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Abstract

Continual learning (CL) aims to train deep neural networks (DNNs) efficiently1

on streaming data while limiting the forgetting caused by new tasks. However,2

learning transferable knowledge with less interference between tasks is difficult,3

and real-world deployment of CL models is limited by their inability to measure4

predictive uncertainties. To address these issues, we propose handling CL tasks5

with neural processes (NPs), a class of meta-learners that encode different tasks6

into probabilistic distributions over functions all while providing reliable uncer-7

tainty estimates. Specifically, we propose an NP-based CL approach (NPCL) with8

task-specific modules arranged in a hierarchical latent variable model. We tailor9

regularizers on the learned latent distributions to alleviate forgetting. We then10

use uncertainty estimation capabilities of NPCL to handle the fundamental CL11

challenge of task head inference. Our experiments show that NPCL outperforms12

previous CL approaches. We validate the effectiveness of uncertainty estimation in13

NPCL for identifying novel data and evaluating instance-level model confidence.14

1 Introduction15

Continual learning (CL) aims to help deep neural networks (DNNs) learn from a stream of non-16

stationary tasks by retaining the previously acquired knowledge [48, 32]. To achieve this, CL agents17

target alleviating the catastrophic forgetting issue with restricted computational and memory costs18

[37]. This requires balancing the plasticity for new knowledge with the stability for old [33].19

To avoid forgetting in CL, experience replay (ER) methods [27, 6] are one effective way to train DNNs20

on a memory buffer with a subset of the past tasks’ experiences. Other than the ER methods, many21

regularization-based approaches have also been proposed to penalize the forgetting on the DNNs’22

parametric [27] or representation spaces [5, 4]. However, these may still suffer from interference due23

to the regularization on the entire parameter space [7]. To address this, parameter isolation methods24

[47, 30] define task-specific training components but are usually confined to task incremental CL25

setups [42]. It is thus challenging for CL agents to maintain transferable and shareable knowledge.26

Furthermore, a hurdle to the real-world deployment of CL agents is their inability to measure27

predictive uncertainties. This, like other autonomous learning agents, keeps them from safety critical28

applications [28].29

To tackle the above issues, we propose to explore CL models using neural processes (NPs) [12, 13], a30

class of meta-learners that model tasks as data generating functions from a stochastic process. NPs31

learn a prior over functions by marginalizing over a set of data points, or context, thus enabling32

rapid adaptation to new observations through inference on functions. Additionally, their probabilistic33

nature endows them with reliable uncertainty quantification capabilities [13, 24]. Our motivations to34

explore NPs for CL are thus two-fold. First, NPs exploit Bayes’ theorem which naturally enables35

CL through sequential posterior construction. Namely, NPs perform inference over the function36
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space by learning context-based priors which are updated to posteriors upon observing (additional)37

targets. Second, NPs meta-learn input correlations through a latent variable. For CL, this could38

be the key to meta-learn knowledge transfer across correlated tasks. However, NPs cannot directly39

handle CL tasks given: (a) the reliance on a single global latent leads to suboptimal modeling40

of complex CL signals where multiple correlated tasks could occur simultaneously, (b) NPs still41

need to handle the forgetting of past task correlations arising from the non-static data stream.42

Figure 1: Neural Processes for Con-
tinual Learning: each training step in-
volves minimizing the distance D be-
tween the context-based prior and the
target-based posterior, alongside reg-
ularizing the task-specific and global
distributions towards their old forms.

43

To address the above desiderata, we propose Neural Pro-44

cesses for Continual Learning (NPCL), a hierarchical latent45

variable model with a global latent to capture inter-task cor-46

relation and task-specific latents for finer knowledge. Fig.47

1 shows NPCL exploiting functional correlation among cur-48

rent and past task training samples of ER. The drift of global49

and past task-specific distributions away from their original50

forms serve as the major aspect of forgetting in NPCL. We51

thus propose to regularize these towards their old forms52

and show the merits of it over typical parameter-based reg-53

ularization. We then leverage the uncertainty encoded by54

NPCL for the aforesaid CL challenge of task head inference.55

To this end, we propose using entropy as an uncertainty56

quantification metric (UQM). NPCL outperforms previous57

probabilistic CL models and delivers better or compara-58

ble results than state-of-the-art deterministic CL methods,59

which usually have an edge over their probabilistic counter-60

parts in terms of accuracy. To study the further usages of61

NPCL’s uncertainty estimation, we show its out-of-the-box readiness for novel data detection and62

instance-level confidence evaluation [16]. Lastly, we list the key limitations of NPCL as an attempt63

to lay further solid directions for uncertainty-aware CL.64

2 Related Work65

Continual Learning (CL). CL methods address catastrophic forgetting through three major ap-66

proaches: (a) Regularization-based methods penalize changes in a model’s important weights for67

previous tasks; e.g., Elastic Weight Consolidation (EWC) [27], Synaptic Intelligence (SI) [48], etc.68

(b) Parameter Isolation-based methods partition the network’s parameters to specialize on individual69

tasks; e.g., Yan et al. [46] using variational Bayesian sparsity priors to reserve model capacity for70

future tasks, Douillard et al. [8] learning task-specific tokens for Transformers, etc. (c) Replay-based71

methods use an episodic memory to preserve a fraction of the past tasks’ experience, and use these to72

prevent forgetting while learning on new tasks; e.g., experience replay (ER) [6] storing past inputs,73

and dark experience replay (DER) [4] storing past logits. Our method uses (a) via regularization of74

distributions, (b) via task-specific latent heads, and (c) via replay of past task inputs and distributions.75

Neural Processes (NPs). NPs were introduced to meta-learn a family of data-generating functions76

through their deterministic [12] and / or latent summaries [13]. Attentive NPs (ANPs) [24] replaced77

the averaging operation in NPs with a dot-product attention [43] to enhance their expressivity. (A)NPs78

rely on a global latent that limits their ability to model observations from multiple functions. Recent79

works address this through local latents that model fine-grained correlation among a subset of the80

observations [45]. In particular, our work is inspired by multi-task processes (MTPs) [23] that model81

multiple tasks owing to the hierarchy of task-specific latents conditioned on a global latent. However,82

MTPs have more relaxed constraints than CL because: (a) MTPs are not trained sequentially on tasks83

and are thus free of forgetting; (b) at test time, MTPs assume each input to be mapped to all tasks and84

thus bypass the issue of task head inference pervading class-incremental learning.85

Besides, the added complexity of variational inference has limited NP applications to mostly toy86

regression tasks [22]. The potential of NPs for large-scale classification tasks thus remains largely87

unexplored, if not untouched. Wang et al. [44], for instance, leverage the predictive uncertainties of88

NPs to decide on pseudolabels for unlabeled data in semi-supervised classification. We, therefore, use89

NPs for CL because of a number of their intrinsic properties including principled Bayesian learning,90

uncertainty estimation, and easy integration with preexisting CL methods like ER.91
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3 Preliminaries: Neural Processes92

NPs [12, 13] meta-learn a task t as the mapping F t
∗ : Xt → Y t. F t

∗ generates data {(xt, yt)} =93

(Xt, Y t) ∼ Dt constituting of: (a) a context set |Ct| = m that offers a prior, and (b) a target set94

|T t| = m+ n that contains additional samples to compute the posterior over the full observations.95

NPs learn the Gaussian priors and posteriors using a neural network F t
[ϕ;θ] ≈ F t

∗ , where ϕ and θ96

parameterize an encoder q and a decoder p, respectively. This involves deriving a global variable zG97

to estimate the prior p(zG|Ct;ϕ), and then maximizing the marginal likelihood p(Y t
T |Ct, Xt

T ; θ):98

p(Y t
T |Xt

T , Ct) =

∫
p(Y t

T |Xt
T , z

G)p(zG|Ct)dzG, (1)

where p(Y t
T |Xt

T , z
G) =

∏m+n
i=1 p(yti |xti, zG) is the generative likelihood. In a CL setup, memorizing99

the task prior p(zG|Ct;ϕ) can help NPs avoid forgetting the t-th task. Our aim behind enabling NP100

for CL is to seek a trade-off to preserve such task priors while sharing the parameters among tasks.101

4 Continual Learning with Neural Processes102

A CL setup considers Dt from 0 ≤ t ≤ T − 1 sequentially arriving tasks. Using cross-entropy (CE)103

as the classification loss l, the CL objective for the task t involves minimizing:104

Lt
CE = E(x,y)∼Dt l(F[ϕ;θ](x), y) (2)

on all [0, t] seen tasks. Achieving Eq. (2) is challenging in real-world scenarios where the previous105

datasets can be unavailable due to constraints on privacy, storage, etc. To bypass this, several CL106

approaches employ experience replay (ER) where a small episodic memory M is updated periodically107

to store and revisit minibatches of past experiences (xt, yt) ∼ M for a task t [6, 32]. In this work,108

we rely on reservoir sampling [6] for a task boundary-agnostic updating of M .109

Jointly optimizing parameters on Dt and M has several drawbacks [32, 4]. From a network capacity110

view, exhausting the parameter space early makes interference from the latter tasks more likely. On a111

generative stand, the deterministic mapping F t limits capturing the randomness behind the real-world112

data. Owing to these, we next propose extending Eq. (2) with Eq. (1) to arrive at a CL model that:113

(a) allocates minimal parameters to learn robust per-task and global priors, and (b) uses generative114

factors to meet data-driven challenges such as deducing the right parameters for inference.115

4.1 Neural Processes for Continual Learning116

We begin with a direct extension of the NP formulation to CL. In an ER setup, where the context and117

target could be from t tasks, Eq. (1) can be extended to derive the joint posterior for NPs [13] as:118

p(Y 0:t
T |C0:t, X0:t

T ) =

∫
p(Y 0:t

T |X0:t
T , zG)p(zG|C0:t)dzG, (3)

where zG models the joint distribution F 0:t
∗ of CL tasks and is an enabler of the knowledge transfer119

[32] between these (see App. A.3 for ELBO). Eq. (3) still poses two challenges. First, it needs the120

labeled context C for inferring predictions, which is impossible in the CL setups where test data are121

assumed to be unlabeled. To overcome this, we turn to using the memory M offered by the ER-based122

setups as context during inference. Second, jointly modeling F 0:t
∗ ignores the dynamics of per-task123

stochasticities, and is still prone to the bottlenecks of Eq. (2). Addressing the latter, we next consider124

redefining Eq. (3).125

4.2 NPs with Hierarchical Task-specific Priors for CL126

To learn informative task priors with knowledge transfer, we presume two solid directions. First,127

inducing the knowledge transfer implies that we preserve the global latent zG. Second, the task priors128

could be captured better if modeled explicitly. We thus extend Eq. (3) with task-specific latents129

zt = (z0, .., zt). As a result, our posterior is a two-step hierarchical latent variable model (Fig. 2)130

where the global and the per-task latents model the inter and intra-task correlations, respectively:131

p(Y 0:t
T |X0:t

T , C0:t) =

∫ ∫ [ T−1∏
t=0

p(Y t
T |Xt

T , z
t)p(zt|zG, Ct)

]
p(zG|C0:t)dz0:tdzG, (4)
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Figure 2: NPCL architecture: the decoding mechanism differs during training and inference.

where the entire context C0:t is first encoded into zG and then conditioned on zG, the task-specific132

context Ct := (C0, .., Ct) are encoded into their respective latents. We refer to Eq. (4) as NP for CL133

(NPCL). NPCL generalizes to the MTP [23] when the input labels span the entire output spaces (see134

section 2). Next, we detail the neural network architecture for NPCL.135

4.3 NPCL Architecture136

Given the input images xi ∈ {C, T }, we first pass these to a feature extractor f . With a slight137

abuse of notation, we denote the features as xi : xi ∈ R|f | from here onward. xi concatenated138

with the one-hot encoded labels [xi; yi] is fed to the NPCL encoder with a deterministic and a latent139

path, and then to the decoder. All NPCL layers use multi-layer perceptrons (MLPs) projections, i.e.,140

MLP(x) : R|f | → R|o| where, o is a hyperparameter. We denote a normal distribution with a mean141

µ and a variance σ2 by N (µ, σ2); the global and the task-specific distributions are N (µG, σ
2
G) and142

N (µt, σ
2
t ). Lastly, by attention, we refer to the multi-head dot-product operations [43].143

Latent Encoder. The latent path comprises of the projection Φlat
i = MLP([xi; yi]) followed by144

two attention operations. First, per-task projections form the keys, values and queries to taskwise145

self-attention layers SAt
lat that produce order-invariant encodings sti over the samples of task t.146

Second, all encodings {s0:ti }n+m
i=1 serve as the keys, values and queries to cross-attention layers CA0:t

lat147

that enrich their order-invariance from intra-task st to inter-task sG. st and sG are used to derive148

the N and M Monte Carlo samples of the global zG and the task-specific latents zt, respectively149

(see App. B for more details) using the reparameterization trick [26]. We set M = 1 to enhance the150

inter-task stochasticity in posterior. For each input, we thus get N ∗ (t+ 1) latent outputs.151

Deterministic Encoder. The deterministic path is similar to that of the ANP [24] and outputs an152

order-invariant representation r∗ for target x∗ (see App. B).153

Decoder. Based on the task information, the decoder adopts separate mechanisms during training and154

inference. At train time, we use the available task labels to filter the N true latents {zti}Ni=1, combine155

them with r∗ and x∗, and decode the logits h∗. We discuss the inference time decoding in sec. 4.5.156

4.4 Learning Objectives for NPCL157

The learning of NPCL is done by variational inference that maximizes the evidence lower bound with158

additional regularizations.159

Evidence Lower Bound (ELBO). The intractability of Eq. (4) leads us to the following ELBO:160

log pθ(Y
0:t
T |X0:t

T , C) ≥ Eqϕ(z|T )

[ T−1∑
t=0

Eqϕ(zt|zG,Ct)[log pθ(Y
t
T |Xt

T , z
t)]

−Dt
(
qϕ(z

t|zG, T t)∥qϕ(zt|zG, Ct)
)]

−DG
(
qϕ(z

G|T )∥qϕ(zG|C)
)
,

(5)

4



where pθ(Y t
T |Xt

T , z
t) is approximated by the CE loss. Dt and DG denote the KL divergences161

between the approximate posterior and prior for the task-specific and global distributions, respectively.162

We derive the ELBO in App. A.1. We next identify two key aspects of forgetting in NPCL. In the163

following, we use D to denote the Jenshen-Shannon (JS) divergence [10] between two distributions.164

Global Regularization (GR). The training data of a CL task t is dominated by the t-th task samples.165

For NPCL, this drifts the global distribution N (µt
G, σ

t
G) of past tasks towards the new task (Fig. 1).166

We thus regularize their global distribution using the one learned at step t− 1:167

LGR = D
(
N (µG, σ

2
G)t,N (µG, σ

2
G)t−1

)
, (6)

Task-specific Regularization (TR). While GR helps preserve the joint distribution of the past tasks,168

the hierarchy in NPCL leaves their task-specific distributions to be still prone to forgetting (Fig. 3(a)).169

This can further amplify the posterior collapse [41] for past task-specific latents during incremental170

training (Fig. 3(b)). To alleviate these, we regularize the learning of previous task distributions as:171

Lt
TR = D

(
N (µt, σ

2
t )t,N (µt, σ

2
t )j

)
, (7)

where j is the step at which the task t arrived. Given the reliance of Eq. (6) and Eq. (7) on past172

distributions, we maintain a separate buffer, which we refer to as the distribution memory MN , to173

store the global N (µG, σ
2
G) and the task-specific distributions N (µ0:t−1, σ

2
0:t−1). MN is updated174

after each incremental training step where we run an additional pass over the training data of task t175

alongside replaying M to record the batchwise averaged global and task-specific means and variances.176

(a) Drift of past task distributions

(b) logKL(q|p) w/o TR (c) logKL(q|p) w/ TR

Figure 3: Need for distribution regularization: Fig. 3(a) show the increasing distances between
current distributions of past tasks and their original distributions (learned while the tasks were
introduced); Fig. 3(b) and 3(c) show the effect of global (GR) and task regularization (TR) on the
activation of the global and task-specific latent units. Low KL corresponds to an inactive unit.

177

Integrated Objective. Using α, β, γ and δ to denote the loss weights, our total loss can be given as:178

L =
1

|Dt|+ |M|
∑

x,t∈{Dt∪M}

(LCE + αDt + βDG) +
1

|M|
∑

x,t∈M
γLGR + δLt

TR, (8)

where CE, Dt, and DG act on the current task data Dt and on the buffer M while GR and TR act179

only on M. By setting 0 < {α, β, γ, δ} < 1, we resort to using the (respective) cold posteriors [49].180

4.5 Inference with Uncertainty Awareness181

NPCL’s inference uses f to obtain the features x∗ for the target test images. However, now we have182

no information on the target task label t. This leaves us with {z0:ti }Ni=1 possible variables to infer our183

predictions from. A naive get around is to average over N ∗ (t+1) logits. But as the number of tasks184

grows, the noise from incorrect task priors would dominate the posterior. We thus propose using185

entropy as an uncertainty quantification metric (UQM) to filter the logits of the true task head ψt:186

h∗ = arg min
j∈t

U(hj), U(h) = −
∑
i∈N

δ(i) log(δ(i)), (9)

where δ is the softmax function and U is the total Shannon entropy [40] over the N logits per head.187

As we use true head ψt
ϕ during training, ϕ ∈ ψt produces low entropy for within distribution data.188
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Method S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P-MNIST R-MNIST
Class-IL Class-IL Class-IL Domain-IL Domain-IL

Joint ResNet 92.2 ±0.15 70.44 59.99±0.19 94.33±0.17 95.76±0.04
Joint NP 91.66±0.11 70.58±0.24 59.83±0.17 95.02±0.21 95.37±0.07

Joint ANP 91.26±0.16 70.77±0.21 60.14±0.17 95.39±0.18 95.85±0.05

Joint NPCL 92.74±0.12 71.46±0.20 60.18±0.22 95.97±0.14 96.11±0.03

Multitask NPCL 69.15±0.09 53.6±0.21 35.53±0.13 87.40±0.10 89.21±0.02

oEWC [39] 19.49±0.12 - 7.58±0.10 75.79±2.25 77.35±5.77
SI [48] 19.48 ±0.17 - 6.58 ±0.31 65.86±1.57 71.91 ±5.83
LwF [31] 19.61±0.05 - 8.46 ±0.22 - -

Msize 200 500 500 2000 200 500 200 500 200 500

ER [38] 44.79±1.86 57.74±0.27 22.10 38.58 8.49±0.16 9.99±0.29 72.37±0.87 80.6±0.86 85.01±1.90 88.91±1.44

iCaRL [37] 49.02±3.20 47.55±3.95 46.52 49.82 7.53±0.79 9.38±1.53 - - - -
FDR [2] 30.91±2.74 28.71±3.23 - - 8.70±0.19 10.54±0.21 74.77±0.83 83.18 ±0.53 85.22±3.35 89.67±1.63
RPC [36] - - 22.34 38.33 - - - - - -
DER [4] 61.93±1.79 70.51±1.67 36.6 51.89 11.87 ±0.78 17.75±1.14 81.74±1.07 87.29±0.46 90.04±2.61 92.24±1.12

NP [13] 46.1±3.44 59.3±2.76 22.92 38.70 8.32±0.62 10.2±0.34 70.02±1.44 79.44±0.81 85.03±2.7 88.16±1.66
ANP [24] 46.67±1.23 58.77±0.65 23.2 39.06 8.81±0.93 9.75±0.90 73.55±0.66 80.98±0.57 85.70±1.39 89.21±0.93

ST-NPCL (w/ only per-task latent) 54.6±2.14 65.22±1.89 28.45 42.1 10.92±1.03 13.7±1.35 76.4±1.62 82.06±0.92 86.99±3.07 89.64±2.11
Naive NPCL (w/o task head inf.) 19.54±3.44 20.71±3.09 18.27 18.90 7.19±1.02 8.48±0.90 68.37±1.58 73.3±0.81 81.13±2.91 83.69±2.24
NPCL (ours) 63.78±1.70 71.34±1.48 37.43 46.71 12.44±0.59 15.29±1.02 83.11±0.90 86.52±0.77 91.48±1.79 92.07±1.39

Table 1: Classification accuracy for standard CL benchmarks across 10 runs. Best results are in red.
Second best results are in blue. All runs of NP variants in the CL settings rely on ER. S-CIFAR-100
results are reported from Boschini et al. [3] while the rest are taken from Buzzega et al. [4].

5 Experiments189

5.1 Settings190

Datasets. We evaluate NPCL on class and domain incremental learning (IL) settings. For class-IL, we191

use three public datasets: sequential CIFAR10 (S-CIFAR-10) [32], sequential CIFAR100 (S-CIFAR-192

100) [48], and sequential Tiny ImageNet (S-Tiny-ImageNet) [6]. For domain-IL, we use Permuted193

MNIST (P-MNIST) [27] and Rotated MNIST (R-MNIST) [32]. S-CIFAR-10, S-CIFAR-100, and194

S-Tiny-ImageNet host 10, 100, and 200 classes each with 5000, 500, and 500 training images and195

1000, 100, and 50 test images per class, respectively. The number of sequential tasks for S-CIFAR-10196

is 5 (2 classes per task); for S-CIFAR-100 and S-Tiny-ImageNet is 10 (10 and 20 classes per task,197

respectively); for P/R-MNIST is 20 where P-MNIST creates tasks out of MNIST [29] by randomly198

permuting the image pixels while R-MNIST does so by rotating images randomly in the range [0, π).199

Architectures. For a fair comparison against other methods, we rely on the Mammoth CL benchmark200

[3]. Our backbone for class-IL experiments is a ResNet-18 [19] without pretraining, while for201

domain-IL, we rely on a fully connected (FC) network with two hidden layers [32]. NPCL relies on202

Xavier initialized [14] FC layers with: two 256-d hidden layers for class-IL and one 32-d layer for203

domain-IL setups. For class-IL, each FC layer is followed by layer normalization [1] and ReLU.204

Configuration and Hyperparameters. We train all models using SGD optimizer. The number205

of training epochs per task for S-Tiny-ImageNet is 100, for S-CIFAR-(10/100) is 50 and that for206

(P/R)-MNIST is 1. We detail further on configurations, hyperparameters, and their tuning in App. C.207

Baselines. We employ several CL methods to compare NPCL with. Regularization-based methods208

include oEWC [39] and SI [48]; knowledge distillation-based methods include iCaRL [37] and LwF209

[31]; rehearsal-based methods are ER [38], RPC [36], FDR [2], DER [4]. Among neural processes,210

we use NP [13], ANP [24] with only global latent and Single Task (ST) NPCL (see App. A.2)211

with only per-task latents. We use five non-CL benchmarks for upper bounds on the performance:212

Joint ResNet / NP / ANP / NPCL perform joint training of all tasks using a single task head while213

the multitask NPCL infers task heads in joint training using Eq. (9). Finally, Naive NPCL infers214

predictions by averaging logits of all task heads.215

5.2 Results216

Table 1 reports the average accuracy after training on all tasks. Across all settings, NPCL boosts217

the performance of ER and achieves either comparable results compared with the state-of-the-art218

(SOTA), e.g., DER. Compared to regularization-based oEWC and SI, NPCL obtains a significant gain219
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(a) Accuracy (b) Uncertainty

Figure 4: Heatmaps depicting the taskwise av-
eraged accuracy and uncertainty of test sam-
ples per task head on S-CIFAR-10.

(a) Accuracy (b) Uncertainty

Figure 5: Effect of context set size (|M| =
{5, 50, 100, 200}) on the accuracy and uncer-
tainty of NPCL on S-CIFAR-10.

in performance. This is because the former methods calculate weight importance which is liable to220

changes with new tasks. Regularizing explicitly towards the global and per-task distributions of past221

tasks helps NPCL overcome this. Further, on both class and domain-IL, NPCL stands out in the most222

challenging setting where the episodic memory size is the smallest. On domain-IL where the shift223

occurs within the domain instead of classes, the performance of a number of methods degrade as they224

forget the relations among a task’s classes. Preserving the tasks’ distributions helps NPCL maintain225

valuable information in this case. Analyzing the backward transfer (BWT) scores [34] shows that226

NPCL’s forgetting is competitive or lesser than the SOTA (see Table 8). Lastly, we observe that227

ST-NPCL with no hierarchy lags in BWT and accuracy due to limited knowledge transfer between228

tasks.229

5.3 Ablation Studies230

Method
S-

CIFAR-10
S-Tiny-

ImageNet

ER 44.79 8.49

Baseline (w/o GR or TR) 32.24 7.15
NPCL (w/ only GR) 50.68 8.61
NPCL (w/ only TR) 57.28 11.36

NPCL (w/ GR and TR) 63.78 12.44

Table 2: Accuracy w/ learning objectives

On Learning Objectives. Table 2 shows the impact231

of distribution regularization with the baseline being232

an NPCL trained with no regularization. We observe233

that the baseline performs worse than the ResNet-based234

ER as the NPCL layers are liable to more forgetting.235

Including TR into our objectives leads to the singlemost236

gain over the baseline. We further study how these237

objectives guide the learning of the global and task-238

specific means and variances with training (see App.239

E.1). We observe that NPCL w/ TR leads to better240

learning of the current task as well as preserving the past task distributions but at the cost of drifting241

the global distribution. NPCL w/ GR restricts the global distribution drift but not for the per-task242

distributions. NPCL w/ GR and TR strikes a balance in between.243

On Uncertainty. Fig. 4 ablates the average accuracies and uncertainties of each task head predictions244

over the test set of each task on S-CIFAR-10 (see App. E.2 for S-CIFAR-100). First, we observe245

that the accuracy of predictions made by true task heads are, in general, a magnitude higher than the246

rest. For uncertainty, this trend is reversed. This verifies our assumption that restricting latent heads247

to learn only their true label distribution makes them more confident in modeling the within-task248

samples. Second, for recently trained tasks, the uncertainty differences between the true task heads249

and the rest are greater than the earlier tasks. This suggests that the extent of forgetting goes beyond250

a model’s accuracy and to other aspects of learning such as its confidence. To further verify this, we251

probe the BWT of uncertainty, and see a strong correlation with the BWT of accuracy (see Fig. 7).252

On Context Size. We study the average accuracy (Fig. 5(a)) and uncertainty (Fig. 5(b)) after training253

on S-CIFAR-10 with |M| = 200, and then varying the context sizes during inference. Similar to other254

NPs [44, 11], we find a positive correlation between context size and performance indicating that255

NPCL utilizes useful information from diverse context, thereby reducing its task inference ambiguity.256

On Storage Overhead. For each task, NPCL stores two new vectors – task-specific mean and257

variance, and replaces the global mean and variance with the current global ones. The NPCL storage258

thus scales constantly in the size |M| of the memory. This offers a strong edge on storage efficiency259

when compared to the SOTA [4] scaling quadratically, i.e., |M ∗NC | where NC is the total number260

of classes. For instance, on S-Tiny-ImageNet with |M| = 500, |NC | = 200, NPCL’s cumulative261

storage amounts to a (flattened) vector of size 6132 (256*10*2 for 256-d means and variances of262

10 tasks + 256*2 for 256-d global mean and variance + 500 for 1-d task labels) while that of DER263
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amounts to 100,000 (200*500 for logits of 500 memory samples), i.e., a 93.868% storage gain. We264

report the storage gains of NPCL over DER across all settings in App. E.3.265

5.4 Applications of Uncertainty Quantification266

The probabilistic nature of NPCL offers it an edge at leveraging data-driven UQMs. To further study267

the usage its predictive uncertainties, we design two experiments that leverage pretrained NPCL.268

Incremental
step

DID = CIFAR-10, DOOD = CIFAR-100

DID (δ) DOOD (δ) DID (H) DOOD (H)

1 1e−6 1e−5 9.3e−6 8.4e−5

2 2.6e−6 1.4e−5 6.3e−5 2.2e−4

3 2.3e−6 6.2e−6 6.7e−5 2.1e−4

4 8.1e−7 4.8e−6 4.6e−5 2.2e−4

5 7.1e−7 1.7e−6 4.6e−5 1.1e−4

Table 3: Average variances over softmax (δ) and
entropy (H) scores on in- and out-of-domain test
sets using N = 50 ancestral samples.

Novel Data Identification. Novel data identi-269

fication seeks to distinguish out-of-distribution270

data (DOOD) from in-domain data (DID). For-271

getting makes CL models struggle further on272

the task [18]. The probabilistic sampling in273

NPCL opens the door for leveraging its predic-274

tive variances – which are more reliable esti-275

mates of aleatoric uncertainty than pointwise276

predictions [21]. For the N predicted logits,277

we thus compute the variances over their soft-278

max scores, σ2(δ(h∗)), and their uncertainty279

scores, σ2(U(h∗)). Table 3 evaluates these met-280

rics for ID (S-CIFAR-10) and OOD (first 10 classes of S-CIFAR-100) data after each task. We281

observe that the variance scores of either metrics on DID are up to a magnitude lower than those282

on DOOD. We further observe an overall decrease in the variances with the arrival of further incre-283

mental tasks. This could be attributed to the generalization of more low-level features in the novel284

data as in-domain [17, 15]. We detail further novel data identification experiments in App. E.4.285

Class Accuracy PIW Accuracy by t-test status

Correct Incorrect Rejected
Not

Rejected

1 82.30 74.17 102.21 83.37 50.00
2 94.00 62.90 79.86 94.07 80.00
3 74.00 54.92 68.48 74.14 64.29

Table 4: PIW (multiplied by 100) and t−test
results for the first three classes of S-CIFAR-10
inferred from their respective task heads.

Instance-level Model Confidence Evaluation.286

The confidence evaluation framework of Han et al.287

[16] provides finer granularity for assessing the288

predictive confidence of classification models (see289

App. E.5 for more details and normality test). Ta-290

ble 4 shows the results of one run of the framework291

after training on S-CIFAR-10 (see App. Table 11292

for all classes). Here, we use the task identity to293

select the latent head per class. We observe the294

mean prediction interval width (PIW) of the true295

class label among the correct predictions to be nar-296

rower than that of the incorrect predictions, implying that the NPCL’s variations of predicted class297

labels is smaller when the predictions are correct. We also notice a higher accuracy among the test298

instances rejected by the t-test than those not rejected.299

6 Limitations300

We list the key limitations of NPCL to facilitate future research directions. These include:301

Incompetence of dot-product attention: Similar to the ANP [24], NPCL employs the permutation-302

invariant scaled-dot product attention [43] to weigh the relevant context and target embeddings.303

Visualizing the attention weights computed by the cross-attention layers of the deterministic path304

shows us that the top attended context for the target queries often contain points belonging to other305

CL tasks (Fig. 6(a)). This limits the performance sensitivity of NPCL with respect to the increase in306

context thus resulting in a lag of accuracy behind SOTA on CL setups with larger episodic memory307

sizes (see Table 1). To further verify the relevance of the attended context, we visualize the self-308

attention weights of all context points. Fig. 6(b) shows that the lowest or the maximum values in the309

context dataset have larger weights. Such an observation is in line with existing works pointing that310

the scaled-dot product attention can derive irrelevant set encodings of the context points and can thus311

lag at exploiting the context embeddings properly [25].312

Computational overhead: Table 5 compares the number of parameters of the NPCL with ER / DER313

[3] where the latter rely solely on the ResNet-18 backbone as they do not exploit parameter isolation314
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(a) Cross-attention visualization (b) Self-attention visualization

Figure 6: Scaled dot-product attention visualization: (a) top-15 context (buffer) points attended for
4 randomly chosen queries (test set samples). The queries are made after training on S-CIFAR-10.
The sizes of the points correspond to the attention values while the colors denote the tasks they belong
to. (b) self-attention weights of context points when all feature values are arranged in ascending order
shows that ANP [24] mostly attends to the lowest or the maximum values in the context dataset.

for task heads. Overall, the percentage increase in parameter number is 57.6% for S-CIFAR-10,315

46.57% for S-CIFAR-100 and S-Tiny-ImageNet, and 55.25% for P/R-MNIST.316

Method / Dataset S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P/R-MNIST
ER / DER [1] 11,173,962 11,220,132 11,220,132 89,610

NPCL 19,397,706 24,091,556 24,091,556 162,166
Table 5: Comparison of the total number of parameters for ER / DER against NPCL.

Method S-CIFAR-10
ER / DER 3.72s

NPCL,|M| = 200 19.58s
NPCL, |M| = 500 31.25s

NPCL, |M| = 1000 47.99s
NPCL, |M| = 2000 84.86s

Table 6: Inference time with vary-
ing context sizes

Inference time complexity: The reliance on self-attention317

means that the inference time complexity of NPCL is O(n ∗m)318

where, n is the number of context points (sampled from the319

episodic memory) and m is the number of target points (the num-320

ber of test samples). Due to this, the runtime for inference scales321

polynomially with the number of context points (sampled from322

the buffer). Table 6 reports the runtime of NPCL on S-CIFAR-323

10 and S-CIFAR-100 settings by varying the context sizes. For324

reference, the first row reports the runtime of ER / DER whose325

inference complexity is O(1) in the memory buffer size.326

Incompatibility with logits-based replay: NPCL is incompatible with logits based replay because327

of the stochasticity in the posterior induced by Monte Carlo sampling. Overcoming this could help328

boost the performance of NPCL further over SOTA like DER [4] and DER++ [3].329

7 Conclusion330

In this paper, we propose neural processes for continual learning (NPCL), a hierarchical latent331

variable setup designed to jointly model the task-agnostic and task-specific data generating functions332

in CL. We study the potential forgetting aspects in NPCL and propose to regularize the previously333

learned distributions at a global and a per-task granularity. We further demonstrate that using entropy334

as an uncertainty quantification metric (UQM) helps NPCL infer correct task heads and boost the335

performance of baseline experience replay to even surpass state-of-the-art deterministic models336

on several CL settings. We further show out-of-the-box applications of the uncertainty estimation337

capabilities of NPCL for novel data identification and instance-level confidence evaluation. We338

conclude our ablations by listing the key limitations of NPCL, which we hope could lay solid339

directions for further research on uncertainty-aware CL.340
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A Theory480

A.1 ELBO derivation for NPCL481

Borrowing the conventions from section 3, for an incremental task 0 ≤ t ≤ T , we assume the context482

C and targets T to comprise of samples from all t seen classes. Accordingly, we define these as483

C = (X0:t
C , Y 0:t

C ) and T = (X0:t
T , Y 0:t

T ), respectively. To enforce the prior that both C and T follow484

the same distribution, we assume Ct ⊂ T t, and therefore, C ⊂ T . In order to derive predictions Y 0:t
T485

on X0:t
T , the NPCL relies on the context C to build conditional priors pθ(zG|C) and pθ(zt|zG, Ct),486

where pθ is the decoder. The decoder’s objective thus boils down to maximizing the log-likelihood487

of the observations, i.e., the evidence log pθ(Y
0:t
T |X0:t

T , C). In what follows, we derive the evidence488

lower bound (ELBO):489

log pθ(Y
0:t
T |X0:t

T , C) (Log-likelihood of evidence)

(10a)

= log pθ(Y
0:t
T |X0:t

T , C)
∫

pθ(z
G|X0:t

T , Y
0:t
T , C)dzG (

∵
∫

pθ(z
G|T , C)dzG

= 1
)

(10b)

=

∫
pθ(z

G|X0:t
T , Y

0:t
T , C)(log pθ(Y

0:t
T |X0:t

T , C))dzG
(Integrate over the log-likelihood)

(10c)

= Eqϕ(zG|T )[log pθ(Y
0:t
T |X0:t

T , C)] (By definition)

(10d)

= Eqϕ(zG|T )

[
log

pθ(Y
0:t
T , zG|X0:t

T , C)
pθ(zG|X0:t

T , Y 0:t
T , C)

]
(Re-introduce z

G by Chain rule)

(10e)

= Eqϕ(zG|T )

[
log

pθ(Y
0:t
T |X0:t

T , C, zG)pθ(z
G|X0:t

T , C)
pθ(zG|T )

]
(Chain rule of probability; C ⊂ T )

(10f)

= Eqϕ(zG|T )

[
log

pθ(Y
0:t
T |X0:t

T , C, zG)pθ(z
G|X0:t

T , C)qϕ(zG|T )

pθ(zG|T )qϕ(zG|T )

]
(Equivalent fraction)

(10g)

= Eqϕ(zG|T )

[
log pθ(Y

0:t
T |X0:t

T , C, zG
)
]

+ Eqϕ(zG|T )

[
log

pθ(z
G|C)

qϕ(zG|T )

]
+ Eqϕ(zG|T )

[
log

qϕ(z
G|T )

pθ(zG|T )

]
(Split the expectation)

(10h)

= Eqϕ(zG|T )

[
log pθ(Y

0:t
T |X0:t

T , C, zG
)
]

− DKL
(
qϕ(z

G|T )∥pθ(z
G|C)

)
+ DKL

(
qϕ(z

G|T )∥pθ(z
G|T )

)
(By definition of KL divergence)

(10i)

≥ Eqϕ(zG|T )

[
log pθ(Y

0:t
T |X0:t

T , C, zG
)
]
− DKL

(
qϕ(z

G|T )∥pθ(z
G|C)

)
(∵ KL divergence for posterior approximation ≥ 0)

(10j)

where the evidence is equal to the sum of the reconstruction likelihood490

Eqϕ(zG|T )

[
log pθ(Y

0:t
T |X0:t

T , C, zG)
]

of the decoder and the KL divergence between the true491

posterior pθ(zG|T ) and the approximate posterior qϕ(zG|T ) learned using the variational distribu-492

tion, minus the prior matching term DKL
(
qϕ(z

G|T )∥pθ(zG|C)
)
. In particular, NPCL learns two493

approximate distributions qϕ(zG|T ) and qϕ(zt|zG, T t), that seek to estimate the global posterior494

pθ(z
G|T ) and the task-specific posterior pθ(zt|zG, T t). To realize the latter posterior, we introduce495

the hierarchy of task-specific latents z0:t. This allows us to expand and derive a lower bound to the496

reconstruction likelihood as:497
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log pθ(Y
0:t
T |X0:t

T , C, zG
) (Reconstruction term)

(11a)

= E∏t
0 qϕ(zt|zG,T t)

[
log

pθ(Y
0:t
T , z0:t|X0:t, C, zG)

pθ(z0:t|X0:t
T , Y 0:t

T , C, zG)

]
(Introduce one-level latent hierarchy)

(11b)

= E∏t
0 qϕ(zt|zG,T t)

[
log

∫ t

0

pθ(Y
t
T , zt|Xt, Ct, zG)

pθ(zt|Xt
T , Y t

T , Ct, zG)

]
(Integrate over individual tasks)

(11c)

=

∫ t

0

Eqϕ(zt|zG,T t)

[
log

pθ(Y
t
T |Xt

T , Ct, zG, zt)pθ(z
t|Xt

T , Ct, zG)

pθ(zt|T t, zG)

]
(Chain rule of probability; C ⊂ T )

(11d)

=

∫ t

0

Eqϕ(zt|zG,T t)

[
log

pθ(Y
t
T |Xt

T , zt)pθ(z
t|Ct, zG)qϕ(z

t|zG, T t)

pθ(zt|T t, zG)qϕ(zt|zG, T t)

]
(Equivalent fraction)

(11e)

=

∫ t

0

Eqϕ(zt|zG,T t)

[
log pθ(Y

t
T |Xt

T , z
t
)
]

− DKL
(
qϕ(z

t|zG
, T t

)∥pθ(z
t|zG

, Ct
)
)
+ DKL

(
qϕ(z

t|zG
, T t

)∥pθ(z
t|zG

, T t
)
)

(By definition of KL divergence)
(11f)

≥
∫ t

0

Eqϕ(zt|zG,T t)

[
log pθ(Y

t
T |Xt

T , z
t
)
]
− DKL

(
qϕ(z

t|zG
, T t

)∥pθ(z
t|zG

, Ct
)
)

(∵ KL divergence ≥ 0)

(11g)

Plugging Eq. (11g) into Eq. (10j), we get the final ELBO:498

log pθ(Y
0:t
T |X0:t

T , C) (12a)

≥ Eqϕ(zG|T )

[ ∫ t

0

Eqϕ(zt|zG,T t)

[
log pθ(Y

t
T |Xt

T , z
t
)
]
− DKL

(
qϕ(z

t|zG
, T t

)∥pθ(z
t|zG

, Ct
)
)]

− DKL
(
qϕ(z

G|T )∥pθ(z
G|C)

)
(By substitution)

(12b)

= Eqϕ(zG|T )

[ ∫ t

0

Eqϕ(zt|zG,T t)

[
log pθ(Y

t
T |Xt

T , z
t
)
]
− DKL

(
qϕ(z

t|zG
, T t

)∥qϕ(zt|zG
, Ct

)
)]

− DKL
(
qϕ(z

G|T )∥qϕ(zG|C)
)
, (Final ELBO)

(12c)

where the decoder pθ serves as the conditional prior network and is replaced by the encoder qϕ serving499

as the surrogate posterior network. qϕ can be seen to be producing two intermediate bottleneck500

distributions: (a) qϕ(zG|T ) transforms inputs into a distribution over global latents, (b) conditioned501

on the global latents, qϕ(zt|zG, T t) gathers the t-th task inputs and learns another distribution over502

the task-specific latents. The task-specific latents and their corresponding input covariates Xt are503

then used by the deterministic decoder pθ to decode their corresponding logit h∗. It is indeed this504

dependency of pθ on the task identifier t that makes inference a challenging task in real-world CL505

settings.506

A.2 Single Task NPCL and its ELBO507

Single Task (ST) NPCL preserves all but the inter-task cross attention CA0:t
lat and the global distribu-508

tion encoder ψG layers from the architecture of NPCL (section 4.3). The task-specific latents zt are509

thus derived as:510

{zti}Mi=1 ∼ N (ψt
µ(s

t
i), ψ

t
σ(s

t
i)) = N (µt, σ

2
t ),∀t ∈ T, (13)

where sti and ψt carry the same meaning as in Eq. (16). For a fair comparison in Table 1, we fix M511

to be the same as the total number of global ancestral samples N in NPCL. The corresponding ELBO512
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amounts to:513

log pθ(Y
0:t
T |X0:t

T , C) (14a)

≥
∫ t

0

Eqϕ(zt|T t)

[
log pθ(Y

t
T |Xt

T , z
t)
]
−DKL

(
qϕ(z

t|T t)∥pθ(zt|Ct)
)

(Dropping zG from Eq. (12c))

(14b)

A.3 ELBO for NP and ANP514

NP [13] and ANP [24] employ a single latent variable zG to model the global correlation of all tasks.515

In particular, compared to section 4.3, the task-specific self-attention layer SAt
lat and the task-specific516

distribution encoder ψt is no longer required. While this enables knowledge sharing among tasks,517

NPs and ANPs are limited in modeling finer intra-task stochastic factors. The ELBO can be given as:518

log pθ(Y
0:t
T |XT , C) (15a)

≥ Eqϕ(zG|T )

[
log pθ(Y

0:t
T |XT , z

G)
]
−DKL

(
qϕ(z

G|T )∥pθ(zG|C)
)

(Dropping z0:t from Eq. (12c))

(15b)

where zG is derived in a way similar to Eq. (16), and the inputs XT and C belong to [0, t] tasks519

without relying on the task labels for being encoded.520

B Further on NPCL Architecture521

In the following, we denote multi-head dot product self-attention [43] by SA(K,V,Q) where K, V,522

and Q are the keys, values and queries respectively. The equivalent notation for cross-attention is523

CA(K,V,Q).524

Latent Encoder. The latent path learns the functional prior and posterior from the context and the525

target sets, respectively. Each label-concatenated input is projected as Φlat
i = MLP([xi; yi]); then526

subjected to two attention operations. First, per-task projections form the keys, values and queries to527

taskwise self-attention layers SAt
lat(Φ

lat
i ,Φ

lat
i ,Φ

lat
i ) : Φlat

i → sti that produce order-invariant encodings528

sti over the task t. Second, all encodings {s0:ti }n+m
i=1 serve as the keys, values and queries to the529

cross-attention layers CA0:t
lat (s

t
i, s

t
i, s

t
i) : s

t
i → sGi that enrich their order-invariance from intra-task530

st to inter-task sG. st and sG are then used to derive the global zG and the task-specific latents zt:531

Such globally attended inputs are passed in parallel to two MLP layers constituting the global532

distribution encoder ψG whose outputs together parameterize the global distribution N (µG, σ
2
G) over533

the input set, i.e., ψG(sG) : {sGi }
n+m
i=1 → (µG, σ

2
G). Samples {zGi }Ni=1 drawn from this distribution534

are proxies for the variables capturing the global correlation over all tasks in the input set. It is indeed535

this sampling step that induces the stochasticity into the learned posteriors of the NPCL.536

To model finer task-specific distribution for task t conditioned on the global distribution, we retain the537

task-specific self-attended representations sti and concatenate these with the global latents {zGi }Ni=1538

to produce N distinct encodings per input point. These encodings are then passed through the t-th539

task distribution encoder ψt that again constitutes a mean and a variance MLP head and produces540

outputs that parameterize the t-th task distribution N (µt, σ
2
t ), i.e., ψt(st) : {sti}

n+m
i=1 → (µt, σ

2
t ).541

Samples {zTj }Mi=j drawn from each such distribution thus capture the per-task stochastic factors. To542

limit the randomness in the learned prior/posterior, we use M = 1. The latent encoder thus outputs a543

subtotal of N ∗ (t+ 1) encodings per input point.544

Put together, the global and task-specific latents can be derived as:545

{zGi }Ni=1 ∼ N (ψG
µ (s

G), ψG
σ (s

G)) = N (µG, σ
2
G),

{zti}Mi=1 ∼ N (ψt
µ(s

t
i, z

G
i ), ψt

σ(s
t
i, z

G
i )) = N (µt, σ

2
t ),∀t ∈ T,

(16)

where ψG and ψt are the global and per-task distribution encoders, respectively.546

Deterministic Encoder. The deterministic path is similar to that of an ANP [24] where the context547

projections Φdet
i = MLP([xi; yi]) form the keys, queries and values for a self-attention operation,548
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SAdet(Φ
det
i ,Φdet

i ,Φdet
i ) : Φdet

i → ri. The resulting order-invariant context representations {ri}mi=1 are549

fed as values to a subsequent target-to-context cross-attention operation CAdet. The keys xi and550

queries x∗ for CAdet come from the context xi ∈ XC and target x∗ ∈ XT covariates, respectively,551

i.e., CAdet(xi, sC , x∗) : x∗ → r∗ where r∗ is invariant to the order of context.552

Decoder. Different from other NP variants, the NPCL decoder adopts separate decoding mechanisms553

during training and inference. At train time, we use the available task identity to filter the true N out554

of N ∗ (t+1) latent path outputs to be processed by the decoder. After this, the decoder concatenates555

a target input xt∗ ∈ Xt
T with its N true task-specific latents {zti}Ni=1 obtained from the latent path and556

its order-invariant feature r∗ obtained from the deterministic path thus resulting in N distinct inputs.557

For N > 1 samples of zt, we first make N copies of x∗ and r∗ each, and then concatenate these with558

each zt. pθ thus performs the projection pθ([x∗; r∗; {zti}Ni=1]) : x→ h∗ where x ∈ Rf+2∗o and h∗559

are the logits of an MLP classifier for the target label y∗. We detail the inference-time decoding in560

section 4.5.561

C Experiments and Reproducibility562

Configuration. For a fair comparison with the benchmarks of Buzzega et al. [4], we fix the batch563

sizes for new task’s samples and for replay samples to 32 each for the class-IL datasets and to 128 each564

for the domain-IL datasets. Both the context and target datasets use the same set of augmentations.565

For S-CIFAR-10, S-CIFAR-100 and S-Tiny-ImageNet, we apply random crops and horizontal flips to566

both stream and buffer examples following Buzzega et al. [4] and Boschini et al. [3]. For each setting567

of memory size on each dataset, NPCL adopts the same learning rate (LR) as reported in Buzzega568

et al. [4] and Boschini et al. [3]. However, NPCL training additionally relies on linearly increasing569

the learning rate (LR) over a period of 4000 iterations for class-IL and 40 iterations for domain-IL570

settings. We further apply gradient clipping [35] on L2-norm of NPCL parameters with a cap of571

10000.572

Hyperparameter tuning. We arrive at the best hyperparameter settings for each of our datasets573

through grid search over a validation set made of 10% of the training set on each dataset. The search574

range for number of samples N from the global distribution N (µG, σ
2
G) is [2, 5, 10, 20, 50, 100]. Out575

of these, we foundN = 50 during training andN = 10 during evaluation to perform better in general576

across all settings.577

Similarly, we conducted a grid search over the batch size of the context set C over the range578

[1/16, 1/8, 1/4, 1/2, 1, 1.25] of the original (target) batch sizes for each of the dataset. In general,579

we found that fixing the context batch size to 1/8 of the target batch size performed better across all580

datasets. Such context batches are sampled from a context dataset Dt
C for each task t. Dt

C is itself581

created by randomly selecting a subset of the training samples for each class at the beginning of each582

incremental training task. To decide on the size of the subset for each class, we ran a gridsearch over583

the range [50, 100, 150, 200] samples per class and found that incorporating 100 random samples per584

class into Dt
C performed well across all datasets.585

Finally, to decide on the loss weights α, β, γ and δ for Dt, DG, LGR, and Lt
TR, we ran gridsearch for586

each over possible values [0.0, 0.01, 0.05, 0.08, 0.1, 0.15, 0.2, 0.4]. We report the best settings across587

datasets in Table 7:588

S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P-MNIST R-MNIST
α 0.05 0.05 0.01 0.1 0.1
β 0.01 0.01 0.01 0.05 0.05
γ 0.2 0.08 0.05 0.1 0.1
δ 0.1 0.1 0.1 0.15 0.15

Table 7: Hyperparameters for loss contributions that were tuned on validation sets for each dataset.

To further ensure reproducibility, we seed the Pytorch-based data loaders using the instructions men-589

tioned at https://pytorch.org/docs/stable/notes/randomness.html. All our experiments590

are then ran using seed values in the range [0, 9].591
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Method S-CIFAR-10 P-MNIST R-MNIST
Class-IL Domain-IL Domain-IL

oEWC -91.64 -36.69 -24.59
SI -95.78 -27.91 -22.91
LwF -96.69 - -

Msize 200 500 200 500 200 500

ER -61.24 -45.35 -22.54 -14.90 -8.24 -7.52
GEM -82.61 -74.31 -29.38 -18.76 -11.51 -7.19
A-GEM -95.73 -94.01 -31.69 -28.53 -19.32 -19.36
iCaRL -28.72 -25.71 - - - -
FDR -86.40 -85.62 -20.62 -12.80 -13.31 -6.70
GSS -75.25 -62.88 -47.85 -23.68 -20.19 -17.45
HAL -69.11 -62.21 -15.24 -11.58 -11.71 -6.78
DER -40.76 -26.74 -13.79 -8.04 -5.99 -3.41

ANP -62.80 -49.18 -28.79 -16.44 -12.08 -10.63
ST-NPCL -46.91 -32.50 -17.03 -12.40 -7.9 -8.11
NPCL (ours) -39.11 -27.62 -12.81 -8.60 -5.70 -4.10

Table 8: Backward transfer scores for the experiments in Table 1. Best results are in red. Second
best results are in blue. All runs of ANP, ST-NPCL and NPCL in the CL settings rely on experience
replay (ER).

D Results: Backward Transfer592

Table 8 reports the backward transfer for the accuracy scores mentioned in table 1. We further593

compute the backward transfer based on uncertainty scores to study the effect of forgetting on594

uncertainty. Fig. 7 shows the correlation between backward transfer of accuracy and uncertainty for595

the domain-IL datasets P-MNIST and R-MNIST.596

Figure 7: Backward transfer scores of tasks based on accuracy and uncertainty on domain-IL
datasets with |M| = 500: a higher negative backward transfer on accuracy correlates with a higher
positive backward transfer on uncertainty and vice-versa. For better visibility, the uncertainty-based
backward transfer scores have been scaled by a factor of 100.

E Ablations597

E.1 Effect of regularization on the learned distributions598

We record the per epoch L1-norms of global and task-specific means and variances on the last599

incremental task (task 4) of S-CIFAR-10. As shown in Fig. 8(a) and Fig. 8(b), regularizing the600

global distribution (GR) alleviates forgetting by limiting the learning of the global and the current601

task’s (task 4) means and variances. This is evident through larger L1-norm of means and smaller602

L1-norm of variances when GR = 0, i.e., +TR setting. On the other hand, excluding all the objectives,603

i.e., Baseline NPCL as well as excluding TR from the learning objectives, i.e., +GR setting lead to604
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relatively unstable evolution of the past task means and variances, hence characterizing an increased605

forgetting. Including both GR and TR in the objective, i.e., NPCL helps find a balance between606

preserving the global and the past-task distributions while facilitating the learning of the current task607

distribution.

(a) Effect on the global and task-specific means.

(b) Effect on the global and task-specific variances.

Figure 8: Effect of the proposed global (GR) and task-specific (TR) regularizations on the learning
of global and task-specific means and variances during the last incremental training task (task 4) of
S-CIFAR-10. NPCL uses both GR and TR while the baseline NPCL uses neither of them.

608

E.2 How does forgetting effect uncertainty?609

Fig. 9 ablates the average accuracies and uncertainties of each task head predictions over the test610

set of each task at the end of incremental training on S-CIFAR-100. Similar to S-CIFAR-10 (Fig.611

4), we observe that the accuracy of predictions made by true task heads are higher than the rest.612

For predictive uncertainties, the trend is the opposite. Also, more recently trained tasks show lesser613

forgetting both in terms of accuracy (higher values) and uncertainty (lower values). This generalizes614
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our conclusion on S-CIFAR-10 regarding the outreach of forgetting in CL going beyond accuracy615

and to other aspects of learning such as the model’s predictive confidence.

(a) Accuracy heatmap (b) Uncertainty heatmap

Figure 9: Heatmaps depicting the average accuracy and uncertainty of individual task test sets per
task head on S-CIFAR-100 with |M| = 500 over an individual run.

616

E.3 Storage gain of NPCL over DER617

Table 9 compares the total episodic memory sizes of NPCL (ours) and DER [4]. We report storage618

sizes as the dimension of a single 1-d vector constructed by flattening all the vectors that need to619

be stored by each method in the episodic memory. Namely, NPCL stores 2 ∗ t+ 2 vectors of fixed620

dimension R|o| where t is the total number of tasks in a dataset and o is the output size of the mean621

and variance heads. On the other hand, DER stores |M| number of logits of dimension R|NC | where622

NC denotes the total number of classes in a CL dataset. As a result, NPCL has significant storage623

gains on settings with either large number of classes or a larger memory size. It is worth noting that624

both NPCL and DER rely on storing original input images and therefore, our comparison does not625

take the inputs into account.

Method S-CIFAR-10 S-CIFAR-100 S-Tiny-ImageNet P-MNIST R-MNIST

Msize 200 500 500 2000 200 500 200 500 200 500

DER [4] 2000 5000 50000 200000 40000 100000 2000 5000 2000 5000
NPCL (ours) 3272 3572 6132 7632 5832 6132 1544 1844 1544 1844

Storage gain (%) -63.6 28.56 87.746 96.184 85.42 93.868 22.8 63.12 22.8 63.12

Table 9: Storage size comparison of NPCL with DER across different experimental settings of Table
1. Gains are marked in bold.

626

E.4 Out-of-the box novel data identification627

Our novel data identification experiments use the S-CIFAR-10 and S-CIFAR-100 datasets interchange-628

ably as DID and DOOD given the high degree of similarity between a number of their classes [20].1629

Namely, while evaluating the NPCL trained on S-CIFAR-100, we consider the entire CIFAR-10 test630

set as DOOD whereas the evaluation of the S-CIFAR-10 model treats the test set of first 10 class labels631

of CIFAR100 to be DOOD. Further, for an incremental task t, the test sets for [0, t] tasks make up for632

the ID data DID.633

As shown in Table 10, the variances computed using either of our proposed metrics on DID are up634

to a magnitude lower than those on DOOD. This trend is evident across the incremental evaluation635

steps even if the differences in the variances between DID and DOOD slump with the further arriving636

tasks. Moreover, for the model trained on the more challenging S-CIFAR-100 setting, we observe637

that the differences between the DID and DOOD variances even grow during the course of incremental638

training. This implies the potential perks of enabling the inter-task knowledge sharing among NPCL639

parameters in a CL setup.640

1The labels for first ten CIFAR-100 classes are the same as https://huggingface.co/datasets/
cifar100 and that for CIFAR-10 classes are the same as https://huggingface.co/datasets/cifar10.
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Incremental step CIFAR-100 on S-CIFAR-10 model CIFAR-10 on S-CIFAR-100 model

DID (δ) DOOD (δ) DID (H) DOOD (H) DID (δ) DOOD (δ) DID (H) DOOD (H)

1 1e−6 1e−5 9.3e−6 8.4e−5 1.5e−6 8.9e−6 1.5e−4 1e−3

2 2.6e−6 1.4e−5 6.3e−5 2.2e−4 1.9e−6 5.8e−6 5.3e−4 1.7e−3

3 2.3e−6 6.2e−6 6.7e−5 2.1e−4 1.2e−6 3.6e−6 4.4e−4 1.5e−3

4 8.1e−7 4.8e−6 4.6e−5 2.2e−4 1.1e−6 2.5e−6 3.5e−4 1.2e−3

5 7.1e−7 1.7e−6 4.6e−5 1.1e−4 8e−7 2e−6 4.4e−4 1.2e−3

6 - - - - 6.8e−7 1.3e−6 4.1e−4 8.5e−4

7 - - - - 4.e−7 1.3e−6 3.2e−4 8.3e−4

8 - - - - 4.9e−7 1e−6 3.2e−4 6.7e−4

9 - - - - 3e−7 6.9e−7 2.5e−4 4.7e−4

10 - - - - 3.3e−7 5.1e−7 2.5e−4 3.5e−4

Table 10: Average variances over softmax (δ) and entropy (H) scores of incremental models on
in-distribution (ID) and out-of-distribution (OOD) test sets using N = 50 samples

E.5 Instance-Level Model Confidence Evaluation641

For each target instance x∗, the instance-level model confidence evaluation framework [16] uses the642

N predictions obtained from stochastic sampling to compute: (a) the prediction interval width (PIW)643

between the [2.5, 97.5] percentile range of the N predicted classes, (b) the paired two-sample t-test644

[9] to evaluate the significance of difference between the mean predicted probabilities for the top-2645

most predicted classes. As a prerequisite to the latter test, we first verify the normality assumption of646

the probability differences for NPCL (Fig. 10).647

Similar to Fan et al. [9], after computing the PIW per test instance, we split the instances into two648

groups by the correctness of the majority-vote predictions, obtain the PIW of the true class per649

instance, and compute the mean PIW of the true class within each group. For t-test evaluation, we650

compute the mean accuracy per group of the test instances split by their t-test rejection status.

Figure 10: Q-Q plots for the differences in probability between the most and the second most
predicted class.

651
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Class Accuracy PIW Accuracy by t-test status

Correct Incorrect Rejected
Not

Rejected

1 82.30 74.17 102.21 83.37 50.00
2 94.00 62.90 79.86 94.07 80.00
3 74.00 54.92 68.48 74.14 64.29
4 71.50 65.42 74.32 72.06 25.00
5 84.80 92.93 106.90 85.37 22.22
6 76.50 75.22 103.58 76.58 60.00
7 94.20 104.9 129.56 94.39 3.00
8 90.50 81.10 127.06 91.12 22.22
9 96.90 72.81 110.86 97.00 66.67

10 96.30 80.60 109.56 96.48 60.00

Table 11: PIW (multiplied by 100) and t−test results for classes inferred from their respective task
heads after S-CIFAR-10 training.
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