
A LPE Transformer Over Edges

Consider one of the most fundamental notions in physics; Potential energy. Interestingly, potential
energy is always measured as a potential difference; it is not an inherent individual property, such as
mass. Strikingly, it is also the relative Laplace embeddings of two nodes that paint the picture, as a
node’s Laplace embedding on its own reveals no information at all. With this in mind, we argue that
Laplace positional encodings are more naturally represented as edge features, which encode a notion
of relative position of the two endpoints in the graph. This can be viewed as a distance encoding,
which was shown to improve the performance of node and link prediction in GNNs [27].

The formulation is very similar to the method for learning positional node embeddings. Here, a
Transformer Encoder is applied on each graph by treating edges as a batch of variable size and
eigenvectors as a variable sequence length. We again compute up to the m-lowest eigenvectors with
their eigenvalues but, instead of directly using the eigenvector elements, we compute the following
vectors:

|φ:,j1 − φ:,j2 | (7) φ:,j1 ◦ φ:,j2 (8)

where “:” denotes along all up to m eigenvectors, and ◦ denotes element-wise multiplication. Note
that these new vectors are completely invariant to sign permutations of the precomputed eigenvectors.

As per the LPE over nodes, the 3-length vectors are expanded with a linear layer to generate
embeddings of size k before being input to the Transformer Encoder. The final embeddings are then
passed to a sum pooling layer to generate fixed-size edge positional encodings, which are then used
to compute attention weights in equation 4.

This method addresses all etiquettes raised in section 2.2. However, it suffers from a major computa-
tional bottleneck compared to the LPE over nodes. Indeed, for a fully-connected graph, there are N
times more edges than nodes, thus the computation complexity is O(m2N2), or O(N4) considering
all eigenfunctions. This same limitation also affects the memory, as efficiently batching the N2 edges
will increase the memory consumption of the LPE by a drastic amount, preventing the model from
using large batch sizes and making it difficult to train.

Figure 8: Edge-wise Learned positional encoding (LPE) architectures, where the relative position is
considered instead of the absolute position. The model is aware of the graph’s Laplace spectrum by
considering m eigenvalues and eigenvectors, where we permit m ≤ N , with N denoting the number
of nodes. Since the Transformer loops over the edges, each edge can be viewed as an element of a
batch to parallelize the computation. The computational complexity is O(m2E) or O(m2N2) for a
fully-connected graph.

B Appendix - Implementation details

B.1 Benchmarks and datasets

To test our models’ performance, we rely on standard benchmarks proposed by [15] and [21] and
provided under the MIT license. In particular, we chose ZINC, PATTERN, CLUSTER, and MolHIV.

ZINC [15]. A synthetic molecular graph regression dataset, where the predicted score is given by
the subtraction of computationally estimated properties logP − SA. Here, logP is the computed
octanol-water partition coefficient, and SA is the synthetic accessibility score [22].

CLUSTER [15]. A synthetic benchmark for node classification. The graphs are generated with
Stochastic Block Models, a type of graph used to model communities in social networks. In total, 6
communities are generated and each community has a single node with its true label assigned. The
task is to classify which nodes belong to the same community.

13

PATTERN [15]. A synthetic benchmark for node classification. The graphs are generated with
Stochastic Block Models, a type of graph used to model communities in social networks. The task
is to classify the nodes into 2 communities, testing the GNNs ability to recognize predetermined
subgraphs.

MolHIV [21]. A real-world molecular graph classification benchmark. The task is to predict whether
a molecule inhibits HIV replication or not. The molecules in the training, validation, and test sets are
divided using a scaffold splitting procedure that splits the molecules based on their two-dimensional
structural frameworks. The dataset is heavily imbalanced towards negative samples. It is also known
that this dataset suffers from a strong de-correlation between validation and test set performance,
meaning that more hyperparameter fine-tuning on the validation set often leads to lower test set
results.

MolPCBA [21]. Another real-world molecular graph classification benchmark. The dataset is larger
than MolHIV and applies a similar scaffold spliting procedure. It consists of multiple, extremely
skewed (only 1.4% positivity) molecular classification tasks, and employs Average Precision (AP)
over them as a metric.

B.2 Ablation studies

The results in Figures 5-6 are done as an ablation study with a minimal tuning of the hyperparam-
eters of the network to measure the impact of the node LPE and full attention. A majority of the
hyperparameters used were tuned in previous work [15]. However, we altered some of the existing
parameters to accommodate the parameter-heavy LPE, and modified the Main Graph Transformer
hidden dimension such that all models have approximately ∼ 500k parameters for a fair comparison.
We present results for the full attention with the optimal γ value optimized on the Node LPE model.
We did this to isolate the impact that the Node LPE has on improving full attention. Details concerning
the model architecture parameters are visible in Figure 9.

Attention LPE LPE layers LPE dimension GT layers GT hidden dimension #Parameters

♰Sparse - - - 6 96 511201
Sparse Node 3 16 6 72 494865
Full - - - 6 80 471361
Full Node 3 16 6 64 508577

Sparse - - - 6 96 508634
Sparse Node 3 16 6 72 493340
Full - - - 6 80 469142
Full Node 3 16 6 64 507202

Sparse - - - 16 56 461348
Sparse Node 1 16 16 56 530036
Full - - - 16 48 450498
Full Node 1 16 16 48 519186

Sparse - - - 6 96 525985
Sparse Node 2 16 6 80 503265
Full - - - 6 80 483601
♰Full Node 2 16 6 72 528265

ZINC

CLUSTER

MOLHIV

PATTERN

Figure 9: Model architecture parameters for the ablation study. We modify the hidden dimensions of
the Main Graph Transformer (GT) such that all models have ∼ 500k parameters for a fair comparison.
†The batch size was doubled to ensure convergence of the model. All other parameters outside the
GT hidden dimension are consistent within a dataset experiment.

For the training parameters, we employed an Adam optimizer with a learning rate decay strategy
initialized in {10−3, 10−4}as per [15], with some minor modifications:

ZINC [15]. We selected an initial learning rate of 7 × 10−4 and increased the patience from 10
to 25 to ensure convergence. PATTERN [15]. We selected an initial learning rate of 5 × 10−4.
CLUSTER [15]. We selected an initial learning rate of 5× 10−4 and reduced the minimum learning
rate from 10−6 to 10−5 to speed up training time. MolHIV [21]. We elected to use similar training

14

procedures for consistency. We selected an initial learning rate of 10−4, a reduce factor of 0.5, a
patience of 20, a minimum learning rate of 10−5, a weight decay of 0 and a dropout of 0.03.

B.3 SOTA Comparison study

For the results in Figure 7, we tuned some of the hyperparameters, using the following strategies.
The optimal parameters are in bold.

ZINC. Due to the 500k parameter budget, we tuned the pairing {GT layers, GT hidden dimension} ∈
{{6, 72}, {8, 64}, {10,56}} and readout ∈ {"mean", "sum"} PATTERN. Due to the 500k parameter
budget and long training times, we only tuned the pairing {GT layers, GT hidden dimension}
∈ {{4,80}, {6, 64}} CLUSTER. Due to the 500k parameter budget and long training times, we
only tuned the pairing {GT layers, GT hidden dimension} ∈ {{12, 64}, {16,48}}MolHIV. With no
parameter budget, we elected to do a more extensive parameter tuning in a two-step process while
measuring validation metrics on 3 runs with identical seeds.

1. We tuned LPE dimension ∈ {8, 16}, GT layers ∈ {4, 6, 8, 10}, GT hidden dimension
∈ {48, 64, 72, 80, 96}

2. With the highest performing validation model from step 1, we then tuned dropout
∈ {0, 0.01, 0.025} and weight decay ∈ {0, 10−6, 10−5}

With the final optimized parameters, we reran 10 experiments with identical seeds.

MolPCBA. With no parameter budget, we elected to do a more extensive parameter tuning as
well. We tuned learning rate ∈ {0.0001, 0.0003, 0.0005}, dropout ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, GT
layers ∈ {2, 4, 5, 6, 8, 10, 12}, GT layers ∈ {128, 256, 304, 512}, LPE layers ∈ {8, 10, 12} amd LPE
dimension ∈ {8, 16}

B.4 Computation details

Dataset Resource Cluster GPU Epoch/Total time
ZINC Compute Canada Graham Tesla P100-PCIE (12 GB) 106s/17.88hrs

PATTERN Compute Canada Graham Tesla P100-PCIE (12 GB) 340s/12.52hrs
CLUSTER Compute Canada Beluga Tesla V100-SXM2 (16 GB) 433s/11.30hrs
MOLHIV Compute Canada Cedar Tesla V100-SXM2 (32 GB) 204s/5.34hrs

MOLPCBA Compute Canada Cedar Tesla V100-SXM2 (32 GB) 883s/48.02hrs

Figure 10: Computational details for SOTA Comparison study.

C Expressivity and complexity analysis of graph Transformers

In this section, we discuss how the universality of Transformers translates to graphs when using
different node identifiers. Theoretically, this means that by simply labeling each node, Transformers
can learn to distinguish any graph, and the WL test is no longer suited to study their expressivity.

Thus, we introduce the notion of learning complexity to better compare each architecture’s ability to
understand the space of isomorphic graphs. We apply the complexity analysis to the LPE and show
that it can more easily capture the structure of graphs than a naive Transformer.

C.1 Universality of Transformers for sequence-to-sequence approximations

In recent work [40] [41], it was proven that Transformers are universal sequence-to-sequence approx-
imators, meaning that they can encode any function that approximately maps any first sequence into a
second sequence when given enough parameters. More formally, they proved the following theorems
for the universality of Transformers:
Theorem 1. For any 1 ≤ p <∞, ε > 0 and any function f : Rd×n → Rd×n that is equivariant to
permutations of the columns, there is a Transformer g such that the Lp distance between f and g is
smaller than ε.

15

LetBn be the n-dimensional closed ball and denote by C0(Bd×n,Rd×n) the set of all continuous
functions of the ball toRd×n. A Transformer with positional encoding gp is a Transformer g such
that to each inputX , a fixed learned positional encoding E is added such that gp(X) = g(X +E).

Theorem 2. For any 1 ≤ p < ∞, ε > 0 and any function f ∈ C0(Bd×n,Rd×n), there is a
Transformer with positional encoding g such that the Lp distance between f and g is smaller than ε.

C.2 Graph Transformers approximate solutions to the graph isomorphism problem

We now explore the consequences of the previous 2 theorems on the use of Transformers for graph
representation learning. We first describe 2 types of Transformers on graphs; one for node and one
for edge inputs. They will be used to deduce corollaries of theorems 1 and 2 for graph learning
and later comparison with our proposed architecture. Assume now that all nodes of the graphs we
consider are given an integer label in {1, ..., N}.

The naive edge transformer takes as input a graph represented as a sequence of ordered
pairs ((i, j), σi,j) with i ≤ j the indices of 2 vertices and σi,j equal to 1 or 0 if the vertices
i, j are connected or not. Recall there are N(N − 1)/2 pairs of integers i, j in {1, ..., N} with
i < j the indices of 2 vertices and σi,j equal to 1 or 0 if the vertices i, j are connected or not.
It is obvious that any ordering of these edge vectors describe the same graph. Recall there
are N(N − 1)/2 pairs of integers i, j in {1, ..., N} with i ≤ j. Consider the set of functions
f : RN(N−1)/2×2 → RN(N−1)/2×2 that are equivariant to the permutations of columns then theo-
rem 1 says the function f can be approximated with arbitrary accuracy by Transformers on edge input.

The naive node Transformer can be defined as a Transformer with positional encodings.
This graph Transformer will take as input the identity matrix and as positional encodings the padded
adjacency matrix. This can be viewed as a one-hot encoding of each node’s neighbors. Consider
the set of continuous functions f : RN×N → RN×N , then theorem 2 says the function f can be
approximated with arbitrary accuracy by Transformers on node inputs.

From these two observations on the universality of graph Transformers, we get as a corol-
lary that these 2 types of Transformers can approximate solutions of the graph isomorphism
problem. In each case, pick a function that is invariant under node index permutations and maps
non-isomorphic graphs to different values and apply theorem 1 or 2 that shows there is a Transformer
approximating that function to an arbitrarily small error in the Lp distance. This is an interesting fact
since it is known that the discrimination power of most message passing graph networks is upper
bounded by the Weisfeiler-Lehman test which is unable to distinguish some graphs.

This may seem strange since it is unlikely there is an algorithm solving the graph isomorphism
problem in polynomial time to the number of nodes N , and we address this issue in the notes below.

Note 1: Only an approximate solution. The universality theorems do not state that Transformers
solve the isomorphism problem, but that they can approximate a solution. They only learn the
invariant functions only up to some error so they still can mislabel graphs.

Note 2: Estimate of number of Transformer blocks. For the approximation of the function f by a
Transformer to be precise, a large number of Transformer blocks will be needed. In [40], it is stated
that the universal class of function is obtained by composing Transformer blocks with 2 heads of
size 1 followed by a feed-forward layer with 4 hidden nodes. In [41] section 4.1, an estimate of the
number of blocks is given. If f : Rd×n → Rd×n is L-Lipschitz, then ||f(X)− f(Y)|| < ε/2 when
||X − Y || < ε/2L = δ . In the notation of [41], the LPE has constants p = 2 and s = 1. If g is a
composition of Transformer blocks then an error ||f − g||Lp < ε can be achieved with a number of
Transformer blocks larger than(

dn

δ

)
+

(
p(n− 1)

δd
+ s

)
+
(n

δdn

)
=
dn2L

ε
+

2(n− 1)(2L)d

εd
+ 1 +

n(2L)dn

εdn

In the case of the node encoder described above, n = d = N (the number of nodes) and the last term
in the sum above becomes N(2L/ε)N

2

, so the number of parameters and therefore the computational
time is exponential in the number of nodes for a fixed error ε. Note that this bound on the number of
Transformer blocks might not be tight and might be much lower for a specific problem.

16

Note 3: Learning invariance to label permutations. In the above proof, the Transformer is
assumed to be able to label all isomorphic graphs into the same class within a small error. However,
given a graph of N nodes, there are N ! different node labeling permutations, and they all need to be
mapped to the same output class. It seems unlikely that such function can be learned with polynomial
complexity to N .

Following these observations, it does not seem appropriate to compare Transformers to the WL test
as is the custom for graph neural networks and we think at this point we should seek a new measure
of expressiveness of graph Transformers.

C.3 Expressivity of the node-LPE

Here, we want to show that the proposed node-LPE can generate a unique node identifier that allows
our Transformer model to be a universal approximator on graphs, thus allowing us to approximate a
solution to graph isomorphism.

Recall the node LPE takes as input an N ×m × 2 tensor with m the number of eigenvalues and
eigenvectors that are used to represent the nodes. The output is a N × k tensor. Notice that 2
non-isomorphic graphs on N nodes can have the same m < N eigenvalues and eigenspaces and
disagree on the last N −m eigenvalues and eigenspaces. Any learning algorithm missing the last
N −m pieces of information won’t be able to distinguish these graphs. Here we will fix some m and
show that the resulting Transformer can approximately classify all graphs with N ≤ m.

Fix some linear injection M : RN×2×m → RN×k×m. Let G be a graph and U ⊂ RN×2×m be
bounded set containing all the tensor representations of graphs TG and let R be the radius of a ball
containingM(U). Consider the set C0(BN×k×m

R ,RN×k×m) of continuous functions of the closed
radius R ball inRN×k×m. Finally, denote by S : RN×k×m → RN×k the linear function taking the
sum of all values in the m dimension. The following universality result for LPE Transformers is a
direct consequence of theorem 2.

Proposition 1. For any 1 ≤ p < ∞, ε > 0 and any continuous function F : BN×k×m
R → RN×k,

there is an LPE Transformer g such that the Lp distance between M ◦ f ◦ S and g is smaller than ε.

As a corollary, we get the same kind of approximation to solutions of the graph isomorphism problem
as with the naive Transformers. Let f be a function of C0(BN×k×m

R ,RN×k×m) that maps M(TG)
to a value that is only dependent of the isomorphism class of the graph and assigns different values to
different isomorphism classes. We can further assume that f takes values that are 0 for all but one
coordinate in the k dimension. The same type of argument is possible for the edge-LPE from figure 8.

C.4 Comparison of the learning complexity of naive graph Transformers and LPE

We now argue that while the LPE Transformer and the naive graph Transformers of section C.2
can all approximate a function f solution of the graph isomorphism problem, the complexity of the
learning problem of the LPE is much lower since the spaces it has to learn are simpler.

Naive Node Transformer. First recall that the naive node Transformer learns a map f : RN2 →
RN2

. In this situation, each graph is represented by N ! different matrices which all have to be identi-
fied by the Transformer. This encoding also does not provide any high-level structural information
about the graph.

Naive Edge Transformer. The naive edge Transformer has the same difficulty since the function
its learning is RN(N−1) → RN(N−1) and the representation of each edge depend on a choice of
labeling of the vertices and the N ! possible labelings need to be identified again.

Node-LPE Transformer. In the absence of eigenvalues with multiplicity > 1, the node LPE that
learns a function RN×2×m → RN×k does not take as input a representation of the graph that
depends on the ordering of the nodes. It does, however, depend on the choice of the sign of each
of the eigenvectors so there are still 2N possible choices of graph representations that need to be
identified by the Transformer but this is a big drop in complexity compared to the previous N !. The
eigenfunctions also provide high-level structural information about the graph that can simplify the
learning task of the graph.

17

Edge-LPE Transformer. Finally, the edge LPE of appendix A uses a graph representation as input
that is also independent of the sign choice of the eigenvectors so each graph has a unique representation
(considering the absence of eigenvalues with multiplicity > 1). Again, the eigenfunctions provide
high-level structural information that is not available to the naive Transformer.

LPE Transformers for non-isospectral graphs. Isospectral graphs are graphs that have the same
set of eigenvalues despite having different eigenvectors. Here, we argue that the proposed node
LPE can approximate a solution to the graph isomorphism problem for all pairs of non-isospectral
graphs, without having to learn invariance to the sign of their eigenvectors nor their multiplicities.
By considering only the eigenvalues in the initial linear layer (assigning a weight of 0 to all φ), and
knowing that the eigenvalues are provided as inputs, the model can effectively learn to replicate the
input eigenvalues at its output, thus discriminating between all pairs of non-isospectral graphs. Hence,
the problem of learning an invariant mapping to the sign of eigenvectors and multiplicities is limited
only to non-isospectral graphs. Knowing that the ratio of isospectral graphs decreases as the number
of nodes increases (and is believed to tend to 0) [35], this is especially important for large graphs
and mitigates the problem of having to learn to identify 2N with eigenvectors with different signs.
In Figure 11, we present an example of non-isomorphic graphs that can be distinguished by their
eigenvalues but not by the 1-WL test.

Figure 11: Example of non-isomorphic non-isospectral graphs that can be distinguished by the
eigenvalues of their Laplacian matrix, but not by the 1-WL test.

18

	Introduction
	Theoretical Motivations
	Absolute and relative positional encoding with eigenfunctions
	Eigenvectors equate to sine functions over graphs
	What do eigenfunctions tell us about relative positions?
	Hearing the shape of a graph and its sub-structures

	Laplace Eigenfunctions etiquette
	Learning with Eigenfunctions

	Model Architecture
	LPE Transformer Over Nodes
	LPE Transformer Over Edges
	Main Graph Transformer
	Limitations
	Theoretical properties of the architecture

	Experimental Results
	Sparse vs. Full Attention
	Comparison to the state-of-the-art

	Conclusion
	LPE Transformer Over Edges
	Appendix - Implementation details
	Benchmarks and datasets
	Ablation studies
	SOTA Comparison study
	Computation details

	Expressivity and complexity analysis of graph Transformers
	Universality of Transformers for sequence-to-sequence approximations
	Graph Transformers approximate solutions to the graph isomorphism problem
	Expressivity of the node-LPE
	Comparison of the learning complexity of naive graph Transformers and LPE

