial boundary point x;p, for the targeted attack is a difficult task as it requires

satisfying the constraint Vi (zp,) = yﬁ?. In this section, we analyze how each component in Eq.
contributes to gradient estimation at a point x;, inside the non-adversarial region to locate y, for the
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targeted attack. To evaluate the effectiveness of the proposed gradient estimation, we also compare
it with alternative possible methods for estimating the gradient at wgo, providing justification for the
selection of our proposed approach.

Method-1: The gradient at mgo can be estimated by comparing the prediction probabilities for wgo
with those of the perturbed queries around it. The gradient estimation is give by:

I . .
B 210:1 (mlnjeyg) Pj(wgo =+ Zi) — mlnjey%) P](:BZO)) - Z;
- I . . ‘
13252 (min; g0 Py, + 2i) — min, yo Pi(@),) - 22

In this method, we estimate g,; by comparing the minimum prediction probabilities of the tar-
0

21

q ’
9a;,

get classes at :cgo with the minimum of those due to the added noise. The positive difference of
. ; . ) .
min Pj(zy, + 2zi) — min, ;) Pj(z, ) ensures the increased confidence of the target class

with minimum confidence.

Method-2: Inspired by the CW (Carlini & Wagner, |2017)) adversarial objective, another possible
approach could be as follows:
I
g = St (Ll +2) ~ Lia) = @)
xT, T, )
I (L=, + zi) — Lig,)) - zill2

where L(zj, ) = mincey§§> P.(x},, ) —max ey P.(x}, ). This formulation leverages the difference

between the minimum probability among the target classes and the maximum probability of non-
target classes to calculate the gradient.

Method-3: This method is solely based on only considering the impact of the first weight factor,
ZC ey Xaj e,z in Eq. |12} which counts the number of target classes with increased confidence
K 0 )

when ¢z (2;) = 1, or the number of target classes with decreased confidence when ¢ (2;) =
0 0
—1. Using only this factor, the gradient is estimated as:

I
>y (Zcey§§> Xmgo,c,zi) “Oay (2i) - Zi

|| Ziozl <Zcey;<t) X:cgo,c,zi) . ¢w;,0 (Zz) . Zi||2
where the indicator function ¢4 (2;) is defined in Eq.
0

(23)

gwgo

Method-4: This method focuses on the second weight factor ZC ey Wap e,z Xa) e,z in Eq.
to estimate the gradient at wgo. It computes the weight associated with z; by summing the changes in
prediction probabilities of the classes ¢ € y§§> either with increased confidence when ¢ . (z)) =1
or with decreased in confidence when ¢ . (z;) = —1. The gradient estimation using Method-4 is
given as follows:

I
Ziozl (Zceyé(i) wmgo,c,zi . Xmgo,c,zi) - Z;

= I .
|| Ziozl (Zcey%) 'an:{)O,c,zi . X;;;I’)O,c,zi) . Zi“?

(24)

’
9a,

Comparative analysis. We compare the performance of the aforementioned gradient estima-
tion methods with our proposed gradient estimation to show its effectiveness in finding the initial
boundary xp,. To conduct the comparison, we randomly selected 100 test samples from the Im-
ageNet (Deng et al. [2009) dataset and measured the median and mean query counts required to
locate xp, as well as the median and mean ¢»-distance of obtained boundary points from the cor-
responding source images by performing attacks against ResNet50 (He et al 2016). The results
are demonstrated in Table [3] We exclude Method-2 which is based on CW adversarial objective,
as experimentally it is observed that it often fails to find x, in aggressive top-K setting. This is
because L(xy, +2;) — L(x}, ) > 0 doesn’t mean that it increases the confidence towards the adver-
sarial reason, and vice versa. One possible reason among numerous reasons of failure of Method-2
could be, because of the added z; with x; , while mincey%) Pe(my,, + 2;) ~ mincey;;) Pe(zy,),

Max g 5,00 Pc(azf,0 +2z) < R Pc(mgo) along with an enhanced confidence among classes
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Table 3: Caparison of different gradient estimations with the proposed gradient in Eq. |12|to locate
the initial boundary for top-K targeted attacks.

‘ Grad Estimator ‘ £o (median) Q@ (median) £o (mean) Q (mean)

Method-1 9.82 1802.50 10.01 2131.12

top-1 Method-3 11.30 2439.00 11.46 2811.12
Method-4 9.82 1802.50 10.01 2131.12

Proposed 9.82 1802.50 10.01 2131.12

Method-1 12.17 2950.50 12.64 3439.31

top-2 Method-3 12.74 3074.50 13.14 3693.56
Method-4 11.98 2733.50 12.59 3429.07

Proposed 12.12 2750.50 12.57 3352.49

Method-1 14.06 4258.00 14.83 4920.10

top-3 Method-3 14.12 4159.50 14.76 4899.33
N Method-4 14.01 4175.00 14.71 4753.59
Proposed 13.70 3896.00 14.30 4452.22

Method-1 17.20 5818.00 26.99 6862.56

top-4 Method-3 16.10 5151.50 16.77 5995.36
Method-4 16.60 5322.00 17.28 6505.02

Proposed 15.24 4640.00 16.17 5666.69

Method-1 19.68 7368.00 20.27 9153.95

top-s Method-3 17.39 6097.00 18.77 7305.30
Method-4 18.06 6779.00 19.12 8364.68

Proposed 17.14 5709.50 18.03 7042.50

ce[C]\ y}? that doesn’t meet the goal to find the direction to enhance the confidence towards the
adversarial region.

In the top-1 setting, Method-1, Method-4 and the proposed gradient estimation offer the same
strong performance in locating the initial boundary, as these methods converge to the same ex-
pression in this setting. However, from Table [3] the efficiency of Method-1 diminishes as K in-
creases. The performance deterioration is because Method-1 compares min ey(® Pc(acgo + z;)

and min ey Pc(a:go), but fails to account for the influence of z; on all target classes ¢ € y}?.

In contrast, Method-3 and Method-4 incorporate the impact of z; on each of the target classes.
While Method-3 counts the number of target classes with increased (or decreased) confidence when
¢w;’0 (z;) =1 (or (bw?»o (z;) = —1), Method-4 considers the strength of these classes. As demonstrate
in Table [3] the query efficiency of Method-3 increases with higher K, and the Method-4 is query
efficient than Method-1 in locating x;, for K > 1. Nevertheless, the proposed gradient estimation
method, which takes account of both Method-3 and Method-4, demonstrates superior performance
in locating the initial boundary xp,, .

A.3 IMPACT OF NON-ADVERSARIAL QUERIES

The proposed GSBAX calculates gradients by incorporating both adversarial and non-adversarial
queries. When estimating gradients at a boundary point xy,,, if a query &, = xp, + 2; is non-
adversarial due to added noise z;, GSBAX incorporates this noise by inverting it and scaling it with
the absolute value of the weights assigned to z; in Eq. 0] for untargeted attacks and Eq.[7]for targeted
attacks. Eq.[9]can be rewritten as follows:

A i |, (@, + 2|12, + )2

(25)

xy, — . .
T i e (@, + )@y, + zi)zill2
Likewise, Eq.[7|can be rewritten as:
I‘n,
N Zi:l ( 2063}%) Cmbn 7C7z77) | Zcey;’) wwbn 7C7zi<mbn sCy %4 ]]'(mbn + zi)zi
9z, = (26)

L(xy, + 2i)2ill2

In
|| Zi:l (ZCE:))%) Cmbn,c,zi)| Zceyﬁ(t) U/wbn,c,ziCEbn,c,zi

Fig.[§|compares the performance of the proposed attack in crafting top-1 adversarial examples when
estimating gradients using both adversarial and non-adversarial queries versus considering only ad-
versarial queries for both untargeted and targeted attacks. These experiments are conducted against
the ResNet-50 (He et al.,[2016)) classifier using 100 correctly classified images from ImageNet (Deng
et al.,[2009). While Fig.[8a|and Fig.[8c|depict the obtained median £,-norm of perturbation for differ-
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Figure 8: Impact of non-adversarial queries in estimating the gradients at decision boundary on
crafting top-1 untargeted and targeted adversarial examples against ResNet-50.

ent query budget for untargeted and targeted attacks, respectively, Fig. [8b|and Fig. [8ddemonstrate
the corresponding attack success rate (ASR) with a perturbation threshold 7, = 2 and ry, = 4
for untargeted and targeted attacks, respectively. The results clearly demonstrate that incorporating
both adversarial and non-adversarial queries in gradient estimation results in improved performance
compared to not considering non-adversarial queries in gradient estimation.

A.4 IMPACT OF GRADIENT-BASED SEARCH FOR INITIAL BOUNDARY POINT

Geometric attacks start by finding an ini-
tial boundary point and then iteratively re-

duce the perturbation by utilizing the decision £ ao1| — omdiencoused " S T amner,
boundary’s geometry. In literature, untargeted ‘;; w0l g

decision-based attacks find the initial bound- 3§ g

ary point in a random direction, while targeted <] <

attacks find it by using BinarySearch be- £ 1o =

tween the source and an image with the target = o T——— N N ———
class. Instead of employing a random direction 0 500 1000 1500 2000 0 2500 5000 7500 10000
or binary search to locate the initial boundary Median queries Median querics
point, the proposed GSBAX employs the es- (a) Untargeted (b) Targeted

timated gradient direction for both untargeted  gjoyre 9: [mpact of gradient-based initialization
and targeted attacks. Fig. 0] demonstrates the against ResNet-50.

significant improvement in the median ¢5-norm
of perturbation in crafting 100 top-1 adversarial examples against the ResNet-50 classifier using the
gradient-based initial boundary finding approach for both untargeted and targeted attacks.
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Figure 10: ASR(%) versus queries in generating top-1 adversarial examples for different pertur-
bation thresholds utilizing GSBA! and baseline attacks against single-label multi-class classifiers
VGG-16 and ResNet-101 on ImageNet. GSBA'! outperforms the baselines for both the untargeted
and targeted attacks.
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Table 4: ASR(%) for different perturbation thresholds (r;5) and query budgets against VGG-16.

‘ Attack Type || Untargeted Attack [l Targeted Attack |
[ Queries || [ 1000 5000 10000 20000 30000 || [75000 10000 20000 30000 40000 |
sa? ooy |28 w08 w4 725 s | | 18 7.0 151 244 298
GSBA! U311 640 830 901 910 T 112 280 520 634 710
2| SAT o, | 6 777 9 940 93 | _ [ 179 364 582 601 746
S | GsBA! th 501 910 980 991 991 th 481 766 944 971 990
SAT 792 959 981 993 998 389 625 786 847 888
GsBA! || "™ | 859 979 990 992 1000 || "™"° | 747 939 995 1000 1000
SA? | 98 279 403 540 597 [ _ | 04 18 54 109 141
GSBA?2 =140 421 611 721 790 th= 34 117 293 408 473
2 SA 291 504 741 839 879 75 183 352 446 497
& 2 Tth=2 rip=4
o | £ [ osBA 370 799 940 971 99.0 257 506 750 856 898
= SAZ 620 897 953 977 983 216 373 557 634 670
8 GsBA? || "7t | 630 970 on1 990 1000 | ""° | 477 746 930 951 960
> SA® | % 155 265 405 456 || _ | 02 08 24 53 30
GSBA® th= 79 331 499 69.0 72.1 th= 15 5.8 17.5 247 332
2 [ sA° 178 467 626 748 810 72 119 224 292 324
S| gsBa® || "2 | 240 721 871 951 o7a || TTY | 14 327 sz 702 760
SA® 504 828 910 960 973 129 248 360 421 470
GsBA® || Tt | 521 930 970 980 990 || ""C | 268 571 749 832 863
SAT | 23 17 204 33 385 | | 02 03 16 39 51
GSBA* th= 40 230 419 571 620 th= 0.8 3.6 114 162 206
T [ saAT o, | B0 a8 39 64 750 | [ 23 59 34 191 213
S | csBa* 2151 580 790 929 939 th= 67 181 402 532 608
SAT .| B4 780 887 952 %3 | _ | 64 157 236 310 328
GSBA* T 40 891 959 979 981 I 150 378 609 697 754

Table 5: ASR(%) for different perturbation thresholds (r;,) and query budgets against ResNet-101.

| Attack Type || Untargeted Attack Il Targeted Attack |
\ Queries || [ 1000 5000 10000 20000 30000 || [ 5000 10000 20000 30000 40000 |
SA! | 2713 447 526 618 655 B 3.8 6.8 141 214 257
GsBA! || "7l | 282 s06 728 834 854 || T2 | 85 230 449 597 679
L[ SAT | 473 712 sLT 889 912 | 174 343 saa 6h7 604
S| GsBa! || "7 | 491 835 930 975 988 || '"TT | 327 657 900 964 980
SAT | 0 B0 978 92 99 | 32 59 788 861 908
GsBA! || "7 | 709 957 994 998 1000 || ""T0 | 585 886 977 996 997
SA |4 a5 36 HBo 440 o 12 26 538 87 L1
GSBA? || "t 113 386 529 6.0 733 || " 1.9 8.9 241 348 420
L [ sAz | 27 U e ;a7 ([ | 72 143 82 302 463
= | & | asBa? th=> 1 278 662 825 940 960 =t 148 385 679 7194 877
= SA | 49 ®6 o912 %7 977 | _ [ 145 309 527 61 681
2 GSBA? || "t 483 877 958 994 996 th 298 617 886 950 969
& SA® ~ 64 173 263 356 405 ~ 09 14 27 71 48
3 rep=1 Ten=2
GSBA 66 287 424 588  66.6 13 4.6 125 211 287
2 [ sA® L | 98 415 28 633 6l | 33 72 52 203 229
S| GsBA® || "7 | 166 553 749 882 921 || T 63 227 416 612 122
SA® .| 30 70 9 92 94 s | 87 167 7 389 47
GSBA® || ™77 | 382 818 941 983 995 || ""T° | 167 414 727 836 896
SAT _, | 3% 120 170 231 262 L | 03 0.8 13 21 29
GsBA® || "thT 34 209 356 50.2 58.4 th= 0.5 14 6.7 12.2 16.9
1 [ sA | 136 36 463 4 626 NRE 50 8.1 118 148
S| GsBa* || T | 119 474 693 834 885 || T 24 125 305 448 535
SAT .| ¥3 @3 795 879 905 = | 37 93 173 227 283
GsBa* || "7 | 318 746 904 972 985 || T 80 253 532 700 787

B COMPARISON WITH top-1 BASELINES

Fig. [10] depicts the variation of ASR with differing query budgets across various rj, values, com-
paring the performance of GSBA! with the baselines SimBA-DCT (Guo et al 2019a), PPBA (Li
et al., 2020b) and SA (Andriushchenko et al.|[2020) in generating top-1 untargeted and targeted ad-
versarial examples against the VGG-16 (Simonyan & Zisserman, |2014) and ResNet-101 (He et al.,
2016)) single-label multi-class classifiers on the ImageNet dataset (Deng et al., |2009). The depicted
curves are derived from 1000 randomly selected samples correctly classified by the respective clas-
sifier. From this figure, GSBA! shows significantly better ASR in crafting adversarial examples
with small perturbation thresholds for untargeted attacks. For targeted attacks, on the other hand,
the proposed GSBA! outperforms the baselines by a considerable margin in ASR performance. The
obtained ASR against VGG-16 and ResNet-101 is quite similar to the one obtained for ResNet-50,
as demonstrated in the main paper.
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Figure 11: ASR(%) versus queries in crafting up to top-4 adversarial examples for different per-
turbation thresholds utilizing GSBAX and SAX against single-label multi-class classifier VGG-16
on ImageNet. GSBAX consistently outperforms the state-of-the-art baseline SAX in crafting untar-
geted adversarial examples, with larger gains when the perturbation threshold is smaller and/or the
query budget is larger. Moreover, the relative gain in ASR of GSBAX over SAX increases with K.
For the targeted attack, GSBAX offers significantly better ASR than SAX across the board.
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Figure 12: ASR(%) versus queries in crafting up to top-4 adversarial examples for different pertur-
bation thresholds utilizing GSBAX and SA® against single-label multi-class classifier ResNet-101
on ImageNet. GSBAX consistently outperforms the state-of-the-art baseline SAX in crafting untar-
geted adversarial examples, with larger gains when the perturbation threshold is smaller and/or the
query budget is larger. Moreover, the relative gain in ASR of GSBAX over SAX increases with K.
For the targeted attack, GSBA* offers significantly better ASR than SA¥ across the board.
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Table 6: ASR(%) by SAX and GSBAX against different robust classifiers.

| | Attack Inc-v3,4y IR-v2., RN50 RNS505,. RNS505u.

o | SAL 800 630 710 760 630

IL| GSBA! 820 690 810 80 750

S| SA2 €0 380 500 520 370
S|GSBA2 720 540 660 650 540

< | S| sA* 510 300 4.0 430 250
2|1 GSBA* 640 440 550 580 440
& SA* 410 260 350 360 200
£ GSBA* 550 350 460 470 330
o SA 880 810 900 930 890
L] GsBA! 940 930 970 1000  97.0

S| osA’ 790 630 780 790  63.0
S|GSBA2 910 850 960 970 970

S| sA* 730 580 690 750 540

i | GSBA® 870 830 950 950 860

S| sA' 670 490 580 620 440
GSBA* 860  80.0 920 950 850

| SAU 270 150 690 750 550
L|GsBA! 620 390 950 930 860

S| sa? 8.0 80 390 480 240
S|GSBA2 350 200 790 780 630

| sA® 20 40 260 300 15.0

T |1 |GSBA* 200 130 600 650 420
5| sal 0.0 50 160 190 10.0
& GSBA* 80 100 420 460 270
| SAl 440 220 940 970 870

L] GSBA' 960 740 1000 1000  99.0

S| osA’ 150 120 790 780 590
S|GSBA2 740 510 990 980 980

g| sa 7.0 70 610 590 340

1 | GSBA® 460 390 940 950  89.0

S| sal 4.0 60 460 380 260
GSBA* 320 250 890 930 800

C ADDITIONAL RESULTS FOR top-K ON IMAGENET

Table [4] and Table [5| compares the obtained ASR of SOTA baseline SAX and proposed GSBAX
against single-label multi-class classifiers VGG-16 (Simonyan & Zisserman, |2014) and ResNet-
101 (He et al.| [2016)), respectively, for both the untargeted and targeted attacks for different query
budgets and perturbation thresholds r, in crafting up to top-4 adversarial examples on Ima-
geNet (Deng et al., |2009). The corresponding curves demonstrating ASR versus query budgets
against VGG-16 and ResNet-101 are depicted in Fig. |l 1|and Fig.[12] respectively.

As can be seen from the results for untargeted attacks, the ASR against VGG-16 and ResNet-101
closely mirrors our findings against ResNet-50. The performance of the proposed GSBAX con-
sistently outperforms the state-of-the-art score-based attack SAX in crafting adversarial examples,
with larger gains when the perturbation threshold is smaller and/or the query budget is larger. When
the query budget is small, all black-box attack methods are limited, so no significant gain can be
expected; on the other hand, when the allowed perturbation threshold is large, the state-of-the-art
method already achieves satisfactory performance, so no significant gain can be expected either.
Moreover, the relative gain in ASR of GSBAX over SAX increases with K. For the targeted attack,
GSBAX offers significantly better ASR than SAX across the board against VGG-16 and ResNet-101
classifiers, as we have seen for ResNet-50.

D PERFORMANCE AGAINST ROBUST CLASSIFIERS

We compare the performance of the proposed CGBAX and SAX against several robust classifiers.
These include adversarially-trained Inception-V3 (Kurakin et al., 2016), ensemble-adversarially-
trained-ResNet-Inception-V2 (Tramer et al., [2017), and three robustly trained ResNet-50 (RN50):
RN50n (Geirhos et al.L2018)), RN50g,,. (Geirhos et al.,[2018) and RN504,x (Hendrycks et al.,[2019).
RN50y is trained on a combination of stylized and natural ImageNet, RN50g, is fine-tuned with
an auxiliary dataset and RN504,x is trained with advanced data augmentation techniques. We assess
the performance of these robust models using 100 randomly selected samples from ImageNet for
both untargeted and targeted attacks.

Table [6] demonstrates the obtained ASR(%) for query budgets of 5000 and 30000 at a perturbation
threshold 7, = 2 for the untargeted attack, and for query budget of 10000 and 40000 considering
the perturbation threshold r;;, = 8 for the targeted attack. These results show that CGBAX in the
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top-K setting follows a similar pattern to its performance against standard classifiers. Additionally,
from this table, adversarially trained classifiers demonstrate greater robustness than the robustly
trained classifiers like RN50py, RN50fpe, and RN504yx.

E SAMPLING NOISE FROM LOW-FREQUENCY SUBSPACE

The low-frequency subspace obtained through Discrete Cosine Transformation (DCT) is crucial
because it captures essential image information, including the gradient information (Guo et al.,
2018; [Li et al., 2020a), which are vital for our approach. To sample a noise z; € [0, 1]¢r*HXW
from low-frequency subspace, the coefficients of the low-frequency components with dimension
Chpx ? X % are drawn from a normal distribution with zero mean and o = 0.0002 standard deviation
while setting the remaining frequency components to zero, and then revert this representation back
to the original image space using the Inverse DCT, as discussed in (Guo et al.| 2018])). This process
effectively allows us to generate perturbations that influence the more critical, low-frequency aspects
of the image, minimizing disruption to the less important high-frequency details. The parameter f
serves as a dimension reduction factor, controlling how much of the frequency space is retained in
the noise sample.

F LIMITATIONS AND POTENTIAL NEGATIVE IMPACTS

Limitations: The proposed GSBAX is based on querying the target classifier to craft adversarial
examples, and it offers query-efficient performance as compared to the baseline attacks. However,
crafting top-K adversarial examples, particularly for targeted attacks with larger values of K, still
demands a significant number of queries, leaving ample room for further improvement. Moreover,
the designs of our untargeted and targeted attacks are based on the assumption of low curvature and
high curvature decision boundaries, respectively. However, while the curvature is high when the
boundary point is far from the source image, it tends to become flatter as the boundary point comes
closer to the source image from the viewpoint of the source image. Additionally, as the proposed
attack proceeds with optimizing boundary points on the decision boundary, poor transferability is
incurred due to the variation of decision boundaries across classifiers. Thus, a more accurate gradient
estimation technique along with adaptive boundary point search can be a future endeavor to improve
the performance further. Additionally, efforts can be made to improve the transferability of the
geometric adversarial attacks.

Potential societal negative impacts: Adversarial attacks pose significant security risks in real-
world machine learning systems due to the potential misuse of adversarial perturbations for mali-
cious purposes. Our proposed black-box GSBAX method aims to generate top-K adversarial exam-
ples, which can be leveraged for various real-world scenarios, as outlined in the introduction section.
While our experiments primarily focus on deceiving image classifiers, the versatility of our approach
extends to other domains, such as image annotation, object detection, and recommendation systems,
broadening the scope of potential misuse by malicious users. However, it’s important to emphasize
that our objective is to highlight the vulnerabilities of machine learning systems in aggressive top-K
settings, ultimately advocating for the implementation of defense mechanisms to enhance their secu-
rity against adversarial attacks. One potential defense strategy against our proposed attack involves
restricting queries around the decision boundaries. We will release our source code to encourage
more defense research against the proposed GSBAX.

G CRAFTED ADVERSARIAL EXAMPLES

In this section, we demonstrate a number of generated top-K adversarial examples and their corre-
sponding perturbation, along with detailed information, for different benign inputs against different
classifiers. While Fig.[T3] Fig. [[4] and Fig. [I5]demonstrate crafted untargeted adversarial examples
against ResNet-50, VGG-16 and ResNet-101 single-label multi-class classifiers, Fig.[T6] Fig.[T7]and
Fig.[18]display the crafted targeted adversarial examples against these classifiers. Fig.[19]depicts the
generated top-2 adversarial examples against a classifier with multi-label learning. The value of {5
at the title of each adversarial example demonstrates the ¢5-norm of the crafted perturbation obtained
after spending a given query budget.
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Source top-11]£,:0.95 top-2 | £,:1.13 top-3|£,:1.25 top-4 | £,:1.37

10*perturbation  10*perturbation  10*perturbation  10*perturbation

(a) Top-5 predictions of a source image on ResNet-50 are: [cicada, leafhopper, lacewing, fly, grasshopper].
Top-5 predictions of the top-K adversarial examples are as follows: top-1: [dragonfly, cicada, fly, damselfly,
lacewing], top-2: [fly, dragonfly, cicada, damselfly, lacewing], top-3: [dragonfly, lacewing, damselfly, cicada,
flyl, and top-4: [dragonfly, damselfly, lacewing, fly, cicada].

Source top-1]£,:0.81 top-2 | £,:0.99 top-3 | £,:1.03 top-4 | £,:1.41

FE e e

10*perturbation  10*perturbation  10*perturbation  10*perturbation

(b) Top-5 predictions of a source image on VGG-16 are: [cicada, leafhopper, grasshopper, lacewing, man-
tis]. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [leafhopper, cicada, mantis,
lacewing, grasshopper], top-2: [leafhopper, mantis, cicada, grasshopper, cricket], top-3: [mantis, leafhopper,
grasshopper, cicada, cricket], and top-4: [grasshopper, mantis, leafhopper, lacewing, cicada].

Source top-1|£;:1.15 top-2 | £,:1.57 top-3 | £,:1.89 top-4 | £,:2.38

10*perturbation  10*perturbation  10*perturbation  10*perturbation

(c) Top-5 predictions of a source image on ResNet-101 are: [cicada, leafhopper, lacewing, cricket, grasshop-
per]. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [leafhopper, cicada,
grasshopper, cricket, lacewing], top-2: [leafhopper, grasshopper, cicada, cricket, mantis], top-3: [grasshopper,
leafhopper; cricket, cicada, cockroach], and top-4: [cricket, grasshopper, leafhopper, mantis, cicadal.

Figure 13: Crafted fop-K untargeted adversarial examples of a source image with ground truth
label cicada, utilizing a query budget of 5000, against different single-label multi-class classifiers.
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Source top-11£,:2.2 top-2 | £,:3.12 top-3|£,:6.5 top-4 | £,:6.27

A A

--n..m":}’ lh....ui“.}.a e, . s e, . oy
10*perturbation  10*perturbation  10*perturbation  10*perturbation

(a) Top-5 predictions of a source image on ResNet-50 are: [redshank, ruddy turnstone, dowitcher, oystercatcher,
limpkin]. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [dowitcher, redshank,
limpkin, water ouzel, ruddy turnstone), top-2: [dowitcher, limpkin, redshank, black stork, bittern], top-3: [dow-
itcher, limpkin, red-backed sandpiper, redshank, cicada]l, and top-4: [dowitcher, limpkin, spoonbill, red-backed
sandpiper, redshank].

Source top-11]£,:2.55 top-2 |£,:3.28 top-3]£,:3.32 top-4 | £,:3.45

A N Y
_m.}’ ‘-m-}h _..,.-j.u

10*perturbation  10*perturbation  10*perturbation  10*perturbation

(b) Top-5 predictions of a source image on VGG-16 are: [redshank, oystercatcher, dowitcher, ruddy turnstone,
red-breasted merganser]. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [ruddy
turnstone, redshank, dowitcher, water ouzel, red-backed sandpiper], top-2: [ruddy turnstone, dowitcher, red-
shank, red-backed sandpiper, water ouzel], top-3: [cicada, water ouzel, ruddy turnstone, redshank, leafhopper],
and top-4: [cicada, leafhopper, weevil, water ouzel, redshank].

S

Source top-1|1£,:1.9 top-2 | £,:3.47 top-3 | 1,:4.88 top-4 | £,:5.34

-t Y

_....»-“.‘}.’ -—-,m':}u e a s e, v s
10*perturbation  10*perturbation  10*perturbation  10*perturbation

(c) Top-5 predictions of a source image on ResNet-101 are: [redshank, oystercatcher, ruddy turnstone, dow-
itcher, red-breasted merganser]. Top-5 predictions of the top-K adversarial examples are as follows: top-1:
[dowitcher, redshank, ruddy turnstone, limpkin, robin], top-2: [dowitcher, limpkin, redshank, ruddy turnstone,
black stor], top-3: [limpkin, dowitcher, bittern, redshank, black stork], and top-4: [dowitcher, partridge, ruffed
grouse, brambling, redshank].

-
[ Jn

Figure 14: Crafted top-K untargeted adversarial examples of a source image with ground truth
label redshank, utilizing a query budget of 5000, against different single-label multi-class classifiers.
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Source top-11]4,:1.21 top-2 | £,:0.95 top-3 | £,:1.04 top-4 | £,:1.3

10*perturbation  10*perturbation  10*perturbation  10*perturbation

(a) Top-5 predictions of a source image on ResNet-50 are: [loggerhead, leatherback turtle, hippopotamus,
terrapin, mud turtle]. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [leatherback
turtle, loggerhead, amphibian, speedboat, conch], top-2: [amphibian, hippopotamus, loggerhead, leatherback
turtle, speedboat], top-3: [amphibian, hippopotamus, speedboat, loggerhead, leatherback turtle], and top-4:
[amphibian, conch, hippopotamus, speedboat, loggerhead].

Source top-1|£,:0.55 top-2 | £,:0.66 top-3|£,:1.0 top-4 | £,:1.03

|

. &

10*perturbation  10*perturbation  10*perturbation

(b) Top-5 predictions of a source image on VGG-16 are: [loggerhead, leatherback turtle, conch, hermit crab,
terrapin]. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [conch, loggerhead,
hermit crab, leatherback turtle, hippopotamus), top-2: [conch, hermit crab, loggerhead, leatherback turtle,
fiddler crab], top-3: [conch, hippopotamus, hermit crab, loggerhead, bathing cap], and top-4: [conch, hermit
crab, bathing cap, hippopotamus, loggerhead).

10*perturbation

Source top-1 | £,:0.05 top-2 | £,:0.37 top-3|£,:0.39 top-4 | £,:0.51

10*perturbation  10*perturbation  10*perturbation  10*perturbation

(c) Top-5 predictions of a source image on ResNet-101 are: [loggerhead, hippopotamus, leatherback turtle,
conch, hermit crab]. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [hippopota-
mus, loggerhead, leatherback turtle, conch, hermit crab), top-2: [hippopotamus, bikini, loggerhead, bathing
cap, conch), top-3: [hippopotamus, bikini, bathing cap, loggerhead, swimming trunks], and top-4: [hippopota-
mus, conch, hermit crab, bikini, loggerhead].

Figure 15: Crafted top-K untargeted adversarial examples of a source image with ground truth
label loggerhead, utilizing a query budget of 5000, against different single-label multi-class classi-
fiers.
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Source top-114£,:2.22 top-2|£,:3.28 top-31£,:3.26 top-4 | £,:3.12

10*perturbation  10*perturbation  10*perturbation 10*perturbat|on

(a) Top-5 predictions of a source image and a target image on ResNet-50 are [Staffordshire bullterrier, American
Staffordshire terrier, Boston bull, French bulldog, basenji] and [cicada, leafhopper, lacewing, fly, grasshopper],
respectively. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [cicada, Staffordshire
bullterrier, American Staffordshire terrier, miniature pinscher, muzzle], top-2: [cicada, leafhopper, Ameri-
can Staffordshire terrier, Staffordshire bullterrier, cricket], top-3: [cicada, lacewing, leafhopper, American
Staffordshire terrier, Staffordshire bullterrier], and top-4: [cicada, fly, lacewing, leafhopper, dragonfly].

Target

Source top-11£,:2.18 top-2]£,:2.48 top-3]£,:5.91 top-4 | £;:3.24

10*perturbation 10*perturbat|on 10*perturbat|0n 10*perturbat|on

(b) Top-5 predictions of a source image and a target image on VGG-16 are [Staffordshire bullterrier, Amer-
ican Staffordshire terrier, soccer ball, whippet, tennis ball] and [cicada, leafhopper, grasshopper, lacewing,
mantis], respectively. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [cicada,
muzzle, Staffordshire bullterrier, miniature pinscher, rhinoceros beetle], top-2: [cicada, leafhopper, rhinoceros
beetle, leaf beetle, muzzle), top-3: [grasshopper, leafhopper, cicada, muzzle, cricket], and top-4: [grasshopper,
leafhopper; cicada, lacewing, muzzle].

Target

Source top-11]£,:2.88 top-2 | £,:3.19 top-3[£;:4.31 top-4 | £,:5.25

10*perturbat|on 10*perturbat|on 10*perturbation 10*perturbat|on

(c) Top-5 predictions of a source image target image on ResNet-101 are [Staffordshire bullterrier, Ameri-
can Staffordshire terrier, French bulldog, bull mastiff, Boston bull] and [cicada, leafhopper, lacewing, cricket,
grasshopper], respectively. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [ci-
cada, Staffordshire bullterrier, American Staffordshire terrier, miniature pinscher, Chihuahual, top-2: [ci-
cada, leafhopper, Staffordshire bullterrier, cricket, American Staffordshire terrier], top-3: [cicada, leafhopper,
lacewing, cricket, Staffordshire bullterrier], and top-4: [cricket, cicada, leafhopper, lacewing, grasshopper].

Target

Figure 16: Crafted top-K targeted adversarial examples of a source image with ground truth label
Staffordshire bullterrier and a target image with top-1 classification label cicada, utilizing a query
budget of 30000, against different single-label multi-class classifiers.
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Source top-11£,:2.94 top-2 |£,:3.38 top-31£,:3.6 top-4|£,:7.91

10*perturbation  10*perturbation  10*perturbation  10*perturbation

(a) Top-5 predictions of a source image and a target image on ResNet-50 are [Staffordshire bullterrier, Amer-
ican Staffordshire terrier, Boston bull, French bulldog, basenji] and [redshank, ruddy turnstone, dowitcher,
oystercatcher, limpkin], respectively. Top-5 predictions of the top- K adversarial examples are as follows: top-
1: [redshank, Italian greyhound, American Staffordshire terrier, Weimaraner, Staffordshire bullterrier], top-2:
[ruddy turnstone, redshank, Italian greyhound, American Staffordshire terrier, Staffordshire bullterrier], top-
3: [ruddy turnstone, dowitcher, redshank, American Staffordshire terrier, red-backed sandpiper], and top-4:
[ruddy turnstone, redshank, oystercatcher, dowitcher, magpie].

Target

Source top-1|£,:2.34 top-2 | £,:2.42

top-3 | £ :3.09

top-4 | £;:4.95

Target 10*perturbation ~ 10*perturbation  10*perturbation  10*perturbation

-...‘:”

(b) Top-5 predictions of a source image and a target image on VGG-16 are [Staffordshire bullterrier, American
Staffordshire terrier, soccer ball, whippet, tennis ball] and [redshank, oystercatcher, dowitcher, ruddy turnstone,
red-breasted merganser], respectively. Top-5 predictions of the top-K adversarial examples are as follows:
top-1: [redshank, whippet, Scottish deerhound, American Staffordshire terrier, magpiel, top-2: [oystercatcher,
redshank, whippet, magpie, European gallinule), top-3: [redshank, oystercatcher, dowitcher, whippet, goose],
and top-4: [ruddy turnstone, redshank, oystercatcher, dowitcher, whippet].

Source top-11£,:2.92 top-2 | £,:3.37 top-31£,:3.48 top-4 |£,:3.71

10*perturbation  10*perturbation  10*perturbation  10*perturbation

(c) Top-5 predictions of a source image and a target image on ResNet-101 are [Staffordshire bullterrier, Amer-
ican Staffordshire terrier, French bulldog, bull mastiff, Boston bull] and [redshank, oystercatcher, ruddy turn-
stone, dowitcher, red-breasted merganser], respectively. Top-5 predictions of the top-K adversarial examples
are as follows: top-1: [redshank, American Staffordshire terrier, Staffordshire bullterrier, reel, kelpie], top-2:
loystercatcher; redshank, Staffordshire bullterrier, American Staffordshire terrier, kelpiel, top-3: [ruddy turn-
stone, redshank, oystercatcher, Staffordshire bullterrier, American Staffordshire terrier], and top-4: [redshank,
ruddy turnstone, oystercatcher, dowitcher, American Staffordshire terrier).

S

Figure 17: Crafted top- K targeted adversarial examples of a source image with ground truth label
Staffordshire bullterrier and a target image with top-1 classification label redshank, utilizing a query
budget of 30000, against different single-label multi-class classifiers.
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Source top-11£,:2.65 top-2 | £,:2.82 top-3|£,:4.3 top-4 | £,:5.53

10*perturbat|on 10*perturbat|on 10*perturbatlon 10*perturbation

(a) Top-5 predictions of a source image and a target image on ResNet-50 are [Staffordshire bullterrier, American
Staffordshire terrier, Boston bull, French bulldog, basenji] and [loggerhead, leatherback turtle, hippopotamus,
terrapin, mud turtle], respectively. Top-5 predictions of the top-K adversarial examples are as follows: top-
1: [loggerhead, Staffordshire bullterrier, American Staffordshire terrier, terrapin, leatherback turtle], top-
2: [leatherback turtle, loggerhead, Staffordshire bullterrier, American Staffordshire terrier, terrapin], top-
3: [leatherback turtle, hippopotamus, loggerhead, Staffordshire bullterrier, terrapin], and top-4: [terrapin,
leatherback turtle, hippopotamus, loggerhead, mud turtle].

Source top-1|£,:3.16 top-2 | £,:3.01 top-3|£,:5.7 top-4 | £,:6.99

10*perturbation 10*perturbat|on 10*perturbat|0n 10*perturbat|on

(b) Top-5 predictions of a source image and a target image on VGG-16 are [Staffordshire bullterrier, Ameri-
can Staffordshire terrier, soccer ball, whippet, tennis ball] and [loggerhead, leatherback turtle, conch, hermit
crab, terrapin], respectively. Top-5 predictions of the top-K adversarial examples are as follows: top-1: [log-
gerhead, black-and-tan coonhound, terrapin, Staffordshire bullterrier, mud turtle], top-2: [leatherback turtle,
loggerhead, terrapin, mud turtle, Staffordshire bullterrier], top-3: [loggerhead, leatherback turtle, conch, ter-
rapin, mud turtle], and top-4: [hermit crab, leatherback turtle, conch, loggerhead, terrapin)].

Source top-11£,:2.62 top-2 | £,:4.49 top-3|£,:3.76 top-4 | £,:8.09

10*perturbat|on 10*perturbat|on 10*perturbat|0n 10*perturbat|on

(c) Top-5 predictions of a source image and a target image on ResNet-101 are [Staffordshire bullterrier, Ameri-
can Staffordshire terrier, French bulldog, bull mastiff, Boston bull] and [loggerhead, hippopotamus, leatherback
turtle, conch, hermit crab], respectively. Top-5 predictions of the top-K adversarial examples are as fol-
lows: top-1: [loggerhead, Staffordshire bullterrier, American Staffordshire terrier, mud turtle, terrapin], top-2:
[hippopotamus, loggerhead, Staffordshire bullterrier, American Staffordshire terrier, Mexican hairless], top-3:
[loggerhead, leatherback turtle, hippopotamus, Staffordshire bullterrier, American Staffordshire terrier], and
top-4: [loggerhead, hippopotamus, leatherback turtle, conch, triceratops].

Target

Ee—————

Figure 18: Crafted top- K targeted adversarial examples of a source image with ground truth label
Staffordshire bullterrier and a target image with top-1 classification label loggerhead, utilizing a
query budget of 30000, against different single-label multi-class classifiers.
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Adv. ex. | £:1.7 Adv. ex. | £:4.1 Adv. ex. | £,:5.3
Benign input (best targets) (random targets) (worst targets)

10*Perturbation .10*Perturbation 10*Perturbation

(a) Prediction order of a source image with true label set {person, horse} is: [person, horse, boat, car, dog,
bicycle, cow, motorbike, bus, chair, potted plant, bird, bottle, tv/monitor, sheep, cat, train, sofa, dining table,
aeroplane]. The best, random and worst target sets are {boat, car}, {tv/monitor, sofa} and {dining table,
aeroplane}.

Adv. ex. | £5:2.7 Adv. ex. | £,:4.4 Adv. ex. | £,:8.6

Benign input (best targets) (random targets) (worst targets)

(b) Prediction order of a source image with true label set {person, dog} is: [person, dog, sheep, car, horse,
bottle, cow, cat, bicycle, potted plant, boat, sofa, chair, tv/monitor, motorbike, bird, train, dining table, bus,
aeroplane]. The best, random and worst target sets are {sheep, car}, {potted plant, motorbike} and {bus,
aeroplane}.

Adv. ex. | £3:3.1 Adv. ex. | £5:6.3 Adv. ex. | £,:6.0
(best targets) (random targets) (worst targets)

Benign input

10*Perturbation 10*Perturbation 10*Perturbation

(c) Prediction order of a source image with true label set {person, bicycle} is: [person, bicycle, bottle, car,
chair, potted plant, bus, motorbike, cow, dog, horse, dining table, sofa, cat, train, tv/monitor, boat, sheep, bird,
aeroplane]. The best, random and worst target sets are {bottle, car}, {tv/monitor, sofa} and {bird, aeroplane}.

Figure 19: Crafted top-2 adversarial examples for benign inputs with two true labels against

Inception-V3 (Szegedy et al., [2016) on PASCAL VOC 2012 dataset (Everingham et al,[2015) with

best, random and worst target label sets utilizing a query budget of 30000.
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