
Appendices for
Robust Imitation via Mirror Descent Inverse Reinforcement Learning

A Proofs

We denote the entire set of conditional distributions as ∆S
A, which is a vector space formed by a

collection of |S| elements of unit (|A| − 1)-simplexes: ∆A =
{
x1e1 + · · ·+ x|A|e|A|

∣∣ ∑|A|
i=1 xi =

1 and xi ≥ 0 for i ∈ A
}

. A trainable policy space is a subset of the entire conditional probability
denoted as Π:= [Πs]s∈S ⊂∆S

A. We assume that Πs is a member of a specific Banach space called
Lp space (RA, ‖·‖), where ‖·‖ is a p-norm on A. The dual space of Lp space for 1 < p <∞ is Lq

space (RA, ‖·‖∗), where ‖·‖∗ is defined as a q-norm (1/p + 1/q = 1). Here, the condition 1 < p ≤ 2
is assumed for existence and convergence properties in the dual Lq space.

We begin with the following preliminary definitions: the Lipschitz continuity and martingales.
Definition 2 (Lipschitz constants). Given two metric spaces (X, dX) and (Y, dY) where dX denotes
the metric on set X and dY is the metric on set Y , a function f : X → Y is called Lipschitz
continuous if there exists a real constant k ≥ 0 such that, for all x1 and x2 in X ,

dY
(
f(x1), f(x2)

)
≤ k · dX(x1, x2). (16)

In particular, a function f is called Lipschitz continuous if there exists a constant k ≥ 0 such that,∥∥f(x1)− f(x2)
∥∥
∗ ≤ k‖x1 − x2‖, ∀x1, x2 (17)

where norms ‖·‖ and ‖·‖∗ are endowed with spaces X and Y respectively. For the smallest L that
substitutes k, L is called the Lipschitz constant and f is called a L-Lipschitz continuous function.
Definition 3 (Discrete-time martingales). If a stochastic process {Zt}t≥1 satisfies E[|Zn|] <∞ and

1© E[Zn+1|X1, . . . , Xn] ≤ Zn, 2© E[Zn+1|X1, . . . , Xn] = Zn, 3© E[Zn+1|X1, . . . , Xn] ≥ Zn,

the stochastic process {Zt}t≥1 is called 1© a submartingale, 2© a martingale, and 3© a supermartingale,
with respect to filtration {Xt}t≥1.

The following arguments and proofs follow the results that appeared in previous literature for general
aspects [15, 16, 42, 28, 17, 30]. Our analyses extend existing theoretical results to imitation learning
and IRL; they are also highly general to cover various online methods for sequential decision
problems.

A.1 Proof of Lemma 1

Proof of Lemma 1. The conjugate operator of ψs
π satisfies the following identity (Lemma 1 of [18])

Ω∗(ψs
π) = max

π̃s∈∆A
〈π̃s, ψs

π〉A − Ω(π̃s)

= max
π̃s∈∆A

〈π̃s,∇Ω(πs)〉A −
〈
πs,∇Ω(πs)

〉
A +Ω(πs)− Ω(π̃s)

= min
π̃s∈∆A

Ω(π̃s)− Ω(πs)− 〈∇Ω(πs), π̃s − πs〉A

= min
π̃s∈∆A

DΩ

(
π̃s
∥∥πs

)
,

for every state s ∈ S . By the property of Bregman divergence and the convexity of DΩ(π̃
s‖πs) with

respect to π̃s, the optimal condition is obtained by the unique maximizing argument π̃(·|s) = π(·|s).
By taking gradient to both sides with respect to ψs

π we yield πs = ∇Ω∗(ψs
π).

If there is another π̃ ∈ ∆S
A that makes ψπ̃ = ψπ , this contradicts the property of unique maximizing

arguments for conjugates since π ∈ Π and Π ⊂ ∆S
A. Therefore, ψπ is uniquely defined for each π

and ∇Ω∗(ψs)∈Πs for all s ∈ S .
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A.2 Proof of Theorem 1

Consider the unique fixed point of π∗ as the solution of infπ∈Π E[f(π, τt)] where the expectation
indicates that we consider all outputs with respect to τt for t → ∞ i.e., limt→∞Eτ1:t[f(π, τt)].
By equating derivatives to zero, we write the condition of fixed point π∗ as ∇Ω(π∗) =
limt→∞ E[∇Ω(π̄E,t)]. This assumption is useful since this paper provides some general results,
the case of infπ∈Π E[f(π, τt)] > 0 in particular, which means that the estimates {π̄E,t}∞t=1 do not
converge to the fixed point of π∗, hence limt→∞ Eτ1:t [‖π∗ − π̄E,t‖] 6= 0. As a result, MD-based
imitation learning algorithms allow many challenging settings, such as scarcity of data or imperfect
demonstrations.

We first introduce a fundamental relationship regarding cumulative gradients in our online MD
setting.
Lemma 2. Let {πt}∞t=1, {π̄E,t}∞t=1, and {ηt}∞t=1 be policy, estimate, and step size sequences, respec-
tively. The subsequent policy πt+1 in Eq. (7) is obtained by an RL algorithm using the derivation of
ψt+1 in Eq. (7), resulting to the following equation:

πt+1( · |s) = argmin
πs∈Πs

ηtDΩ

(
πs
∥∥π̄s

E,t

)
+ (1−ηt)DΩ

(
πs
∥∥πs

t

)
∀s ∈ S. (18)

We have for t ∈ N,

ηt

(
∇Ω
(
πs
t

)
−∇Ω

(
π̄s
E,t

))
= ∇Ω

(
πs
t

)
−∇Ω

(
πs
t+1

)
∀s ∈ S. (19)

Proof of Lemma 2. Since the optimization problem is convex with respect to each πs, we equate the
derivatives at πt+1 to zero:

ηt

(
∇Ω
(
πs
t+1

)
−∇Ω

(
π̄s
E,t

))
+ (1−ηt)

(
∇Ω(πs

t+1)−∇Ω
(
πs
t

))
= 0, ∀ s ∈ S.

Then, we derive Eq. (19) as

ηt

(
∇Ω
(
πs
t+1

)
−∇Ω

(
π̄s
E,t

))
+ (1−ηt)

(
∇Ω
(
πs
t+1

)
−∇Ω

(
πs
t

))
= 0

⇔ ∇Ω
(
πs
t+1

)
− ηt∇Ω

(
π̄s
E,t

)
− (1−ηt)∇Ω

(
πs
t

)
= 0

⇔ ∇Ω
(
πs
t

)
−∇Ω

(
πs
t+1

)
= ηt

(
∇Ω
(
πs
t

)
−∇Ω

(
π̄s
E,t

))
∀ s ∈ S.

Therefore, the proof is complete.

Lemma 2 indicates that the distances between dual maps are equivalent to ηt
∥∥∇Ω(π̄s

E,t)−∇Ω(πs
t )
∥∥
∗.

Therefore, when the step size converges as limt→∞ ηt = 0, the convergence in the dual space
is induced as limt→∞

∥∥∇Ω(πs
t ) − ∇Ω(πs

t+1)
∥∥
∗ = 0; thus, the convergence of associated reward

functions for every state in Section 4 is reasonable when Ω is strongly smooth.

In the following lemmas (Lemmas 3-5), we omit the given state for simplicity since they hold for
∀s ∈ S , hence one can write distributions πa = πs

a, πb = πs
b , and πc = πs

c for a arbitrary given state
s. First, we reintroduce the three-point identity as follows.
Lemma 3 (Three-point identity). Let πa, πb, and πc be any policy distributions with a given state.
We have the following identity:〈

∇Ω(πa)−∇Ω(πb), πc−πb
〉
A
= DΩ

(
πc
∥∥πb)−DΩ

(
πc
∥∥πa)+DΩ

(
πb
∥∥πa)

Proof of Lemma 3. This can be derived using the definition of divergence as follows.

DΩ(πc‖πb)−DΩ(πc‖πa) +DΩ(πb‖πa) = Ω(πc)− Ω(πb)−
〈
∇Ω(πb), πc− πb

〉
A

− Ω(πc) + Ω(πa) +
〈
∇Ω(πa), πc− πa

〉
A

+Ω(πb)− Ω(πa)−
〈
∇Ω(πa), πb− πa

〉
A

=
〈
∇Ω(πa)−∇Ω(πb), πc− πb

〉
A
.

Therefore, the proof is complete.
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Then, we introduce two identities in Lemmas 4 and 5 that are later used to address the progress of
mirror descent updates in terms of Bregman divergences.
Lemma 4. Let πa, πb, and πc be any policy distributions with a given state. The following identity
holds.

DΩ

(
πc
∥∥πb)−DΩ

(
πc
∥∥πa) = DΩ

(
πa
∥∥πb)+ 〈∇Ω(πa)−∇Ω(πb), πc−πa

〉
A

(20)

Proof of Lemma 4. By Lemma 3, we have

DΩ

(
πc
∥∥πb)−DΩ

(
πc
∥∥πa) = −DΩ

(
πb
∥∥πa)+ 〈∇Ω

(
πa)−∇Ω(πb), πc−πb

〉
A
.

Utilizing an identity of two Bregman divergences for arbitrary (π, π̃):

DΩ(π‖π̃) +DΩ(π̃‖π) =
〈
∇Ω(π)−∇Ω(π̃), π − π̃

〉
A
, (21)

we separate πc− πb into πc− πa and πa− πb and write the rest of the derivation as follows.

DΩ

(
πc
∥∥πb)−DΩ

(
πc
∥∥πa)

= −DΩ

(
πb
∥∥πa)+ 〈∇Ω(πa)−∇Ω(πb), πa− πb

〉
A︸ ︷︷ ︸

Eq. (21)

+
〈
∇Ω(πa)−∇Ω(πb), πc− πa

〉
A

= DΩ

(
πa
∥∥πb)+ 〈∇Ω(πa)−∇Ω(πb), πc−πa

〉
A

Therefore, we achieve the desired identity.

Lemma 5. Let πa, πb, and πc be any policy distributions with a given state. The following identity
holds.

DΩ

(
πb
∥∥πa)−DΩ

(
πc
∥∥πa) = −

〈
∇Ω(πc)−∇Ω(πa), πc−πb

〉
A
+DΩ

(
πb
∥∥πc) (22)

Proof of Lemma 5. By Lemma 3, we have

DΩ

(
πb
∥∥πa)−DΩ

(
πc
∥∥πa) = −DΩ

(
πc
∥∥πb)+ 〈∇Ω(πa)−∇Ω(πb), πc−πb

〉
A
.

We separate ∇Ω(πa)−∇Ω(πb) into ∇Ω(πa)−∇Ω(πc) and ∇Ω(πc)−∇Ω(πb) and write the rest of
the derivation as follows.

DΩ

(
πb
∥∥πa)−DΩ

(
πc
∥∥πa)

= −DΩ

(
πc
∥∥πb)+ 〈∇Ω(πc)−∇Ω(πb), πc−πb

〉
A︸ ︷︷ ︸

Eq. (21)

+
〈
∇Ω(πa)−∇Ω(πc), πc−πb

〉
A

= DΩ

(
πb
∥∥πc)+ 〈∇Ω(πa)−∇Ω(πc), πc−πb

〉
A

Therefore, we achieve the desired identity.

Combining above lemmas, we show a key argument to prove Theorem 1 in the following lemma.
Lemma 6. Assume infπ∈Π E[f(π, τt)] > 0. Assume that Ω is ω-strongly convex and ∇Ω is L-
Lipschitz continuous for ω ≥ 0 and L ≥ 0. If limt→∞ Eτ1:t

[∑∞
i=0 γ

iDΩ

(
πt( · |si)

∥∥πE( · |si))] = 0
for πE ∈ Π, then {ηt}∞t=1 satisfies Eq. (9). Furthermore, if Ω is strongly smooth, then Theorem 1 (a)
holds with some constants n ∈ N and c > 0.

Proof of Lemma 6. First, we show the condition of limt→∞ ηt = 0. Assuming all states
are decomposable1, the condition limt→∞ Eτ1:t

[∑∞
i=0 γ

iDΩ

(
πt( · |si)

∥∥πE( · |si))] = 0 implies
limt→∞ Eτ1:t

[
‖πt − πE‖

]
= 0, where ‖·‖ is the matrix norm induced by the p-norm on A. Then, our

aim is to show that the gradient of the strong convex function for πt converges to ∇Ω(πE), i.e.

lim
t→∞

Eτ1:t

[∥∥∇Ω(πt)−∇Ω(πE)
∥∥
∗

]
= 0, (23)

where ‖·‖∗ is the matrix norm induced by the q-norm and ∇Ω(π) is a shorthand notation for
[∇Ω(πs

t )]s∈S . To prove this argument, we use the continuity of ∇Ω at πE; this means for any ε > 0,
there exists some 0 < δ ≤ 1 such that ‖∇Ω(π)−∇Ω(πE)‖∗ < ε whenever ‖π − πE‖ < δ.

1The decomposability condition; Definition B.1 of Fu et al. [10]
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When ‖π − πE‖ ≥ δ, we apply the L-Lipschitz continuity assumption to find∥∥∇Ω(π)−∇Ω(πE)
∥∥
∗ ≤ L‖π − πE‖, (24)

where ‖·‖∗ is a matrix norm induced by the q-norm. Combining Eq. (23) and Eq. (24), we know that

Eτ1:t

[ ∥∥∇Ω(πt)−∇Ω(πE)
∥∥
∗

]
≤ ε+ L · Eτ1:t

[
‖πt − πE‖

]
. (25)

Since limt→∞ Eτ1:t

[
‖πE − πt‖

]
= 0 ensures the existence of some n ∈ N such that for t > n, it

holds that Eτ1:t

[
‖πE − πt‖

]
< ε/L. Applying this inequality to Eq. (25), we have Eτ1:t

[ ∥∥∇Ω(πt)−
∇Ω(πE)

∥∥
∗

]
< 2ε for some t > n.

For temporal estimations, let us define the infimum of the expectation throughout the time as

` = inf
π∈∆S

A

E
[∥∥∇Ω(πt)−∇Ω(π̄E,t)

∥∥
∗

]
> 0.

From Lemma 2, we have ηt
(
∇Ω(πs

t )−∇Ω(π̄s
E,t)
)
= ∇Ω(πs

t )−∇Ω(πs
t+1) for every s. Taking the

expectations, for every state s, the following inequality holds:

ηt` ≤ ηtEτ1:t+1

[ ∥∥∇Ω(πs
t+1)−∇Ω(π̄s

E,t)
∥∥
∗

]
= Eτ1:t+1

[ ∥∥∇Ω(πs
t )−∇Ω(πs

t+1)
∥∥
∗

]
∀s ∈ S.

Hence the convergence of the point [∇Ω(πs
t )]s∈S is confirmed by taking the limit: limt→∞ ηt = 0.

Next, we show
∑∞

t=1 ηt = ∞. By the ω-strong convexity by the L-Lipschitz continuity of Ω, we can
find inequalities as〈

∇Ω(πs)−∇Ω(π̃s), πs−π̃s
〉
A ≤ L‖πs − π̃s‖2 ≤ 2L

ω
DΩ(π

s‖π̃s) ∀s ∈ S. (26)

We note that ‖πs
t+1 − π̄s

E,t‖ ≤ ‖πs
t − π̄s

E,t‖ so that there is a constant ε that satisfies E[‖πs
t+1 −

π̄s
E,t+1‖] ≥ E[‖πs

t+1 − π̄s
E,t‖] + ε. Therefore, taking expectations in Eq. (22) (and setting πa = π̄s

E,t,
πb = πs

t+1, and πc = πs
t ) from Lemma 5, for the strongly convex Ω, we can find

Eτ1:t+1

[
DΩ(π

s
t+1‖π̄s

E,t+1)
]
≥ Eτ1:t+1

[
DΩ(π

s
t+1‖π̄s

E,t)
]
+ ε′

≥ (1−aηt)Eτ1:t

[
DΩ(π

s
t ‖π̄s

E,t)
]
+ Eτ1:t+1

[
DΩ(π

s
t+1‖πs

t )
]
+ ε′ Eq. (22)

≥ (1−aηt)Eτ1:t

[
DΩ(π

s
t ‖π̄s

E,t)
]
+ ε′′ ∀s ∈ S, (27)

for some t and 0 < ε′ < ε′′ when for limt→∞ ηt = 0. The positive constant a := 2L/ω is derived by
the inequalities in Eq. (26).

Since limt→∞ ηt = 0, we can also find a constant n ∈ N such that ηt ≤ (3a)−1 for t ≥ n. Applying
the inequality 1− x > exp(−2x) for x ∈ (0, 1/3], we derive another inequality

Eτ1:t+1

[
DΩ

(
πs
t+1

∥∥π̄s
E,t+1

)]
≥ exp(−2aηt)Eτ1:t

[
DΩ

(
πs
t

∥∥π̄s
E,t

)]
, ∀ t ≥ n ∀s ∈ S. (28)

Applying this for t = T−1, . . . , n yields

Eτ1:T

[
DΩ

(
πs

T

∥∥ π̄s
E,T

)]
≥

(
T∏

t=n+1

exp
(
−2aηt

))
Eτ1:n

[
DΩ

(
πs
n

∥∥π̄s
E,n

)]
= exp

(
−2a ·

T∑
t=n+1

ηt

)
Eτ1:n

[
DΩ

(
πs
n

∥∥π̄s
E,n

)]
.

(29)

Using Eq. (29), we conclude Eτ1:n

[
DΩ(π

s
n‖π̄s

E,n)
]
> 0 for some s. Otherwise, we have that

Eτ1:n

[
DΩ(π

s
n‖π̄s

E,n)
]
= Eτ1:n+1

[
DΩ(π

s
n+1‖π̄s

E,n+1)
]
= 0 ∀s ∈ S,

which leads to Eτ1:n

[
‖πn−π̄E,n‖2

]
= Eτ1:n+1

[
‖πn+1−π̄E,n+1‖2

]
= 0, according to Eq. (28). This

implies πn = π̄E,n = πn+1 almost surely, leading to E[f(πt, τt)] = 0. Essentially, this is a contra-
diction to the previous assumption infπ∈∆S

A
E[f(π, τt)] > 0; thus, Eτ1:n+1

[
DΩ(πn+1‖π̄E,n+1)

]
> 0.

Let us assume the ideal case in which the estimation process learns the exact πE in t→ ∞. To satisfy
the limit limT→∞ Eτ1:T

[
DΩ(πT‖π̄E,T )

]
= 0 we see from Eq. (29) that

∑∞
t=1 ηt = ∞.
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Now, we show that Theorem 1 (a) holds. Since Ω is ω-strongly convex, so basically Ω∗ is (ω−1)-
strongly smooth with respect to ‖·‖∗. On the other hand, the L-Lipschitz continuity of ∇Ω implies
L-strong smoothness of Ω; thus, Ω∗ is L-strongly convex.

Since limt→∞
∥∥∇Ω(πs

t ) − ∇Ω(πs
t+1)

∥∥
∗ = 0 for ∀t ≥ n and ∀s ∈ S, the condition ηt ≤ (3a)−1

induces

Eτ1:t+1

[
DΩ(π

s
t+1‖π̄s

E,t+1)
]

≥ (1−aηt)Eτ1:t

[
D(πs

t ‖π̄s
E,t)
]
+ (2L)−1Eτ1:t+1

[∥∥∇Ω(πt)−∇Ω(πt+1)
∥∥2
∗

]
,

≥ (1−aηt)Eτ1:t

[
DΩ(π

s
t ‖π̄s

E,t)
]
+ (2L)−1η2t Eτ1:t+1

[∥∥∇Ω(πt)−∇Ω(π̄E,t)
∥∥
∗

]
. Lemma 2

Using the Cauchy-Schwarz inequality, we obtain a lower bound of the last term as

Eτ1:t

[∥∥∇Ω(πt)−∇Ω(π̄E,t)
∥∥2
∗

]
≥
{
Eτ1:t

[∥∥∇Ω(πt)−∇Ω(π̄E,t)
∥∥
∗

]}2
≥ ` 2.

Thus, we obtain the final inequality for all s ∈ S as

Eτ1:t+1

[
DΩ(π

s
t+1‖π̄s

E,t+1)
]
≥ (1− aηt)Eτ1:t

[
DΩ(π

s
t ‖π̄s

E,t)
]
+ (2L)−1(ηt`)

2, ∀ t ≥ n.

Applying this inequality from t = T ≥ n+ 1 to t = n+ 1, we achieve

Eτ1:T+1

[
DΩ(π

s
T+1‖π̄s

E,T+1)
]
≥ Eτ1:n

[
DΩ(π

s
n‖π̄s

E,n)
] T∏
t=n+1

(1− aηt)

+ (2L)−1` 2
T∑

t=n+1

η2t

T∏
k=t+1

(1− aηk)

≥ (2L)−1` 2
T∑

t=n+1

η2t

T∏
k=t+1

(1− aηk).

By the Cauchy-Schwarz inequality and our bound 0 < 1− aηk ≤ 1 for k ≥ n, we have

T∑
t=n+1

ηt

T∏
k=t+1

(1− aηk) ≤

{
T∑

t=n+1

η2t

T∏
k=t+1

(1− aηk)

}1/2

(T − n)1/2.

Hence

T∑
t=n+1

η2t

T∏
k=t+1

(1− aηk) ≥
1

a2(T − n)

(
T∑

t=n+1

aηt

T∏
k=t+1

(1− aηk)

)2

=
1

a2(T − n)

(
T∑

t=n+1

(1− (1− aηt))

T∏
k=t+1

(1− aηk)

)2

=
1

a2(T − n)

(
T∑

t=n+1

[
T∏

k=t+1

(1− aηk)−
T∏

k=t

(1− aηk)

])2

≥ 1

a2(T − n)

(
T∑

t=n+1

1−
T∏

k=t

(1− aηk)

)2

≥ 1

a2(T − n)

(
1− (1−aηn+1)

)2
=

η2n+1

T − n

Therefore, we obtain the lower bound of

Eτ1:T

[
DΩ(πT+1‖π̄E,T+1)

]
≥
η2n+1(2L)

−1`2

T − n
.
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Since the Bregman divergence is assumed to be bounded for all states, the sequence {γiDΩ(π
si
t ‖πsi

t )}
will converge as i → ∞. Applying the monotone convergence theorem, we can interchange
expectation and summation, which yields

Eτ1:T

[ ∞∑
i=0

γiDΩ

(
πT

(
·
∣∣si)∥∥∥ π̄E,T

(
·
∣∣si))] =

∞∑
i=0

Eτ1:T

[
γiDΩ

(
πT

(
·
∣∣si)∥∥π̄E,T (·|si)

)]
=

∞∑
i=0

γiEτ1:T

[
DΩ

(
πT (·|si)

∥∥π̄E,T (·|si)
)]

≥
η2n+1(2L− 2Lγ)−1`2

T − n
, ∀ T ≥ n.

This verifies Theorem 1 (a) with the constant c = η2n+1(2L− 2Lγ)−1`2.

Lastly, we show convergence to a unique fixed point of π∗ using the particular form of ηt in Eq. (9).
Lemma 7. If {ηt}∞t=1 satisfies Eq. (9), limt→∞ Eτ1:t

[∑∞
i=0 γ

iDΩ(π
s
∗‖πs

t )
]
= 0. Furthermore, if the

step size takes the form ηt =
4

t+1 , then Eτ1:T

[∑∞
i=0 γ

iDΩ

(
πsi
∗
∥∥πsi

T

)]
= O

(
1/T ).

Proof of Lemma 7. According to Lemma 4 and the fundamental identity of Bregman divergence for
the convex conjugate Ω∗, the one-step progress regarding π̄s

E,t can be written as

DΩ(π
s
∗‖πs

t+1)−DΩ(π
s
∗‖πs

t ) =
〈
∇Ω(πs

t )−∇Ω(πs
t+1), π

s
∗−πs

t

〉
A
+DΩ(π

s
t ‖πs

t+1)

= ηt
〈
∇Ω(πs

t )−∇Ω(π̄s
E,t), π

s
∗−πs

t

〉
A
+DΩ∗

(
∇Ω(πs

t+1)
∥∥∇Ω(πs

t )
)
,

(30)

for all s ∈ S . As ω-strong convexity of Ω implies the (ω−1)-strong smoothness of Ω∗, we have

DΩ∗
(
∇Ω(πs

t+1)
∥∥∇Ω(πs

t )
)
≤ 1

2ω

∥∥∇Ω(πs
t+1)−∇Ω(πs

t )
∥∥2
∗ =

η2t
2ω

∥∥∇Ω(π̄s
E,t)−∇Ω(πs

t )
∥∥2
∗ (31)

Then, we bound ‖∇Ω(π̄s
E,t)−∇Ω(πs

t )‖2∗ by 2‖∇Ω(πs
t )−∇Ω(πs

∗)‖2∗ + 2‖∇Ω(πs
∗)−∇Ω(π̄s

E,t)‖2∗,
following the work of Lei and Zhou [17]. Since ∇Ω is cocoercive with 1

L by the Lipschitz continuity
of ∇Ω, we obtain ∥∥∇Ω(πs

t )−∇Ω(πs
∗)
∥∥2
∗ ≤ L

〈
∇Ω(πs

∗)−∇Ω(πs
t ), π

s
∗ − πs

t

〉
thus, using Eq. (30), we get

DΩ(π
s
∗‖πs

t+1)−DΩ(π
s
∗‖πs

t ) ≤ ηt〈∇Ω(πs
∗)−∇Ω(π̄s

E,t), π
s
∗ − πs

t 〉

−
(
1− ηtL

ω

)
ηt〈∇Ω(πs

∗)−∇Ω(πs
t ), π

s
∗ − πs

t 〉+
η2t
ω

(
‖∇Ω(πs

∗)−∇Ω(π̄s
E,t)‖2∗

)
.

(32)

By taking expectation, it follows that there exists n ∈ N such that ηt ≤ ω
2L for t ≥ n holds

Eτ1:t+1

[
DΩ(π

s
∗‖πs

t+1)
]
≤ Eτ1:t

[
DΩ

(
πs
∗
∥∥πs

t

)
− ηt

2
DΩ

(
πs
∗
∥∥πs

t

)
+
η2t
ω

∥∥∇Ω(πs
∗)−∇Ω(π̄s

E,t)
∥∥2
∗

]
,

≤ Eτ1:t

[
DΩ

(
πs
∗
∥∥πs

t

)
− ηt

2
DΩ

(
πs
∗
∥∥πs

t

)]
+ zη2t , (33)

where z is the constant z = 1
ωE[‖∇Ω(π∗) − Ω(π̄E,t)‖2∗ ]. Let {At}∞t=1 denote a sequence of At =

sups∈S Eτ1:t

[
DΩ(π

s
∗‖πs

t )
]
. Then we have

At+1 ≤
(
1− ηt

2

)
At + zη2t , ∀t ≥ n. (34)

For a constant h > 0, we claim that At1 < h for some t1 > n′. Assume that this is not true, and we
find some t2 ≥ t1 such that At > h, ∀t ≥ t2. Since limt→∞ ηt = 0, there are some t > t3 > t2 that
ηt ≤ h

4b . However, Eq. (34) tells us that for t ≥ t3,

At+1 ≤
(
1− ηt

2

)
At + zη2t ≤ At3 −

h

4

t∑
k=t′γ

ηk → −∞ (as t→ ∞).
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This is a contradiction, which verifies At < h for t > n′. Since limt→∞ ηt = 0, we can find some
ηt that makes At monotonically decreasing. Then, we can conclude that the nonnegative sequence
{At}∞t=1 converges by iteratively applying the upper bounds.

We now prove Theorem 1 (b) under the consideration of the condition ηt = 4
t+1 . The estimate

becomes

At+1 ≤
(
1− 2

t+ 1

)
At +

16z

(t+ 1)2
, ∀t ≥ n.

It follows the recurrence relation is

t(t+ 1)At+1 ≤ (t− 1)tAt + 16z, ∀t ≥ n.

Iteratively applying this relation, we obtain the general form of inequality.

(T − 1)TAT ≤ (n− 1)nAn + 16z(T − n), ∀T ≥ n,

therefore we obtain the inequality as follows:

Eτ1:T

[
DΩ(π

s
∗‖πs

T )
]
≤

(n− 1)nEτ1:n

[
DΩ(π

s
∗‖πs

n)
]

(T − 1)T
+

16z

T
, ∀T ≥ n, ∀s ∈ S.

By applying the monotone convergence theorem, we can interchange expectation and summation,
which yields similar result to formultion from Proof of Lemma 6

Eτ1:T

[ ∞∑
i=1

γiDΩ

(
π∗
(
·
∣∣si)∥∥∥πT ( · |si)

)]
= O

(
1

T

)
.

Therefore, the proof is complete.

A.3 Proof of Theorem 2

Necessity. First, we rewrite the inequality in Eq. (27) as

Eτ1:t+1

[
DΩ

(
πs
t+1

∥∥π̄s
E,t+1

)]
≥ (1−2Lω−1ηt)Eτ1:t

[
DΩ

(
πs
t

∥∥π̄s
E,t

)]
, ∀s ∈ S. (35)

Since we assume that ηt converges to 0 from previous arguments, consider the step size sequence
0 < ηt ≤ ω

(2+κ)L for κ > 0 and t ≥ n where ∀n ∈ N. Denote a constant ã = 2+κ
2 log 2+κ

κ and
apply the elementary inequality

1− x ≥ exp
(
−ãx

)
, such that 0 < x ≤ 2

2 + κ

From Eq. (35), it can be obtained that

Eτ1:t+1

[
DΩ

(
πs
t+1

∥∥π̄s
E,t+1

)]
≥ exp

(
−2ãLω−1ηt)Eτ1:t

[
DΩ(π

s
t ‖π̄s

E,t)
]
.

Applying this inequality iteratively for t = n, . . . , T − 1 gives

Eτ1:T

[
DΩ(π

s
T‖π̄s

E,T )
]
≥ Eτ1:n

[
DΩ

(
πs
n

∥∥ π̄s
E,n

)] T−1∏
t=n

exp
(
−2ãLω−1ηt

)
= exp

{
−2ãLω−1

T−1∑
t=n

ηt

}
Eτ1:n

[
DΩ

(
πs
n

∥∥ π̄s
E,n

)]
∀s ∈ S.

(36)

From the assumption πE 6= πn, we have DΩ

(
πs
n

∥∥ π̄s
E,n

)
> 0 for some states. Therefore, by Eq. (36),

the convergence limt→∞ Eτ1:t

[
DΩ(π

s
t ‖π̄s

E,t)
]
= 0 for all states implies

∑∞
t=1 ηt = ∞.

Sufficiency. We use Eq. (34) in the proof of Lemma 7. In the optimal case, ‖∇Ω(π∗)−Ω(π̄E,t)‖∗ = 0,
so (34) takes the form (we can choose n = 1 by Eq. (33))

At+1 ≤ ηt
2
At, ∀t ∈ N, (37)
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where At = sups∈S Eτ1:t

[
DΩ(π

s
∗‖πs

t )
]

(and also At = sups∈S Eτ1:t

[
DΩ(π

s
E‖πs

t )
]

for the specific
parameterization of πE ∈ Π). Therefore, for any 0 < h < 1, there must exist some t1 ∈ N such that
At ≤ h for t ≥ t1. Otherwise, At > h for every t ≥ t2 with t2 ≥ t1, which leads to a contradiction:

At+1 ≤ At2 −
h

2

t∑
k=t1

ηk → −∞ (as t→ ∞).

Eq. (37) also tells us that the sequence {At}∞t=1 is monotonically decreasing. Hence At ≤ h for every
t ≥ t1, which proves the convergence with respect to the least upper bound of Bregman divergences
by combining with Eq. (37)

lim
t→∞

sup
s∈S

Eτ1:t

[
DΩ(π

s
∗‖πs

t )
]
= lim

t→∞
At = 0.

We now prove the second point in Theorem 2 which is under the special condition of ηt ≡ η1. It
follows from Eq. (35) that AT ≥ (1− 2Lω−1η1)

T−1A1. Hence, Eq (37) translates to

At+1 ≤ (1− η1/2)At,

from which we find AT ≤ (1− η1/2)
T−1A1 by iteration starting from t = 1. Therefore, the second

point is verified the theorem with c1 = 1− 2Lη1

ω and c2 = 1− η1

2 .

A.4 Proof of Proposition 1

The proof of Proposition 1 is based on the Doob’s forward convergence theorem.

Theorem 3 (Doob’s forward convergence theorem). Let {Xt}t∈N be a sequence of nonnegative
random variables and let {Ft}t∈N be a filtration with Ft ⊂ Ft+1 for every t ∈ N. Assume
that E

[
Xt+1|Ft

]
≤ Xt almost surely for every t ∈ N. Then the sequence {Xt} converges to a

nonnegative random variable X∞ almost surely.

We follow the proof of Lemma 7 and apply Eq. (32). Since 〈πs
∗ − πs

t ,∇Ω(πs
∗)−∇Ω(πs

t )〉 ≥ 0 for
all s ∈ S , Eq. (32) implies: there exists n ∈ N that

Eτt

[
DΩ(π

s
∗‖πs

t+1)
]
≤ DΩ

(
πs
∗
∥∥πs

t

)
+
η2t
ω
E
[∥∥∇Ω(π∗)−∇Ω(π̄E,t)

∥∥2
∗

]
, ∀ t ≥ n, ∀s ∈ S, (38)

and since the step size is scheduled as limt→∞ ηt = 0, the following equation also holds:

Eτt

[
sup
s∈S

DΩ(π
s
∗‖πs

t+1)

]
≤ sup

s∈S
DΩ

(
πs
∗
∥∥πs

t

)
+
η2t
ω
E
[∥∥∇Ω(π∗)−∇Ω(π̄E,t)

∥∥2
∗

]
, ∀ t ≥ n′, (39)

for some n′ ∈ N. Then, the condition
∑∞

t=1 η
2
t <∞ enables us to define a stochastic process {Xt}:

Xt := sup
s∈S

DΩ(π
s
∗‖πs

t+1) +
1

ω
E
[∥∥∇Ω(πs

∗ )−∇Ω(π̄s
E,t)
∥∥2
∗

] ∞∑
i=t+1

η2i .

Thus, by Eq. (39), it is straightforwardly derived that there exits n ∈ N that Eτt [Xt+1] ≤ Xt for t ≥ n.
Since Xt ≥ 0, the stochastic process {Xt}t−n+1≥1 is a submartingale (equivalently, {−Xt}t−n+1≥1

is a supermartingale). By Theorem 3, the sequence {Xt}t≥1 converges to a nonnegative random
variable X∞ almost surely. Therefore, DΩ(π

s
∗‖πs

t ) converges for every state.

According to Fatou’s lemma, and using the convergence of limt Eτ1:t

[∑∞
i=0 γ

iDΩ(π
s
∗‖πs

t )
]
= 0

proved by Lemma 7, we obtain

E

[
lim
t→∞

∞∑
i=0

γiDΩ

(
π∗
(
·
∣∣si))∥∥∥πt( · ∣∣si))] ≤ (1−γ)−1 lim inf

t→∞
Eτ1:t

[ ∞∑
i=0

γiDΩ(π
s
∗‖πs

t )

]
= 0.

Therefore, it can be concluded that the sequence of costs
{ ∞∑
i=0

γiDΩ

(
π∗(·|si)

∥∥πt(·|si))}
t∈N

con-

verges to 0 almost surely.
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B Tsallis Entropy and Associated Bregman Divergence Among Full
Covariance Multivariate Gaussian Distributions

This appendix reintroduces derivations of Bregman divergences and regularized reward functions
for tractable computation when Ω is the Tsallis entropy regularizer, which were previously proposed
by Nielsen and Nock [53] and Jeon et al. [18]. And then, we delineate a distinct parameterization
used in this paper for modeling Gaussian distribution policies equipped with full covariance matrices.

The standard form of the exponential family is represented as

exp
{〈
θ, t(x)

〉
− F (θ) + k(x)

}
. (40)

The generalized parameterization of the multi-variate Gaussian is defined as follows:

θ =

[
Σ−1µ
− 1

2Σ
−1

]
=

[
θ1
θ2

]
,

t(x) =

[
x
xxT

]
,

F (θ) = −1

4
θT1 θ

−1
2 θ1 +

1

2
ln|−πθ−1

2 | = 1

2
µTΣ−1µ+

1

2
ln(2π)d|Σ|,

k(x) = 0,

where we can analytically recover the Gaussian distribution [53]

exp
{〈
θ, t(x)

〉
− F (θ) + k(x)

}
= exp

{
µTΣ−1x− 1

2
tr
(
Σ−1xxT

)
− 1

2
µTΣ−1µ+

1

2
ln(2π)d|Σ|

}
=

1

(2π)d/2|Σ|1/2
exp

{
µTΣ−1x− 1

2
xTΣ−1x− 1

2
µTΣ−1µ

}
=

1

(2π)d/2|Σ|1/2
exp

{
1

2
(x− µ)TΣ−1(x− µ)

}
.

(41)

For two distributions π and π̂ with k(x) = 0, Nielsen and Nock [53] proposed the function I(·):

I(π, π̂;α, β) =

∫
π(x)απ̂(x)β dx = exp

{
F
(
αθ + βθ̂

)
− αF (θ)− βF (θ̂)

}
where the detailed derivation is as follows:∫

π(x)απ̂(x)β dx

=

∫
exp
{
α
〈
θ, t(x)

〉
− αF (θ) + β

〈
θ̂, t(x)

〉
− βF (θ̂)

}
dx

=

∫
exp
{〈
αθ + βθ̂, t(x)

〉
− F

(
αθ + βθ̂

)}
exp
{
F
(
αθ + βθ̂

)
− αF (θ)− βF (θ̂)

}
dx

= exp
{
F
(
αθ + βθ̂

)
− αF (θ)− βF (θ̂)

}∫
exp
{〈
αθ + βθ̂, t(x)

〉
− F

(
αθ + βθ̂

)}
dx

= exp
{
F
(
αθ + βθ̂

)
− αF (θ)− βF (θ̂)

}
.

B.1 Tsallis entropy of full covariance Gaussian distributions

For ϕ(x; q) = 1
q−1 (x

q−1 − 1), the Tsallis entropy can be written as

Tq(π) := −Ex∼πϕ(x; q) =

∫
π(x)

1− π(x)q−1

q − 1
dx

=
1−

∫
π(x)q dx

q − 1
=

1

q − 1

(
1− I(π, π; q, 0)

)
=

1− exp
(
F (qθ)− qF (θ)

)
q − 1

.
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If π is a multivariate Gaussian distribution, we have

F (qθ) =
q

2
µTΣ−1µ+

1

2
ln(2π)d|Σ| − 1

2
ln qd.

Since a covariance matrix is a symmetric positive semi-definite matrix, the LDL decomposition
(a variant of Cholesky decomposition) can be applied, which separates the covariance matrix into
Σ = Ldiag{σ2

1 , . . . , σ
2
d}LT where L denotes a unit lower triangular matrix and diag{σ2

1 , . . . , σ
2
d}

denotes a diagonal matrix with positive entries. Then we have

F (qθ)− qF (θ) = (1− q)

{
d

2
ln 2π +

1

2
ln|Σ| − d ln q

2(1− q)

}
= (1− q)

{
d

2
ln 2π +

1

2
ln

d∏
i=1

σ2
i −

d ln q

2(1− q)

}

= (1− q)

d∑
i=1

{
ln 2π

2
+ lnσi −

ln q

2(1− q)

}
.

B.2 Tractable Form of ψπ

For separable Ω, ψπ is written as [18]

ψπ(s, a) = −f ′(s, a) + Ea∼π[f
′(π(a|s))− ϕ(a|s)]

where ϕ(x) = k
q−1 (1− xq−1) and accordingly f(x) = xϕ(x). For the gradient of f(·), we have

f ′(x) =
k

q − 1
(1− qxq−1)

=
k

q − 1
(q − qxq−1 − (q − 1))

=
qk

q − 1
(1− xq−1)− k

= qϕ(x)− k.

Taking the expectation yields Tsallis entropy as follows.

Ex∼π

[
−f ′(x;π) + ϕ(x)

]
= Ex∼π

[
k − qϕ(x) + ϕ(x)

]
= (1− q)T k

q (π) + k.

For a multivariate Gaussian distribution π, the tractable form of Ex∼π

[
−f ′(x)+ϕ(x)

]
can be derived

by using that of Tsallis entropy T k
q (π) of π. Thus ψπ can be rewritten as

ψπ(s, a) = qϕ(s) + (q − 1)T k
q (π)

In the special case of q = 1 and k = 1, we have ψπ(s, a) = log π(a|s).

B.3 Bregman Divergence with Tsallis Entropy Regularization

We consider the following form of the Bregman divergence:∫
π(x)

{
f ′
(
π̂(x)

)
− ω

(
π(x)

)}
dx−

∫
π̂(x)

{
f ′
(
π̂(x)

)
− ω

(
π̂(x)

)}
dx

For ω(x) = k
q−1 (1− xq−1), f ′(x) = k

q−1 (1− qxq−1) = qω(x)− k, and k = 1, the above form is
equal to ∫

π(x)

[
1− qπ̂(x)q−1

q − 1

]
dx− Tq(π)− (q − 1)Tq(π̂) + 1

=
1

q − 1
− q

q − 1

∫
π(x)π̂(x)q−1 dx− Tq(π)− (q − 1)Tq(π̂) + 1

=
q

q − 1
− q

q − 1

∫
π(x)π̂(x)q−1 dx− Tq(π)− (q − 1)Tq(π̂).
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Let us define two multivariate Gaussian distributions as follows:
π(x) = N (x;µ,Σ), µ = [µ1, · · · , µd]

T,Σ = Ldiag(σ2
1 , · · · , σ2

d)L
T,

π̂(x) = N (x; µ̂, Σ̂), µ̂ = [µ̂1, · · · , µ̂d]
T, Σ̂ = L̂diag(σ̂2

1 , · · · , σ2
d)L̂

T,

where L and L̂ denote unit lower triangular matrices. We have∫
π(x)π̂(x)q−1 dx = I(π, π̂; 1, q − 1) = exp

{
F (θ′)− F (θ)− (q − 1)F (θ̂)

}
,

where

θ =

[
Σ−1µ
− 1

2Σ
−1

]
θ̂ =

[
Σ̂−1µ

− 1
2 Σ̂

−1

]
θ′ = θ + (q − 1)θ̂ =

[
Σ−1µ+ (q − 1)Σ̂−1µ

− 1
2 (Σ

−1 + (q − 1)Σ̂−1)

]
=

[
θ′1
θ′2

]
and

F (θ) =
1

2
µTΣ−1µ+

1

2
ln(2π)d|Σ| = 1

2
(µ)TΣ−1µ+

d∑
i=1

ln 2π

2
+ lnσi,

F (θ̂) =
1

2
µ̂TΣ̂−1µ̂+

1

2
ln(2π)d|Σ̂| = 1

2
(µ̂)TΣ̂−1µ̂+

d∑
i=1

ln 2π

2
+ ln σ̂i,

F
(
θ + (q − 1)θ̂

)
= −1

4
(θ′1)

T(θ′2)
−1(θ′1) +

1

2
ln|−π(θ′2)−1|

B.4 Parameterization of the full covariance matrix using the LDL decomposition

Computing the Bregman divergence for multi-variate Gaussian distributions is challenging since the
derivations involve inverses, determinants, and multiplications regarding Σ. Previous approaches
did not address this issue and typically enforced Σ to be a diagonal matrix with positive entries.
Motivated by Pourahmadi [54], we propose to mitigate the computations regarding a covariance
matrix using the LDL decomposition Σ = Ldiag{σ2

1 , . . . , σ
2
d}LT at the parameterization level. It

enables us to implement relatively simple and numerically safe computations such as

Σ−1 = L−1 diag(1/σ)(L−1)T, (42)

ln|Σ| = 2

d∑
i=1

lnσi. (43)

where L is a unit lower triangular matrix. Finding an inverse matrix of a unit triangular matrix
can be computed by O(d2) where the output is always a unit triangular matrix. Using the positive
definiteness of Σ, the parameterization based on LDL decomposition allows a number of efficient
computations for dealing with covariance matrices in practice while preserving the symmetry and
the positive semi-definite matrix of Σ on the parameterization level. We utilized these findings on
implementing the full covariance Gaussian policies and regularized reward functions.

C Implementation Details

C.1 Normalizing IRL rewards

Unnormalized rewards of the IRL algorithm often mislead the agent to take unnecessary awareness of
termination in finite-horizon MDPs [12]. For this point, IRL algorithms need to remove the difference
between regarding steps depending on the MDP’s time. Doob’s optimal stopping theorem formally
states that the expected value of a martingale at a stopping time is equal to its initial expectation.
Assume a martingale makes the entire procedure a fair game on average, which means nothing can be
gained by stopping the play.
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Theorem 4 (Doob’s optimal stopping theorem). Let a process {Xt}∞t=1 be a martingale and τ be a
stopping time with respect to filtration {Ft}t≥1. Assume that one of the conditions holds:
(a) τ is almost surely bounded, i.e., there exists a constant c ∈ N such that τ ≤ c.
(b) τ has finite expectation and the conditional expectations of the absolute value of the martingale

increments almost surely bounded, more precisely, E[τ ] <∞ and there exists a constant c such
that E

[
|Xt+1 −Xt|

∣∣Ft

]
≤ c almost surely on the event {τ > t} for all t ≥ 0.

(c) There exists a constant c such that |Xmin{t,τ}| ≤ c almost surely for all t ≥ 0. Then Xτ is an
almost surely well-defined random variable and E[Xτ ] = E[X0].

Then X∞ is integrable and E[X∞] = E[X0]

Doob’s optimal stopping theorem states one of the necessary conditions of IRL reward of normalizing
the reward measures and making them a martingale even for finite-horizon benchmarks. In addition to
the analyses of [10, 18] regarding reward shaping and normalization, mean-zero rewards for training
agents have the additional property of preventing the termination awareness, as stated by the optimal
stopping theorem. Therefore, we suggest normalizing with the moving mean of intermediate values
of regularized rewards and updating the RL algorithm with mean-subtracted rewards.

C.2 Transformation between πφ and ψφ

In general, the regularized reward operation ΨΩ(Π) (as well as the Bregman divergence) is intractable
to be computed. However, some tractable computation methods have been discovered for specific Ω
if the policy is a specific parametric model (e.g., exponential families), thanks to the aforementioned
studies. In Section 6, the underlying concept in Eq. (14) is that the bidirectional transformation
between πφ and ψφ implicitly occurs via its shared network parameters φ without extra computation
costs. For example, in our implementation, both πφ and ψφ are analytically drawn in closed-form
expressions using the shared parameter φ by the following methods, respectively.

Discrete policies. Let the agent policy for a state s ∈ S be defined as πφ(a|s) = p(a) for a discrete
probability distribution on the action space, typically parameterized by a softmax distribution. Since
the cardinality of action space is finite in this case, we can directly compute each output according to
Definition 1, i.e., ψφ(s, a) = Ω(p) +∇pΩ(p)−

∑
a∈A.

Continuous policies with the Shannon regularizer. For both discrete and continuous policies,
the following equation holds: ψφ(s, a) = log πφ(a|s) (pp. 4, Jeon et al. [18]). For multivariate
Gaussians, we can analytically compute the log-likelihood. As stated in Appendix B.4, we applied
the LDL decomposition on the covariance matrix Σ, which is a variant of Cholesky decomposition
that ensures invertibility and positive-definiteness of the covariance matrix. In our experiments, this
particular parameterization usually had significantly low numerical errors, thanks to the TensorFlow
linear algebra libraries specialized for variants of the LU decomposition. See the work done by
Pourahmadi [54] for more details for the parameterization.

Continuous policy with the Tsallis regularizer. Computing the operator ΨΩ for an arbitrary
continuous policy is usually intractable when Ω is a Tsallis entropic regularizer except when the
policy is constrained to be specific parametric models. In this work, we assumed the Gaussian policy,
and the analytic form of ΨΩ(Π) was initially discovered by Nielsen and Nock [53]. The entire portion
of Appendix B is dedicated to derivations of ψφ when Ω is a Tsallis entropic regularizer.

C.3 Network architectures

For all networks, we used 2-layer MLP with 100 hidden units. We considered the reward model with
two separate neural networks (ψφ, dξ) for the proposed reward function for λ ∈ R+:

rφ(s, a) = ψλ
φ(s, a) = λψφ(s, a) + dξ(s),

Motivated by RAIRL-DBM, we considered the reward models in Fig. 10. The model outputs reward
for proximal updates trained by mirror descent and state-only discriminator network. Discriminating
state visitation by dξ(·) is required because the reward function needs to consider every state (es-
pecially the state that cannot be visited by πE) until DKL(ρπ‖ρπE ) ≈ 0. Fig. 10 (a) shows logits of
the softmax distribution involved when calculating rewards when the action space is discrete. For
continuous control (Fig. 10 (b)), the architecture is similar, where the mean and covariance are used
to compute a reward for a particular action.
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Figure 10: Schematic illustrations of MD-AIRL reward architectures for discrete (left) and continuous
control (right)

C.4 Details on imitation learning data

Figure 11: Visualization of the multigoal
environment and expert trajectories.

The multigoal environment. Let the 2D coordinate de-
note the position of a point mass on the environment.
In the multigoal environment, the agent, the point mass,
is initially located according to the normal distribution
N (0, (0.1)2I). The four goals are located at (6, 0),
(−6, 0), (0, 6), and (0,−6), where the agent can move
a maximum of 1 unit per time step for each coordinate.
The ground-truth reward is given by the difference between
successive values of a Gaussian mixture depicted as the
contour plot in Fig. 11.

Collecting expert demonstrations. For the multigoal environment and as well as MuJoCo bench-
marks, we trained an expert policy using the SAC algorithm [55] and the demonstration data of
IRL were collected from executing the trained RL expert. Only for the multigoal environment, the
trajectories are post-processed to precisely capture optimal behavior (reaching each goal evenly).
That is, we set the ratio of trajectories reaching each goal to exactly 25%.

C.5 Modeling policy with full covariance Gaussian distributions

We used the full covariance Gaussian distribution in this experiment (as well as the toy experiment in
Fig. 2). Note that the covariance matrix is positive-definite and symmetric. To achieve numerically
stable computation, we applied LDL decomposition in Appendix B.4 to model covariance matrix
using unit lower- and upper-triangle matrices, and a diagonal matrix. As a result, the policy network
outputs a vector [µ(s);σ(s); l(s)]T for s ∈ S where the additional vector l(s) denotes d(d−1)

2 entries
of unit lower triangular matrix. Denote L(s) as a unit lower triangular matrix from l(s). For example,
the covariance matrix can be reconstructed by

Σ(s) = L(s)[diag(σ(s))]L(s)T.

In this case, the action samples can be efficiently calculated by

a = µ(s) +L(s)(σ(s) · z) z ∼ N (0, I) (44)

Computing inverses, determinants and multiplications with unit triangular matrices and triangular and
diagonal matrices can be efficiently performed by numerical libraries, where we used the accelerated
linear algebra library from TensorFlow [56]. Therefore, we can efficiently model the Bregman
divergence and reward using neural networks as provided in Appendix B. We clipped the standard
deviation as σi(s) ∈ [ln 0.01, ln 2] using tanh for the stability. In MuJoCo experiments, instead of
directly using squashed policies proposed in SAC [50], we assumed the application of tanh as a
part of the environment (known as hyperbolized environments of RAIRL [18]). Specifically, after
an action a is sampled from the policies, we passed tanh(a/1.01) ∗ 1.01 to the environment. Then,
we additionally clipped the hyperbolized actions to 1, if the given environment is not tolerant to the
excessive values of action.
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C.6 Hyperparameters

Table 4: The bandit environments.
Parameter Value

Learning rate (policy) 1 · 10−3

Learning rate (reward) 1 · 10−3

η1 2.0
ηT 0.5
λ 1
Discount factor (γ) 0.0
Batch size 16
Steps per update 50
Total steps 300,000

Table 5: The multigoal environment.
Parameter Value

Learning rate (policy) 5 · 10−4

Learning rate (reward) 5 · 10−4

Replay size 10,000
η1 1.0
ηT 0.1
λ 1
Discount factor (γ) 0.5
Batch size 512
Steps per update 50
Total steps 300,000

Table 6: The MuJoCo environments.
Parameter Hopper-v3 Walker2d-v3 HalfCheetah-v3 Ant-v3

Learning rate (policy) 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−4

Learning rate (reward) 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−4

Replay size 500,000 500,000 500,000 500,000
η1 1.0 1.0 1.0 1.0
ηT 0.1 0.1 0.1 0.05
λ 0.01 0.01 0.01 0.001
Discount factor (γ) 0.99 0.99 0.99 0.99
Batch size 256 256 256 256
Steps per update 1,000 1,000 1,000 1,000
Initial exploration 10,000 10,000 10,000 10,000
Total steps 1,000,000 2,000,000 2,000,000 2,000,000

D Supplementary Experimental Results

Guessing the optimal choice of scheduling ηt for a short period of time is often challenging. Tab. 7
provides extended results of the experiments depicted in Fig. 2. The table contains the performance
of imitation learning varies by series of {η}100t=1 controlled by two hyperparameters α1 and αT . These
results substantially helped our hyperparameter choices of step sizes in the learning of MD-AIRL
reward functions in Section 7.

Table 7: Bregman divergences DΩ(πt‖πE) after the final steps (T = 100) with different step size
scheduling (10 trials with different seeds).

(η1, ηT ) Shannon (q = 1) Tsallis (q = 1.1) Tsallis (q = 1.5) Tsallis (q = 2)

(2, 2) - 1.19502± 0.64091 0.33996± 0.26144 0.68528± 0.46490
(1, 1) 0.08601± 0.07951 0.15432± 0.25206 0.22232± 0.31760 0.11193± 0.16801

(0.5, 0.5) 0.06707± 0.06042 0.07629± 0.06931 0.03801± 0.04611 0.06056± 0.05854
(0.2, 0.2) 0.01051± 0.00920 0.03221± 0.03239 1.21205± 0.00011 0.01805± 0.01587

(10, 1) 0.09861± 0.09546 - 1.09783± 0.53399 0.65887± 0.59846
(1, 0.1) 0.00706± 0.00863 0.00933± 0.01089 0.01660± 0.01152 0.02141± 0.00899
(1, 0.01) 0.01500± 0.01510 0.01109± 0.01405 0.02075± 0.02099 0.03348± 0.01901

The results indicate that scheduling ηt with a harmonic progression η1 = 1 and ηT = 0.1 shows
the overall best results in this experiment. From these results and our theoretical arguments, MD is
recommended to gradually lower ηt, but the rate of change has to be carefully considered, especially
when T is not significant. Thus, there are suitable scheduling ways of the step size ηt in practice,
depending on Ω and T . As a rule of thumb, we recommend setting the initial step size close to 1 and
scheduling to ηT ≈ 0 when there is a reasonable amount of time for training.
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