
Under review as a conference paper at ICLR 2021

A ASYMMETRIC SELF-PLAY GAME SETUP

A.1 GOAL VALIDATION

Some of the goals set via asymmetric self-play may not be useful or interesting enough to be included
in the training distribution. For example, if Alice fails to touch any objects, Bob can declare a success
without any action. A goal outside the table might be tricky to solve. We label such goals as invalid

and make sure that Alice has generated a valid goal before starting Bob’s turn.

Even when Alice generates a valid goal, we can still penalize certain undesired goals. Specifically,
if the visual perception is limited to a restricted area on the table due to the camera setting, we can
penalize goals containing objects outside that range of view.

For goal validation, we check in the following order:

1. We check whether any object has moved. If not, the goal is considered invalid and the
episode resets.

2. We check whether all the objects are on the table. If not, the goal is considered invalid and
the episode resets.

3. We check whether a valid goal has objects outside the placement area, defined to be a 3D
space that the robot end effector can reach and the robot camera can see. If any object is
outside the area, the goal is deemed valid but obtains a out-of-zone penalty reward and the
episode continues to switch to Bob’s turn.

A.2 REWARD STRUCTURE

Table 1 shows the reward structure for a single turn for goal setting and solving. The reward for
Alice is based on whether it successfully generates a valid goal, and whether the generated goal is
solved by Bob. Alice obtains 1 point for a valid goal, and obtains an additional 5 point game reward
if Bob fails to achieve it. Additionally, a goal out of placement area triggers a�3 penalty. Rewarding
Alice based only on Bob’s success or failure is simpler than the original reward from Sukhbaatar
et al. (2018b), but we didn’t notice any degradation from this simplification (Appendix C.2).

Since Bob is a goal-conditioned policy, we provide sparse goal-conditioned rewards. Whenever one
object is placed at its desired position and orientation, Bob obtains 1 point per-object reward. Bob
obtains -1 reward such that the sum of per-object reward is at most 1 during a given turn. When all
the objects are in the goal state, Bob obtains a 5 point success reward and its turn terminates. If Bob
reaches a maximum number of allowed steps before achieving the goal, it is deemed a failure with
0 point reward.

When checking whether a goal has been achieved, we compare the position and orientation of each
object with its goal position and orientation. For position, we compute the Euclidean distance be-
tween object centers. For rotation, we represent the orientation of an object by three Euler angles
on three dimensions, roll, pitch, and yaw, respectively, and we compute the minimum angle needed
to rotate the object into the goal orientation. If the distance and angle for all objects are less than a
small error (0.04 meters and 0.2 radians respectively), we consider the goal achieved.

Table 1: Reward structure for a single goal.

Alice Bob Alice reward Bob reward
Invalid goal - 0 -

Out-of-zone goal Failure 1 - 3 + 5 0 + per-object reward
Out-of-zone goal Success 1 - 3 + 0 5 + per-object reward

Valid goal Failure 1 + 5 0 + per-object reward
Valid goal Success 1 + 0 5 + per-object reward

A.3 MULTI-GOAL GAME STRUCTURE

The overall flowchart of asymmetric self-play with a multi-goal structure is illustrated in Figure 10.

14

Under review as a conference paper at ICLR 2021

START

END

Alice proposes a goal

Bob tries to solYe the
goal

Set bob_done = True

Is the goal Yalid?

bob_done == True?

Is Bob successful?

Has
Alice generated 5

goals?

YeV

No

No

YeV

No

YeV

No

Figure 10: The flow chart of asymmetric self-play with a multi-goal game structure. The steps in
orange belong to Alice while the blue ones belong to Bob.

We expect a multi-goal game structure to induce a more complicated goal distribution, as goals
can be built on top of each other. For example, in order to stack 3 blocks, you might need to
stack 2 blocks first as a subgoal at the first step. A multi-goal structure also encourages Bob to
internalize environmental information during multiple trials of goal solving. Many aspects of the
environment, such as the simulator’s physical dynamics and properties of objects, stay constant
within one episode, so Bob can systematically investigate these constant properties and exploit them
to adapt its goal solving strategy accordingly. Similar behavior with multi-goal setting was observed
by OpenAI et al. (2019a).

In our experiments, when we report the success rate from multi-goal episodes, we run many episodes
with a maximum of 5 goals each and compute the success rate as

success_rate =
total_successes

total_goals
.

Note that because each episode terminates after one failure, at the end of one episode, we would
have either total_goals = total_successes if Bob succeeded at every goal, or total_goals =
total_successes+ 1 if Bob fails in the middle.

A.4 TRAINING ALGORITHM

Algorithm 1 and 2 describe pseudocode for the training algorithm using asymmetric self-play. Both
policies are optimized via Proximal Policy Optimization (PPO) (Schulman et al., 2017). Addition-
ally, Bob optimizes the Alice behavioral cloning (ABC) loss using Alice’s demonstrations collected
during the interplay between two agents. In the algorithm, LRL denotes a loss function for PPO and
LABC denotes a loss function for ABC. A trajectory ⌧ contains a list of (state, action, reward) tuples,

15

Under review as a conference paper at ICLR 2021

Algorithm 1 Asymmetric self-play
Require: ✓A, ✓B . Initial parameters for Alice and Bob
Require: ⌘ . RL learning rate
Require: � . weight of BC loss

for training steps = 1, 2, ... do
✓old

A ✓A, ✓old
B ✓B . initialize behavior policy parameters

for each rollout worker do . parallel data collection
DA,DB,DBC CollectRolloutData(✓old

A , ✓old
B) . replay buffers for Alice, Bob and ABC

end for
✓A ✓A � ⌘r✓ALRL . optimize PPO loss with data popped from DA
✓B ✓B � ⌘r✓B

⇥
LRL + �LABC

⇤
. optimize RL loss with DB and ABC loss with DBC

end for

Algorithm 2 CollectRolloutData
Require: ✓old

A , ✓old
B . behavior policy parameters for Alice and Bob

Require: ⇡A(a|s; ✓old
A),⇡B(a|s, g; ✓old

B) . policies for Alice and Bob
Require: ⇠ . whether Bob succeeded to achieve a goal
DA ?,DB ?,DBC ? . Initialize empty replay buffers.
⇠ True . initialize to True (success)
for number of goals = 1, ..., 5 do

⌧A, g GenerateAliceTrajectory(⇡A, ✓old
A) . generates a trajectory ⌧A and a goal g

if goal g is invalid then
break

end if
if ⇠ is True then

⌧B, ⇠ GenerateBobTrajectory(⇡B, ✓old
B , g) . generate a trajectory ⌧B and update ⇠

DB DB [{⌧B} . update replay buffer for Bob
end if
rA ComputeAliceReward(⇠, g)
⌧A[�1][2] rA . overwrite the last reward in trajectory ⌧A with rA
DA DA [{⌧A} . update replay buffer for Alice
if ⇠ is False then

⌧BC RelabelDemonstration(⌧A, g,⇡B, ✓old
B) . relabeled to be goal-augmented

DBC DBC [{⌧BC} . update replay buffer for ABC
end if

end for
return DA,DB,DBC

⌧ = {(s0, a0, r0), (s1, a1, r1), . . . }. A goal-augmented trajectory ⌧BC contains a list of (state, goal,
action, reward) tuples, ⌧BC = {(s0, g, a0, r0), (s1, g, a1, r1), . . . }.

B TRAINING SETUP

B.1 SIMULATION SETUP

We utilize the MuJoCo physics engine (Todorov et al., 2012) to simulate our robot environment and
render vision observations and goals. We model a UR16e robotic arm equipped with a RobotIQ
2F-85 parallel gripper end effector. The robot arm is controlled via its tool center point (TCP) pose
that is actuated via MuJoCo constraints. Additionally, we use a PID controller to actuate the parallel
gripper using position control.

B.2 ACTION SPACE

We define a 6-dimensional action space consisting of 3D relative gripper position, 2D relative grip-
per rotation, and a 1D desired relative gripper finger position output that is applied symmetrically

16

Under review as a conference paper at ICLR 2021

(a) Front camera (b) Wrist camera (c) Front camera (goal)
Figure 11: Example vision observations from our camera setup. (a) observation from a camera
mounted in front of the table (the front camera). (b) observation from the mobile camera mounted
on the gripper wrist. (c) goal observation from the front camera.

to the two gripper pinchers. The two rotational degrees of freedom correspond to yaw and pitch
axes (wrist rotation and wrist tilt) respectively, with respect to the gripper base. We use a discretized
action space with 11 bins per dimension and learn a multi-categorical distribution.

B.3 OBSERVATION SPACE

We feed observations of robot arm position, gripper position, object state, and goal state into the
policy. The object state observation contains each object’s position, rotation, velocity, rotational
velocity, the distance between the object and the gripper, as well as whether this object has contacts
with the gripper. The goal state observation includes each object’s desired position and rotation, as
well as the relative distance between the current object state and the desired state.

In the hybrid policy for the ShapeNet training environment, we additionally feed three camera im-
ages into the policy: an image of the current state captured by a fixed camera in front of the table,
an image of the current state from a camera mounted on the gripper wrist, and an image of the goal
state from the fixed camera. Figure 11 illustrates the example observations from our camera setup.
Both Alice and Bob take robot and object state observations as inputs, but Alice does not take goal
state inputs since it is not goal-conditioned.

B.4 MODEL ARCHITECTURE

We use independent policy and value networks in the PPO policy. Both have the same observation
inputs and network architecture, as illustrated in Figure 13. The permutation invariant embedding
module concatenates all the observations per object, learns an embedding vector per object and then
does max pooling in the object dimension. The vision module uses the same model architecture as
in IMPALA (Espeholt et al., 2018). For all experiments, we use completely separate parameters for
the policy and the value network except the vision module, which is shared between them.

B.5 HYPERPARAMETERS

Hyperparameters used in our PPO policy and asymmetric self-play setup are listed in Table 2 and
Table 3.

The maximum goal solving steps for Bob reported in Table 3 is the number of steps allowed per
object within one episode. If Bob has spent all these time steps but still cannot solve the goal, it
deems a failure and the episode terminates for Bob.

17

Under review as a conference paper at ICLR 2021

AcWiRQ RU VaOXe Head

LSTM

MLP

ReLU

SXP

La\eUNRUP

EPbeddiQg (256)

RRbRW JRiQW PRViWiRQ

La\eUNRUP

EPbeddiQg (256)

GUiSSeU PRViWiRQ

PeUPXWaWiRQ IQYaUiaQW EPbeddiQg (512)

ObjecW SWaWe

La\eUNRUP

GRaO SWaWe

La\eUNRUP

IMPALA

ViViRQ IQSXWV

H\bUid PROic\ OQO\BRb PROic\ OQO\

IQSXW La\eU

Figure 12: Network architecture of value/policy network.

Table 2: Hyperparameters used for PPO.

Hyperparameter Value

discount factor � 0.998

Generalized Advantage Estimation (GAE) � 0.95

entropy regularization coefficient 0.01

PPO clipping parameter ✏ppo 0.2

ABC clipping parameter ✏ 0.2

optimizer Adam (Kingma & Ba, 2014)
learning rate ⌘ 3⇥ 10�4

sample reuse (experience replay) 3
value loss weight 1.0

ABC loss weight 0.5

Table 3: Hyperparameters used for hardware configuration, batch size and self-play episode length.

Hyperparameter 1-2 Block manipulation (state) ShapeNet object rearrangement (hybrid)

GPUs per policy 1 32⇥ 8

rollout worker CPUs 64⇥ 29 576⇥ 29

batch size 4096 55⇥ 32⇥ 8

Alice’s goal setting steps T 100 250

Bob’s maximum goal solving steps 200 600

B.6 HOLDOUT TASKS

Here are a list of tasks for evaluating zero-shot generalization capability of the hybrid policy. Some
of them are visualized in Figure 8. Note that none of the objects here appear in the training data.

• Table setting: arrange a table setting consisting of a plate, spoon, knife, salad fork, and
main course fork.

• Mini chess: place four chess pieces next to a chess board.

• Rainbow (2-6 pieces): build a rainbow out of colored, wooden pieces by placing the half-
circle shapes together so they resemble a rainbow. We have 5 variations of the rainbow
tasks by taking different numbers of pieces which are indexed from the outer circle to inner
one.

18

Under review as a conference paper at ICLR 2021

• Ball-capture: capture two, red field-hockey balls by placing four (two blue and two green)
cylinders at so their rotational axes intersect rays from the spheres at roughly 90, 240, and
300 degree angles about the same axial (Z) direction.

• Tangram Puzzle: move blue pieces to form the standard, seven piece tangram square solu-
tion.

• Domino: stand up 5 wooden domino pieces in a curved layout.
• Block push (1–8 objects): push blocks to match position and orientation of goal configura-

tions. All goal objects are on the surface of the table.
• Block pick-and-place (1–3 objects): push blocks, and lift up one block in the air. One goal

object is in the air and all other goal objects are on the table surface.
• Block stacking (2–4 objects): stack blocks to form a tower in a specific location and specific

rotation.
• YCB object push (1–8 objects): push YCB objects5 to match position and orientation of

goal configurations. All goal objects are on the surface of the table.
• YCB pick-and-place (1–3 objects): push YCB objects and lift up one YCB object in the

air. One goal object is in the air and all other goal objects are on the table surface.

By default, each holdout task presents 5 goals per episode and terminates episodes upon a failure.
Exceptions are Table setting, Mini chess, Rainbow (2-6 pieces), Ball-capture, and Tangram, which
only present a single goal per episode because only a single fixed goal configuration is available for
each holdout task.

C NON SELF-PLAY BASELINES

C.1 BASELINES FOR CURRICULUM

We compared asymmetric self-play with several baselines incorporating hand-designed curricula in
Sec. 5.2.

All the baselines are trained on a mixture of push, flip, pick-and-place, and stacking tasks as the
goal distribution. The initial state of objects is generated by randomly placing objects within the
placement area of the table without overlaps. The number of objects is sampled from {1, 2} with
equal probability.

Factorized Automatic Domain Randomization (FADR) (OpenAI et al., 2019a) is applied to grow
curriculum parameters described below. Precisely, for each parameter we track a list of performance
scores when the parameter is configured at current maximum and other parameters are randomly
sampled. The value of this parameter will be increased if the tracked score rises above a threshold.

1. The no curriculum baseline trains the goal-conditioned policy directly on a fixed goal
distribution and environment parameters. Precisely there are 50% goals for push and flip,
35% for pick-and-place, and 15% for stacking.

2. The curriculum:distance baseline uses a hand-designed curriculum over (1)
goal_distance_ratio: the Euclidean distance between the initial position of the objects
and their goal positions, and (2) goal_rotation_weight: the weight applied on the ob-
ject rotation distance for goal state matching. At the beginning of the episode, given an
initial position x0 and a goal position xg , we artificially make the goal easier accord-
ing to goal_distance_ratio by resetting the goal position to x0

g = x0 + (xg � x0) ⇥
goal_distance_ratio. A small ratio reduces the distance and thus makes the task less
difficult. The parameter goal_rotation_weight controls how much we care about a good
match between object rotation. Given the current object rotation rt and a desired rotation
rg , we consider them as a valid match if |rt � r0|⇥ goal_rotation_weight < rthreshold,
where rthreshold = 0.2 (radians) is the success threshold for rotational matching. In other
words, a small goal rotation weight creates a less strict success threshold. Both parameters
range between [0, 1] and gradually increase from 0 to 1 as training progresses.

5https://www.ycbbenchmarks.com/object-models/

19

https://www.ycbbenchmarks.com/object-models/

Under review as a conference paper at ICLR 2021

3. The curriculum:distribution controls the proportion of pick-and-place and stacking
goals via two ADR parameters, pickup_proba and stack_proba. When sampling new
goals, with probability pickup_proba, a random object is moved up to the air and with
probability stack_proba, we consider a small 2-block tower as the goal. Both parameters
range between [0, 0.5] and gradually increase from 0 to 0.5 as training progresses.

4. The curriculum:full baseline adopts all the ADR parameters described so far,
goal_distance_ratio, goal_rotation_weight, pickup_proba and stack_proba. When
setting up a pick-and-place goal, the height above the table surface is also interpolated
according to goal_distance_ratio.

C.2 COMPARISON WITH TIMESTEP-BASED REWARD

Contrary to timestep-based reward originally proposed by Sukhbaatar et al. (2018b), we reward Al-
ice simply based on the success or failure of Bob’s goal solving attempt. We compare our simplified
reward structure with timestep-based reward for Alice as described in Sukhbaatar et al. (2018b) with
time reward scale factor 0.01 (� = 0.01 based on the notation from Sukhbaatar et al. (2018b)).
The performance is very similar. Note that this result is not a direct comparison to Sukhbaatar
et al. (2018b), but an ablation study of two different reward functions based on our best asymmetric
self-play configuration.

0 5 10 15 20 25

0

20

40

60

80

100

Push

0 5 10 15 20 25

Flip

0 5 10 15 20 25

Pick-and-place

0 5 10 15 20 25

Stack

Self-play Timestep rewardTimestep reward
Training steps (x100)

S
uc

ce
ss

 ra
te

 (%
)

Figure 13: The comparison of our asymmetric self-play reward with the timestep-based reward.

20

	Introduction
	Problem Formulation
	Asymmetric Self-play
	Reward Structure
	Alice Behavioral Cloning (ABC)

	Related Work
	Experiments
	Experimental setup
	Generalization to unseen goals without manual curricula
	Discovery of novel goals and solutions
	Generalization to unseen objects and goals
	Ablation studies

	Conclusion
	Asymmetric Self-play Game Setup
	Goal validation
	Reward structure
	Multi-goal game structure
	Training algorithm

	Training Setup
	Simulation Setup
	Action Space
	Observation Space
	Model Architecture
	Hyperparameters
	Holdout Tasks

	Non Self-play Baselines
	Baselines for curriculum
	Comparison with timestep-based reward

