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A TRAINING ALGORITHM

B DERIVATION OF PRIMAL-DUAL OPTIMALITY CONDITIONS FOR DYNAMICAL OT
PROBLEM

The primal-dual analysis is a standard technique in the optimization literature such as in analyzing certain semidefinite
programs [Chen and Yang, 2021]. Recall the Benamou-Brenier fluid dynamics formulation of the static optimal transport
problem

min
(µ,v)

∫ 1

0

∫
Rd

1

2
||v(x, t)||22 µ(x, t) dx dt (20)

subject to ∂tµ+ div(µv) = 0, (21)
µ(·, 0) = µ0, µ(·, 1) = µ1. (22)

Here, equation (21) is referred to as the CE (CE), preserving the unit mass of the density flow µt = µ(·, t). We write the
Lagrangian function for any flow (µt)t∈[0,1] initializing from µ0 and terminating at µ1 as

L(µ,v, u) =

∫ 1

0

∫
Rd

[
1

2
∥v∥22µ+ (∂tµ+ div(µv))u

]
dx dt, (23)

where u := u(x, t) is the dual variable for (CE). To find the optimal solution µ∗ for the minimum kinetic energy (20), we
study the saddle point optimization problem

min
(µ,v)∈(CE)

max
u

L(µ,v, u), (24)

where the minimization over (µ,v) runs over all flows satisfying (CE) such that µ(·, 0) = µ0 and µ(·, 1) = µ1. Note that if
µ /∈ (CE), then by scaling with arbitrarily large constant, we see that

max
u

∫ 1

0

∫
Rd

(∂tµ+ div(µv))u dx dt = +∞. (25)

Thus,

min
(µ,v)∈(CE)

∫ 1

0

∫
Rd

1

2
||v||22µ dx dt = min

(µ,v)
max
u

L(µ,v, u) (26)

⩾max
u

min
(µ,v)

L(µ,v, u), (27)
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where the minimization over (µ,v) is unconstrained. Using integration-by-parts and suitable decay for vanishing boundary
as ∥x∥2 → ∞, we have

L(µ,v, u) =

∫ 1

0

∫
Rd

[
1

2
∥v∥22µ− µ∂tu− ⟨v,∇u⟩µ

]
dx dt

+

∫
Rd

[µ(·, 1)u(·, 1)− µ(·, 0)u(·, 0)] dx.

Now, we fix µ and u, and minimize L(µ,v, u) over v. The optimal velocity vector is v∗ = ∇u, and we have

max
u

min
µ
L(µ,v∗, u) =

∫ 1

0

∫
Rd

[
−
(
1

2
∥∇u∥22 + ∂tu

)
µ

]
dx dt+

∫
Rd

[u(·, 1)µ1 − u(·, 0)µ0] dx, (28)

for any flow µt satisfying the boundary conditions µ(·, 0) = µ0 and µ(·, 1) = µ1. If 1
2∥∇u∥

2
2 + ∂tu ̸= 0, then by the same

scaling argument above, we have

min
µ

∫ 1

0

∫
Rd

[
−
(
1

2
∥∇u∥22 + ∂tu

)
µ

]
dx dt = −∞ (29)

because µ is unconstrained (except for the boundary conditions). Then we deduce that

min
(µ,v)∈(CE)

∫ 1

0

∫
Rd

1

2
||v||22µ ⩾ max

u∈(HJ)

{∫
Rd

u(·, 1)µ1 −
∫
Rd

u(·, 0)µ0

}
, (30)

where u ∈ (HJ) means that u solves the HJ equation (HJ)

∂tu+
1

2
∥∇u∥22 = 0. (31)

From (30), we see that the duality gap is non-negative, and it is equal to zero if and only if (µ∗, u∗) solves the following
system of PDEs ∂tµ+ div(µ∇u) = 0, ∂tu+

1

2
∥∇u∥22 = 0,

µ(·, 0) = µ0, µ(·, 1) = µ1.
(32)

PDEs in (32) are referred to as the Karush–Kuhn–Tucker (KKT) conditions for the Wasserstein geodesic problem.

C METRIC GEOMETRY STRUCTURE OF THE WASSERSTEIN SPACE AND GEODESIC

In this section, we review some basic facts on the metric geometry properties of the Wasserstein space and geodesic. We
first discuss the general metric space (X, d), and then specialize to the Wasserstein (metric) space (Pp(Rd),Wp) for p ⩾ 1.
Furthermore, we connect to the fluid dynamic formulation of optimal transport. Most of the materials are based on the
reference books [Burage et al., 2001, Ambrosio et al., 2008, Santambrogio, 2015].

C.1 GENERAL METRIC SPACE

Definition C.1 (Absolutely continuous curve). Let (X, d) be a metric space. A curve ω : [0, 1] → X is absolutely continuous
if there is a function g ∈ L1([0, 1]) such that for all t0 < t1, we have

d(ω(t0), ω(t1)) ⩽
∫ t1

t0

g(τ) dτ. (33)

Such curves are denoted by AC(X).

Definition C.2 (Metric derivative). If ω : [0, 1] → X is a curve in a metric space (X, d), the metric derivative of ω at time t
is defined as

|ω′|(t) := lim
h→0

d(ω(t+ h), ω(t))

|h|
, (34)

if the limit exists.
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The following theorem generalizes the classical Rademacher theorem from a Euclidean space into any metric space in terms
of the metric derivative.
Theorem C.3 (Rademacher). If ω : [0, 1] → X is Lipschitz continuous, then the metric derivative |ω′|(t) exists for almost
every t ∈ [0, 1]. In addition, for any 0 ⩽ t < s ⩽ 1, we have

d(ω(t), ω(s)) ⩽
∫ s

t

|ω′|(τ) dτ. (35)

Theorem C.3 tells us that absolutely continuous curve ω has a metric derivative well-defined almost everywhere, and the
“length" of the curve ω is bounded by the integral of the metric derivative. Thus, a natural definition of the length of a curve
in a general metric space is to take the best approximation over all possible meshes.
Definition C.4 (Curve length). For a curve ω : [0, 1] → X , we define its length as

Length(ω) := sup

{
n−1∑
k=0

d(ω(tk), ω(tk+1)) : n ⩾ 1, 0 = t0 < t1 < . . . < tn = 1

}
. (36)

Note that if ω ∈ AC(X), then

d(ω(tk), ω(tk+1)) ⩽
∫ tk+1

tk

g(τ) dτ (37)

so that

Length(ω) ⩽
∫ 1

0

g(τ) dτ <∞, (38)

i.e., the curve ω is of bounded variation.
Lemma C.5. If ω ∈ AC(X), then

Length(ω) =
∫ 1

0

|ω′|(τ) dτ. (39)

Definition C.6 (Length space and geodesic space). Let ω : [0, 1] → X be a curve in (X, d).

1. The space (X, d) is a length space if

d(x, y) = inf {Length(ω) : ω(0) = x, ω(1) = y, ω ∈ AC(X)} . (40)

2. The space (X, d) is a geodesic space if

d(x, y) = min {Length(ω) : ω(0) = x, ω(1) = y, ω ∈ AC(X)} . (41)
Definition C.7 (Geodesic). Let (X, d) be a length space.

1. A curve ω : [0, 1] → X is said to be a constant-speed geodesic between ω(0) and ω(1) if

d(ω(t), ω(s)) = |t− s| · d(ω(0), ω(1)), (42)

for any t, s ∈ [0, 1].

2. If (X, d) is further a geodesic space, a curve ω : [0, 1] → X is said to be a geodesic between x0 ∈ X and x1 ∈ X if it
minimizes the length among all possible curves such that ω(0) = x0 and ω(1) = x1.

Note that in a geodesic space (X, d), a constant-speed geodesic is indeed a geodesic. In addition, we have the following
equivalent characterization of the geodesic in a geodesic space.
Lemma C.8. Let (X, d) be a geodesic space, p > 1, and ω : [0, 1] → X a curve connecting x0 and x1. Then the following
statements are equivalent.

1. ω is a constant-speed geodesic.

2. ω ∈ AC(X) such that for almost every t ∈ [0, 1], we have

|ω′|(t) = d(ω(0), ω(1)). (43)

3. ω solves

min

{∫ 1

0

|ω̃′|p dt : ω̃(0) = x0, ω̃(1) = x1

}
. (44)
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C.2 WASSERSTEIN SPACE

Since the Wasserstein space (Pp(Rd),Wp) for p ⩾ 1 is a metric space, the following definition specializes Definition C.2 to
the Wasserstein metric derivative.

Definition C.9 (Wasserstein metric derivative). Let {µt}t∈[0,1] be an absolutely continuous curve in the Wasserstein (metric)
space (Pp(Rd),Wp). Then the metric derivative at time t of the curve t 7→ µt with respect to Wp is defined as

|µ′|p(t) := lim
h→0

Wp(µt+h, µt)

|h|
. (45)

For p = 2, we write |µ′|(t) := |µ′|2(t).

In the rest of this section, we consider probability measures µt that are absolutely continuous with respect to the Lebesgue
measure on Rd and we use µt to denote the probability measure, as well as its density, when the context is clear.

Theorem C.10. Let p > 1 and assume Ω ∈ Rd is compact.

Part 1. If {µt}t∈[0,1] is an absolutely continuous curve in Wp(Ω), then for almost every t ∈ [0, 1], there is a velocity vector
field vt ∈ Lp(µt) such that

1. µt is a weak solution of the CE ∂tµt + div(µtvt) = 0 in the sense of distributions (cf. the definition in (51) below);

2. for almost every t ∈ [0, 1], we have
∥vt∥Lp(µt) ⩽ |µ′|p(t), (46)

where ∥vt∥pLp(µt)
=

∫
Ω
∥vt∥p2 dµt.

Part 2. Conversely, if {µt}t∈[0,1] are probability measures in Pp(Ω), and for each t ∈ [0, 1] we suppose vt ∈ Lp(µt) and∫ 1

0
∥vt∥Lp(µ) dt <∞ such that (µt,vt) solves the CE, then we have

1. {µt}t∈[0,1] is an absolutely continuous curve in (Pp(Rd),Wp);

2. for almost every t ∈ [0, 1],
|µ′|p(t) ⩽ ∥vt∥Lp(µt). (47)

As an immediate corollary, we have the following dynamical representation of the Wasserstein metric derivative.

Corollary C.11. If {µt}t∈[0,1] is an absolutely continuous curve in (Pp(Rd),Wp), then the velocity vector field vt given in
Part 1 of Theorem C.10 must satisfy

∥vt∥Lp(µt) = |µ′|p(t). (48)

Corollary C.11 suggests that vt can be viewed as the tangent vector field of the curve {µt}t∈[0,1] at time point t. Moreover,
Corollary C.11 suggests the following (Euclidean) gradient flow for tracking particles in Rd: let y(t) := yx(t) be the
trajectory starting from x ∈ Rd (i.e., y(0) = x) that evolves according the ordinary differential equation (ODE)

d

dt
y(t) = vt(y(t)). (49)

The dynamical system (49) defines a flow Yt : Ω → Ω of vector field vt on Ω via

Yt(x) = y(t). (50)

Then, it is straightforward to check that the pushforward measure flow µt := (Yt)♯µ0 and the chosen velocity vector field vt
in the ODE (49) is a weak solution of the CE ∂tµt + div(µtvt) = 0 in the sense that

d

dt

∫
Ω

ϕ dt =

∫
Ω

⟨∇ϕ,vt⟩dµt, (51)

for any C1 function ϕ : Ω → R with compact support.
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Theorem C.12 (Constant-speed Wasserstein geodesic). Let Ω ∈ Rd be a convex subset and µ, ν ∈ Pp(Ω) for some p > 1.
Let γ be an optimal transport plan under the cost function ∥x− y∥pp. Define

πt : Ω× Ω → Ω,

πt(x, y) = (1− t)x+ ty,

as the linear interpolation between x and y in Ω. Then, the curve µt = (πt)♯γ is a constant-speed geodesic in (Pp(Rd),Wp)
connecting µ0 = µ and µ1 = ν.

If µ has a density with respect to the Lebesgue measure on Rd, then there is an optimal transport map T from µ to ν [Brenier,
1991]. According to Theorem C.12, we obtain McCann’s interpolation [McCann, 1997] in the Wasserstein space as

µt = [(1− t)id + tT ]♯µ, (52)

which is a constant-speed geodesic in (Pp(Rd),Wp). id is the identity function in Rd.

To sum up, we collect the following facts about the geodesic structure and dynamical formulation of the OT problem. Let
p > 1, and Ω ⊂ Rd be a convex subset (either compact or have no mass escaping at infinity).

1. The metric space (Pp(Ω),Wp) is a geodesic space.

2. For µ, ν ∈ Pp(Ω), a constant-speed geodesic {µt}t∈[0,1] in (Pp(Ω),Wp) between µ and ν (i.e., µ0 = µ and µ1 = ν)
must satisfy µt ∈ AC(Pp(Ω)) and

|µ′|(t) =Wp(µ(0), µ(1)) =Wp(µ, ν) (53)

for almost every t ∈ [0, 1].

3. The above µt solves

min

{∫ 1

0

|µ̃′|p(t) dt : µ̃(0) = µ, µ̃(1) = ν, µ̃ ∈ AC(Pp(Ω))
}
. (54)

4. The above µt solves the Benamou-Brenier problem

W p
p (µ, ν) = min

{∫ 1

0

∥vt∥pLp(µ̃t)
dt : µ̃(0) = µ, µ̃(1) = ν, ∂tµ̃t + div(µ̃tvt) = 0

}
, (55)

and µt = µ(·, t) defines a constant-speed geodesic in (Pp(Ω),Wp).

D ENTROPIC REGULARIZATION

Our GeONet is compatible with entropic regularization, which is closely related to the Schrödinger bridge problem and
stochastic control [Chen et al., 2016]. Specifically, the entropic-regularized GeONet (ER-GeONet) solves the following fluid
dynamic problem:

min
(µ,v)

∫ 1

0

∫
Rd

1

2
||v(x, t)||22 µ(x, t) dx dt

subject to ∂tµ+ div(µv) + ε∆µ = 0, µ(·, 0) = µ0, µ(·, 1) = µ1.

(56)

Applying the same variational analysis as in the unregularized case ε = 0 (cf. Appendix B), we obtain the KKT conditions
for the optimization (56) as the solution to the following system of PDEs:

∂tµ+ div(µ∇u) =− ε∆µ, (57)

∂tu+
1

2
∥∇u∥22 = ε∆u, (58)

with the boundary conditions µ(·, 0) = µ0, µ(·, 1) = µ1 for ε > 0. Note that (58) is a parabolic PDE, which has a unique
smooth solution uε. The term ε∆u effectively regularizes the (dual) HJ equation in (7). In the zero-noise limit as ε ↓ 0, the
solution of the optimal entropic interpolating flow (56) converges to solution of the Benamou-Brenier problem (4) in the
sense of the method of vanishing viscosity [Mikami, 2004, Evans, 2010].
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E GRADIENT ENHANCEMENT

In practice, we may fortify the base method by adding extra residual terms of the differentiated PDEs to our loss function of
GeONet. Such gradient enhancement technique has been used to strengthen PINNs [Yu et al., 2022], which improves the
efficiency as fewer data points are needed to be sampled from U(Ω)× U(0, 1), and prediction accuracy as well.

The motivation behind gradient enhancement stems from minimizing the residual of a differentiated PDE. We turn our
attention to PDEs of the formF

(
x, t, ∂x1

u, . . . , ∂xd
u, ∂x1x1

u, . . . , ∂xdxd
u, . . . , ∂tu, λ

)
= 0 on Ω× [0, 1],

u(·, 0) = u0, u(·, 1) = u1 on Ω,
(59)

for domain Ω ⊆ Rd, parameter vector λ, and boundary conditions u0, u1. One may differentiate the PDE function F with
respect to any spatial component to achieve

∂

∂xℓ
F
(
x, t, ∂x1u, . . . , ∂xd

u, ∂x1x1u, . . . , ∂xdxd
u, . . . , ∂tu, λ

)
= 0. (60)

The differentiated PDE is additionally equal to 0, similar to what we see in a PINN setup. If we substitute a neural network
into the differentiated PDE of (60), what remains is a new residual, just as we saw with the neural network substituted into
the original PDE. Minimizing this new residual in the related loss function characterizes the gradient enhancement method.

We utilize the same loss function in (16), but we add the additional terms

LGE,cty =

d∑
ℓ=1

γℓE[||
∂

∂xℓ
(
∂

∂t
Cϕ + div(Cϕ∇Hψ)) ||2L2(Ω×(0,1))], (61)

LGE, HJ =

d∑
ℓ=1

ωℓE[||
∂

∂xℓ
(
∂

∂t
Hψ +

1

2
||∇Hψ||22) ||2L2(Ω×(0,1))], (62)

where the variables and neural networks that also appeared in (16) are the same. Here γℓ and ωℓ are positive weights. The
summation is taken in order to account for the gradient enhancement of each spatial component of x ∈ Ω.

F SPECIALIZED ARCHITECTURES

F.1 MODIFIED MULTI-LAYER PERCEPTRON

Here we outline the forward pass of the modified multi-layer perceptron used throughout the experiments as presented in
Wang et al. [2021b] Let σ denote an activation function (at least twice differentiable to allow automatic differentiation of the
networks to satisfy the PDEs), X as neural network design input, W i the weights of the neural network at index i, and bi the
bias at layer i. Here, X can refer to either branch or trunk inputs, as this architecture is used for both.

The forward pass is given by

U = σ(W 1X + b1), V = σ(W 2X + b2) (63)

H1 = σ(Wh,1X + bh,1) (64)

Zk = σ(W z,kHk + bz,k) (65)

Hk = (1− Zk−1)⊙ U + Zk−1 ⊙ U (66)

Nθ =W ℓHℓ + bℓ, (67)

where k ∈ {1, . . . , ℓ}, ⊙ is an element-wise product, and Nθ is the neural network final output, either a branch or a trunk.

F.2 FOURIER FEATURE ARCHITECTURE

We outline the Fourier feature architecture of Wang et al. [2021b]. We embed trunk input y = (x, t) in a higher-dimensional
space by taking transformations of the form

U = (cos(2πBxy), sin(2πBxy))
T (68)
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and passing them into trunk input. Alternatively, we consider the more elaborated architecture of Wang et al. [2021a],
which requires passing in x, t into distinct Fourier embeddings of the form of U , and using separate layers for each. An
element-wise product is taken before the last layer. We used this for our experiments of 4.2, but generally found the Fourier
feature architecture of passing in y = (x, t) to formulate U as effective as well.
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G HYPERPARAMETER SETTINGS AND TRAINING DETAILS

We discuss training characteristics of GeONet based on the primary experiments. An unmodified Adam optimizer was
chosen for all branch, trunk neural networks with a learning rate starting from 5e−4. All layers share the same width. We
use tanh activation for all neural networks. Coefficients α1, α2, β0, β1 were computed after examining errors. Coefficients
were selected in the range [0.05, 20]. Neural network depths refer to ℓ in each modified MLP. Training is done on a NVIDIA
T4 GPU.

Table 4: Architecture and training details in our Gaussian mixture experiments of Section 4 and Appendix H.

Hyperparameter 1D Gaussians 2D Gaussians

No. of initial conditions (µ0, µ1) 20,000 5,000
m (branch input dimension) 100 576
Branch width 150 200
Branch depth 7 7
Trunk width 100 150
Trunk depth 7 7
p (dimension of outputs) 800 800
Batch size 2,000 2,000
Final training time ∼ 2 hrs ∼ 2 hrs
Final training loss ∼ 1.5e−4 ∼ 1.8e−5
α1, α2, β0, β1 0.5, 0.25, 1, 1 0.5, 0.25, 1, 1

Table 5: Architecture and training details in our empirical Gaussians and encoded MNIST experiments of Section 4 and
Appendix H.

Hyperparameter Empirical Gaussians Encoded MNIST

No. of initial conditions (µ0, µ1) 1,000 30,000
m (branch input dimension) 625 32
Branch width 100 150
Branch depth 7 7
Trunk width 100 100
Trunk depth 5 7
p (dimension of outputs) 200 200
Batch size 1,000 1,000
Final training time ∼ 2 hrs ∼ 4 hrs
Final training loss ∼ 7.0e−4 ∼ 2.0e−2
α1, α2, β0, β1 0.5, 0.25, 1, 1 1, 1, 1, 1
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H TRAINING AND PERFORMANCE

H.1 UNIVARIATE AND BIVARIATE GAUSSIAN MIXTURE EXPERIMENTS

Performance. Our baseline results were collected by deploying GeONet on the identity geodesic in Table 2. The baseline
identity geodesic provides a benchmark for comparing and interpreting the errors across different setups. The univariate
cases were evaluated upon a 100 point mesh, and the bivariate upon a 40× 40 mesh, except in the zero-shot super-resolution
case, in which the grid is refined and previously specified. From Table 2, we can draw the following observations. The loss
boundary conditions (19) allow greater precision for t = 0, 1, which suggests that a lack of data-enforced conditions along
the inner region of the time continuum would cause greater error. Errors for predicting the univariate Gaussian trivial identity
geodesic in the intermediate t = 0.25, 0.5, 0.75 are uniformly smaller than other in-distribution setups since the former
is an easier task. In the bivariate experiment, we found that error quickly rises as variance decreases, which is equivalent
to a task of learning more complicated geodesics. We did not find lower variance drastically affects performance in the
univariate experiment, suggesting GeONet and potentially physics-informed DeepONets in general are less effective as the
dimension increases. We did not find the number of Gaussians in the mixtures drastically affected results, but naturally more
complicated geodesics induce greater error, which is to be expected. We found bivariate errors are similar to the random case
as in the identity case, suggesting there is some notion of base neural operator error, which may not exist with simpler data.

H.2 GAUSSIAN EMPIRICAL DENSITIES

Training. 3000 point cloud particles were sampled from mixtures composed of 3 Gaussians for source µ0 and target µ1.
2D histograms were constructed to turn particle data into empirical densities, with bins ranging from −7 to 7. Domain
Ω = [0, 5]× [0, 5] was discretized into a 25× 25 point domain and assigned for the histograms’ locations used as GeONet
spatial input. A batch size of 1,000 was chosen. We take p = 200, α1 = 0.5, α2 = 0.25, β0 = β1 = 1, which can be altered
to impose strength of the boundary and physics terms accordingly. We employ the Fourier feature network architecture
of Wang et al. [2021a] for trunk networks. We take matrix Bv with elements sampled in N (0, σ2

v), subsequently taking
(cos(2πBvv), sin(2πBvv))

T as input for a fully-connected network, where v is either space or time input. Our architecture
for this experiment is fully outlined in F.2. Empirically, we found low variance necessary, and we chose σ = 0.5 for both
v = x, t for both continuity and trunk branches.

Performance. In this experiment, GeONet correctly captures the translocation of mass and overall geodesic behavior. The
other methods are more suited for point clouds but yield high errors in learning the geodesic. GeONet tends to slightly
regularize the solution by smoothing them, in which GeONet has trouble learning precision that comes with particle samples.

H.3 MNIST EXPERIMENT

Training. As described in section 4, to learn the geodesic, we ensure all values within the encoded representation are
nonnegative, meaning we can shift all encoded representations by some arbitrary constant. We choose 10 for this. This
constant can be deducted in later stages to ensure the valid representation is met. We normalize the data so that the density
conditions are satisfied before GeONet input. A domain of [0, 5] was divided into an equispaced mesh of 32 points for the
encoded representation. This domain is rather arbitrary and is chosen simply for DeepONet input purposes, which can be
modified as seen fit. 30, 000 encoded pairs were chosen to train GeONet and the pre-trained autoencoder, the entirety of
MNIST. We used a batch size of 1, 000. Additional details are found in Appendix G.

Table 6: L1 error of GeONet on 50 test pairings of encoded MNIST. All values are multiplied by 10−2. Error was calculated
upon the geodesic in both the shifted and ambient/original space.

GeONet L1 error on encoded MNIST data

Test setting t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Encoded, identity 0.923± 0.213 0.830± 0.166 0.825± 0.165 0.834± 0.173 0.931± 0.215
Encoded, random 1.62± 0.333 2.14± 1.22 2.78± 1.62 2.11± 1.17 1.54± 0.282

Ambient, identity 26.7± 11.2 34.0± 6.88 35.3± 8.32 36.4± 9.77 34.0± 13.2
Ambient, random 32.1± 16.6 58.2± 15.0 68.1± 18.8 56.4± 14.3 24.7± 10.7
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Figure 8: We examine iterations of the Adam optimizer in the total and late training on a log scale. We examine late training
in order to observe oscillatory behavior between the continuity and HJ loss to see if they adversarially compete in late
training. We do not observe this pattern, and the continuity loss greatly surpasses the HJ loss in value. These graphs were
created using the encoded MNIST experiment.

Performance. GeONet performs well in this experiment. Scaling the physics-informed term by a constant of less than one
did not prove necessary in this experiment to ensure all loss terms are met to a sufficient degree. As before, boundary terms
are uniformly smaller, likely since these terms are known and included in the loss function to be minimized. The same
error metric is used as in the synthetic experiments but with normalization, making the L1 error relative. We remark OOD
generalization is omitted because the distribution of the encoded data is not known. We also remark the decoded images,
being the geodesic returned to its original state, do not directly translate to a geodesic performed upon an original pair of
images. NaN values are omitted in the error computations, which are possible in the POT solutions due to the irregularity of
the initial conditions.

Regularization. Classical geodesic algorithms require a small regularization parameter in order to be computed. This affects
the synthetic experiments trivially, but we found this regularization induces greater in the MNIST experiment. This is to
be considered when evaluating the errors, and true error is likely smaller between GeONet and the reference geodesics
computed with POT than what is displayed. This regularization acts as a form of "smoothing" of the solutions.

I GEONET ERROR FOR ADDITIONAL ERROR METRICS

Table 7: We list mean and standard deviations of error of GeONet on 50 random µ0 ̸= µ1 samples for alternative error
metrics, being L2 error and the Wasserstein-1 distance. We remark we use sliced Wasserstein distance for the 2D case, as
this metric is computationally feasible for higher dimensional cases. We perform this for random Gaussian mixture pairings.
All values are multiplied by 10−2 by those of the table.

GeONet alternative metric error for random Gaussian mixtures

Experiment t = 0 t = 0.25 t = 0.5

1D, L2 5.19± 1.74 6.91± 4.81 7.28± 5.39
1D, Wasserstein 0.352± 0.116 0.364± 0.178 0.403± 0.228

2D, L2 6.93± 0.883 7.72± 1.23 8.11± 1.30
2D, Wasserstein 0.245± 0.0329 0.264± 0.0316 0.275± 0.0447

Experiment t = 0.75 t = 1

1D, L2 6.49± 4.36 4.81± 1.58
1D, Wasserstein 0.386± 0.166 0.347± 0.101

2D, L2 7.79± 1.14 6.87± 1.05
2D, Wasserstein 0.267± 0.0338 0.246± 0.0356
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J 3D GAUSSIANS FIGURE

Figure 9: We illustrate GeONet on 3D Gaussians.
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K SAMPLE HJ GRAPHS

Figure 10: We present sample HJ equations for (a) three univariate Gaussian mixtures and (b) three bivariate Gaussian
mixtures from the primary experiments performed in Section 4. The univariate HJ samples at certain times are the vertical
cross-sections of the graphs, and the bivariate samples are given at certain times.
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