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ABSTRACT

Large language models (LLMs) should undergo rigorous audits to identify poten-
tial risks, such as copyright and privacy infringements. Once these risks emerge,
timely updates are crucial to remove undesirable responses, ensuring legal and
safe model usage. It has spurred recent research into LLM unlearning, focusing
on erasing targeted undesirable knowledge without compromising the integrity of
other, non-targeted responses. Existing studies have introduced various unlearning
objectives to pursue LLM unlearning without necessitating complete retraining.
However, each of these objectives has unique properties, and no unified frame-
work is currently available to comprehend them thoroughly. To fill the gap, we
propose a toolkit of the gradient effect (G-effect), quantifying the impacts of un-
learning objectives on model performance from a gradient perspective. A notable
advantage is its broad ability to detail the unlearning impacts from various as-
pects across instances, updating steps, and LLM layers. Accordingly, the G-effect
offers new insights into identifying drawbacks of existing unlearning objectives,
further motivating us to explore a series of new solutions for their mitigation and
improvements. Finally, we outline promising directions that merit further studies,
aiming at contributing to the community to advance this important field. The code
is publicly available at: https://github.com/tmlr-group/G-effect.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023b; Achiam et al., 2023) rep-
resent the cutting edge of machine learning for the field of language understanding. These models
typically leverage multi-head attention decoder-based architectures (Vaswani et al., 2017) with bil-
lions of learnable parameters and are autoregressively trained (Zhao et al., 2023) over web-sourced
datasets encompassing trillions of tokens. Such extensive scaling enables LLMs to handle a broad
spectrum of complex linguistic tasks, demonstrating remarkable proficiency in understanding and
generating languages across a board range of practical applications.

The scaling of LLMs, on the other side, also brings notable drawbacks alongside its benefits. A pri-
mary concern is their high tendency to memorize data, which can reproduce sensitive information
once encountered during web-sourced training, such as copyright and privacy-related content (Yao
et al., 2023a). These issues are particularly concerning due to the potential misuse of LLMs for
illegal activities (Li et al., 2024), also posing challenges to protect individual rights to be forgot-
ten (Zhang et al., 2023). Mitigating these undesirable behaviors in LLMs is non-trivial, involving
regularly auditing LLMs to recognize sensitive content and subsequently adjusting the associated,
parameterized knowledge. In previous works, supervised fine-tuning (De Cao et al., 2021) and align-
ment methods (Ouyang et al., 2022) have been explored to overwrite LLMs against such undesirable
model behaviors. However, these well explored directions face practical deficiencies—they can be
costly (Yao et al., 2023b), require high-quality crafted preference datasets (Chowdhury et al., 2024),
and exhibit concerns regarding robustness (Patil et al., 2023; Qi et al., 2023; Wang et al., 2024).
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LLM unlearning (Yao et al., 2023b) has emerged as a promising alternative, with a direct goal
of removing parameterized knowledge targeted to be unlearned, meanwhile preserving the model
integrity for all other, non-targeted data (Wang et al., 2025). Highlighted by Yao et al. (2023b), LLM
unlearning is cost-effective over aforementioned more demanding methods, thus attracting emerging
research attention these days (Liu et al., 2024). A representative baseline of LLM unlearning is
gradient ascent (GA) (Maini et al., 2024), adjusting LLMs to increase the prediction losses for
targeted data—thereby removing parameterized knowledge. GA offers a potentially viable path to
implement LLM unlearning; however, it is severely susceptible to excessive unlearning (Zhang et al.,
2024), where the effectiveness in removing undesirable data comes at the high cost of compromising
the overall model integrity. It motivates a series of subsequent works that improve upon GA, such as
negative preference optimization (NPO) (Zhang et al., 2024), preference optimization (PO) (Maini
et al., 2024), and representation misdirection for unlearning (RMU) (Li et al., 2024).

Given the increasing number of unlearning objectives, we need to discern good objectives from those
less promising ones. A step further, it is also interesting to pinpoint beneficial components within
existing methods, isolating those that are useless or potentially harmful. Sadly, to our knowledge,
a general toolkit for in-depth analysis of various unlearning methods is still lacking. To bridge this
gap, we propose the concept of the gradient effect (G-effect), which approximates the performance
change associated with particular unlearning objectives via the dot product of their gradients, cf.,
Definition 1. The G-effect provides more than mere performance evaluations—it enables detailed
examinations of various unlearning methods for their impacts with respect to data points, updating
steps, and layers, cf., Section 4. We outline below for some of the general observations we achieved.

* Unlearning affects shallow layers more. Shallow layers are more affected than deeper layers,
showing that general knowledge encoded in shallow layers undergoes substantial alterations.

» Unlearning compromises retention. Although conceptually existing (cf., Section 3), current
unlearning objectives all fail to retain the overall performance when conducting unlearning.

* Excessive unlearning is harmful. An excessive extent of unlearning has severe impacts such
that the deterioration in common model responses can outweigh improvements in unlearning.

* Risk weighting is powerful. Prioritizing certain points is justified to be effective for unlearning.
However, there still exists a large space to further refine risk weighting mechanisms.

* Regularization is important. Regularization terms continue to play a crucial role in maintain-
ing overall model integrity, with the KL (Maini et al., 2024) emerging as a promising choice.

We benchmark both existing and new methods explored throughout our analysis on the well-
established TOFU fictitious unlearning datasets (Maini et al., 2024). Our experiments identify
several new state-of-the-arts that merit further attention. Additionally, based on our analysis, we
highlight promising research directions that warrant exploration to further advance the field.

2 LLM UNLEARNING

We focus on auto-regressive LLMs parameterized by @, which recursively estimate the probability
distributions over the next tokens, denoted as p(:|s;@). LLMs are, in general, trained on large-
scale, web-sourced corpora following the distribution Dy with the negative log-likelihood (NLL)
loss function of — log p(s; 8), where p(s; 8) = [[\2, p(s|s<*; @) with s’ the i-th token and s<' the
prefix up to s*. While LLMs are capable of handling a broad spectrum of language generation tasks,
the use of training corpora sourced from the open world raises the risk that our LLMs will learn
from sensitive data, precipitating a series of legal and ethical concerns (Liu et al., 2023).

LLM Unlearning. These issues necessitate the need for a post-training mechanism that enables
LLMs to eradicate any parameterized knowledge that is undesirable. This requirement motivates
the recent research on LLM unlearning (Yao et al., 2023b; Maini et al., 2024), of which the main
goals are in two folds—(a) ensuring the removal of data / knowledge targeted to be unlearned and
(b) retaining the integrity of model responses for non-targeted data. Formally, we consider the data
distribution D, that should be unlearned and define the risk metric R to assess model performance.
Then, our goal is to adjust the original LLM parameters 6, to get the unlearned ones ,,, such that:
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* Removal. The performance on the unlearning dataset D, should significantly deteriorate, i.e.,
R(Dy; 04) > R(Dy; 0,), revealing effective unlearning on data targeted to be erased.

* Retention. The performance on other data, i.e., D;\D,,, should be maintained or enhanced, i.e.,
R(Di\Dy; 0.) < R(D:\Dy; 6,), ensuring model responses on common data are not damaged.

Here, we consider a practical objective of erasing targeted knowledge as much as possible (Liu
et al., 2024), i.e., full removal, slightly diverging from the classical definition of machine unlearn-
ing (Bourtoule et al., 2021) that seeks to make models behave as if they were trained without the
targeted data, i.e., influence removal. The pursuit of full removal simplifies our subsequent discus-
sions, and as we will see later in Section 5, the outcomes of these two goals are typically aligned.

This paper delves into exploring various objective functions that implement LLM unlearning, a topic
that requires our fundamental interest. As an example, GA (Yao et al., 2023b) directly increases the
NLL loss for targeted data, of which the objective is articulated as ming E; p, logp(sy;0). GA
represents one of the pioneering methods for LLM unlearning, paving a feasible road to implement
unlearning in practice. However, it often exhibits the propensity to excessive unlearning (Zhang
et al., 2024; Wang et al., 2025)—the efficacy in eliminating undesirable knowledge comes at a high
cost to compromise the model integrity. It motivates a series of subsequent works (Zhang et al.,
2024; Maini et al., 2024; Li et al., 2024), which will be discussed later in Section 4.

3 G-EFFECT

Before delving into specific methods, we need proper criteria for assessing whether an objective
is suitable for unlearning or not. Recalling our earlier discussion on the main goals of unlearning,
we can quantify the performance change before and after unlearning to evaluate their effects, i.e.,
R(Dy; 60y) — R(Dy; 6,) for removal and R(Dy\Dy; 0y) — R(Dy\Dy; 6,) for retention. Sadly,
merely comparing performance provides limited insights into understanding the underlying mecha-
nisms (cf., Section 4). Therefore, we suggest a more insightful scheme that can facilitate the analysis
of various unlearning methods from a gradient perspective, named the gradient effect (G-effect).

Generally speaking, the G-effect compares the gradients of the unlearning objective £,, and the risk
metric R. If the gradients of £, align in similar directions to R, model updating based on L,
is capable to enhance model performance measured by R, an obvious alternative of R(D;8,,) —
R(D;6,) to measure the performance change. The degree of such similarity between gradients
can be quantified using their dot products (Lopez-Paz & Ranzato, 2017): A positive dot product
indicates that £, is capable to improve R, whereas a negative dot product suggests potential harm
to R. Please refer to Appendix A for a formal derivation. It motivates the G-effect as follows.

Definition 1 (G-effect). The G-effect e(t) for an unlearning objective L, at the t-th step

of model updating is given by VoR(D;00) VoL, (Dy;0M). We further define the un-

learning G-effect el VoR(Dy; 0 VoL (Dy;0M)) and the retaining G-effect el

VoR(D\Dy; M) Vo Ly (Dy; 8Y) to reflect the respective goals of removal and retention.
VoR(D\Dy; 0)

VoLly (Dui 9)\\

The G-effect measures the impacts of unlearning ob- VoR(D.; 0)

jectives on either targeted or non-targeted data when
implementing gradient updates. Overall, to fulfill the
unlearning goals outlined in Section 2, we aim for no-

~~~~~
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(t) :-_-_:eu<0ander20
tably negative values of ey’ to pursue a sufficient re- <0

moval of targeted knowledge and non-negative values B s
of egt) to maintain the model integrity for non-targeted
data. Figure 1 further depicts these two essential gra-

dient conditions to ensure effective unlearning: Figure 1: Gradient Directions and Un-
learning Behaviors. We show directions

e Removal. The red region indicates e <0, en- for VoR(Dy;6,) and VoR(D\Dy;6)

suring L, to eliminate targeted knowledge. and regions ensuring eff) < 0 (red) and

() . .
« Retention. The blue region represents e\) > 0, ¢ = 0 (blue). Their intersection (black
o T8 p o= dashed) fulfills the unlearning goals.

ensuring £, to retain the overall model integrity.
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What Can We Learn from the G-effect? In Figure 1, the intersection, delineated by black dashed
lines, is the region that meets the primary goals of unlearning—effective removal of targeted knowl-
edge while retaining the integrity of non-targeted data. This area highlights the conceptual possibil-
ities of achieving a perfect unlearning objective, under the mild conjecture that VR (D,; 6,,) will
differ from VR (D\Dy;0,) more or less. Also, the dependency on ¢ enables us to examine the
dynamics of unlearning, and the gradients helps us to explore the impacts of particular layers or
data points involved during unlearning. It will facilitate our understanding of existing unlearning
mechanisms, which will be detailed below. Please refer to Appendix A for more discussions.

4 ANALYSIS FOR UNLEARNING OBJECTIVES

In this section, we employ the G-effect to assess

a range of unlearning objectives that are well- — unlearn embed shallow
recognized, aiming to understand their mech- middle deep Im
anisms as well as identify their advantages and — retain embed shallow
deficiencies. Due to the high costs in fully com- —— middle == deep — Im

puting the G-effect, we focus on experiments

based on 5% TOFU fictitious unlearning (Maini  Figure 2: Figure Legends. We present the un-
et al., 2024) with Llama-2-7B (Touvron et al., learning (unlearn) and the retaining (retain) G-
2023a) (cf. Appendix B). Later in Section 5, effect, and also their values for specific layers, in-
we will demonstrate that the conclusions can be  cluding input embedding layer (embed), layers 1-
generalized to many other unlearning scenarios. 11 (shallow), layers 12-22 (middle), layers 23-33
All the methods will run for 5 epochs, totaling  (deep), and output unembedding layer (Im).
about 60 steps. Moreover, as indicated in Fig-

ure 2, we will report the unlearning (red) and retaining (blue) G-effect, as well as their detailed
values for particular layers within Llama-2-7B (dashed lines for the stacks of layers and dash-dotted
lines for input/output layers). We default to consider the NLL as the risk metric R.

4.1 GRADIENT ASCENT (GA)

As discussed in Section 2, GA represents one of the most basic unlearning objectives (Yao et al.,
2023c¢), which simply decreases the log-likelihood log p(s,; @) for the unlearning data.

The G-effect across Unlearning Steps. We illustrate the G-effect of GA in Figure 3(a). As we can
see, the unlearning G-effect reflects the high capability of GA in erasing parameterized knowledge
for targeted data, with its values rapidly declining from about 0 to —3.5 x 10°. However, this
excessive extent of unlearning incurs a large cost to the integrity for non-targeted data, evidenced
by the trajectory of negative values in the retaining G-effect that mirror the scales and trends of
the unlearning G-effect. Overall, such a scenario suggests that the improvements in unlearning are
accompanied by similar, or even greater, deterioration on non-targeted data.

Note that relatively near-zero values of the G-effect in the later updating stages do not imply that the
model can relearn the knowledge. In general, the G-effect exhibits cumulative behaviors, where the
presence of extremely negative G-effect, particularly between steps 20 to 40, has already indicated
a large deterioration on model performance. Smaller values of the G-effect in the later stages only
suggest that the subsequent damage to model integrity is less severe, mainly due to the GA objective
reaching its empirical convergence stage. Refer to Figure 9(b) in Appendix C.1 for more analysis.

The G-effect across Layers. We also observe that the G-effect values are notably greater in the
shallow layers than those in the middle and deep layers, which can be more clearly shown in Fig-
ure 3(b). It indicates that the general knowledge, which is parameterized within shallow layers, is
notably distorted, while such side impacts are less severe for middle and deep layers with context-
specific knowledge (Geva et al., 2020; Belrose et al., 2023). It is also worth noting that we isolate
the input embedding layer (embed) from other shallow layers (shallow), where we observe that the
input embedding layer has relatively negligible impacts on both removal and retention, highlighting
the distinct influences of the GA unlearning procedure on the input embedding layer and other shal-
low layers. Furthermore, the middle and top layers exhibit much smaller G-effect values than that
for shallow layers. However, the G-effect for the last layer, i.e., the output unembedding layer (LM),
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Figure 3: The G-effect for GA and WGA. We depict the G-effect for GA in (a) and its values in
the range between about —3.5 x 10* and 0 in (b). We further depict the G-effect for WGA, which
improves upon GA following equation 2, in (c). The legends are summarized in Figure 2. The
horizontal axis denotes the unlearning step and the vertical axis denotes the values of the G-effect.

is notably large and do not converge to near zero. This behavior suggests that such a linear model
performs some scaling operations to further reduce the GA objective that is lower unbounded.

Unlearning Mechanisms. We hope to further explore the unlearning behaviors behind GA, par-
ticularly focusing on its wrong tendency towards exhibit extremely negative values of the retaining
G-effect. Specifically, the gradients of Lga (Dy; 0) with respect to 0, i.e., Vg Lga(Dy; 6), are

||

1
p(sulsi' 0)
—_——

inverse confidence

HEsu"”Du vep(sfl‘slfl; 9)? (1)

=2

where the inverse confidence term tends to allocate more attention to those tokens that have been
notably unlearned, along with the decrease of the likelihood p(s%|s<"; @) throughout GA.

In this case, even minor negative values of each VoR(D; 0) T Vop(si|s<?; 0) can result in the cor-
responding VR (D; 0) "p(st sl 0) 1 Vep(st |ss?; 0) to be extreme. This trend will lead to the
extreme negative values of the unlearning G-effect, consistent with prior findings for the excessive
unlearning of GA (Wang et al., 2025). Therefore, this inverse confidence mechanism is predomi-
nantly responsible for excessive unlearning. One can counteract the impacts of the inverse confi-

dence by weighting the log-likelihood for each token via its own confidence, i.e.,

Is|

Eounp, ) wilh logp(silsy'; 0) @)
i=2
with wi®} = p(s}|s5'; 8) the confidence weights for the i-th token and a the hyper-parameter

of inverse temperature. We refer to this approach as the weighted GA (WGA). An example of its
G-effect in mitigating excessive unlearning is illustrated in Figure 3(c). Remarkably, we observe
that the negative impact on common data is considerably less severe compared to the improvements
observed on targeted data. Its underlying mechanism is not mystic, functioning as early stopping
to curb the unlearning extent. Particularly, when the unlearning extent is well-controlled, even the
original GA can outweigh the improvements of unlearning over the deterioration on integrity, a less
obvious scenario that is further elaborated in Figure 10 of Appendix C.1. Overall, the findings em-
phasize that excessive unlearning profoundly compromises the overall model integrity, necessitating
careful controls. For more detailed discussions about WGA, please refer to Appendix D.1.

4.2 NEGATIVE PREFERENCE OPTIMIZATION (NPO)

NPO is motivated by direct preference optimization (DPO), an alignment method (Rafailov et al.,
2024), which originally utilizes paired corpora comprising preferred versus dis-preferred data. NPO
segregates the dis-preferred part from DPO, heuristically employing it as the unlearning objective,
of which the formulation can be written as

2 p(su; 0)

ZE,,~p, log (1 + (5—2-1)5), 3)
B ° ( (p(Su;O(,)) )

where [ is the inverse temperature. NPO has shown notable enhancements over GA in preserving

the model integrity, which is recognized as the current state-of-the-art within the community.
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Figure 4: The G-effect for NPO. The legends are summarized in Figure 2. The horizontal axis
represents the unlearning step and the vertical axis indicates the values of the G-effect.
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Figure 5: The NPO Weighting Mechanisms. We depict the curves of average NPO weights in (a)
and the relationship of NPO weights with PG-effect in (b). Distributions of PG-effect for different
value ranges of wiP° are depicted, considering the checkpoints at 5, 10, and 15-th steps jointly.
Moreover, darker shades within distribution contours signify the groups of wgP° with overall larger
weights. We further depict the G-effect for an improved version of NPO, named TNPO, in (c). The
horizontal axes denote the unlearning step for (a) and (c), and the unlearning G-effect for (b). The
vertical axes denote the NPO weights for (a), the retaining G-effect for (b), and the G-effect for (c).

The G-effect across Unlearning Steps. We show the G-effect of NPO in Figure 4. We observe
that its values converge much faster than GA, aligning with previous observations (Zhang et al.,
2024). Moreover, the magnitudes of G-effect for NPO are notably smaller than those observed
with GA. In terms of the unlearning G-effect, it indicates that the unlearning strength of NPO is
weaker; however, for the retaining G-effect, it suggests that NPO better preserves the model integrity.
More importantly, magnitudes of retaining G-effect outweigh those of unlearning when 5 = 1 or
2, signifying that the negative impacts on model integrity are less pronounced than the beneficial
effects of unlearning, rendering NPO a promising method to mitigate excessive unlearning.

The G-effect across Layers and 3. Similar to GA, deeper layers exhibit weaker G-effect. How-
ever, both the input embedding and output linear layers display negligible values, which are dif-
ferent from the behaviors seen with GA. For both middle and deep layers, their retaining G-effect
is relatively small. Furthermore, across different values of the inverse temperature, we observe that
larger 3 makes the G-effect converge faster and their magnitudes become smaller. This phenomenon
generally arises because smaller 5 causes the NPO formulation more closely resemble to that of
GA (Zhang et al., 2024), of which the power in controlling the extent of unlearning is weaken. The
relationship between GA and NPO is further elucidated below in equation 4.

Unlearning Mechanisms. We now aim to understand the factors that contribute to the efficacy of
NPO. To begin with, we write the gradients of NPO with respect to 6 in the following

Esunp, wil Ve logp(su; 8), (4)
with wgP?® = %. Notably, compared with GA in equation 1, we find that NPO

p(sll;9)5+p(sll;9(,)ﬂ
exhibits s1mi1ar gradient formulation, albeit with a reweighting scheme wgP°. Therefore, wP®
primarily contributes to the advantages of NPO over GA, thus requiring our in-depth focus.

We illustrate the curves of wP® in Figure 5(a), observing a rapid decrease of wgP° from 1 to 0. The
formulation of wiP® reveals that, as the NPO risk decreases—indicative of the drop in the confidence
p(sy; @)—the weight wiP° reduces consequently. This weighting behavior seems quite resemble to
WGA. Then, the question arises whether w;P° encompasses some intriguing mechanisms beyond
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early stopping as in WGA. To further elucidate the G-effect of NPO, we expand it as follows:

Eg,~p, wi° VoR(D;0) Ve log p(sy; 81), (5)

PG-effect of GA

which details the G-effect on individual data points, represented as the product of the NPO weighting
term wyP° and the point-wise G-effect (refer to as PG-effect) of GA. Accordingly, we plot the joint
dlstrlbutlons for the PG-effect of GA with respect to unlearning (i.e., D = D,,) and retention (i.e.,
D = D¢\D,) in Figure 5(b). These distributions are categorized into five groups based on the
associated different value ranges of wyP°. As we can see, the distributions of PG-effects vary notably
across different ranges of wP°. Generally speaking, 2P tends to allocate larger weights to points
where the retaining PG- effect is near-zero. it is a preferred scenario as wgP° can prioritize data
points that have small negative impacts on model integrity. However, the s1de effect is to emphasize
those data points with less contributions to unlearning, thus compromising the unlearning strengths.
We conclude that NPO weighting can prioritize certain points that have small negative impacts on
non-targeted data, thereby enhancing the overall model integrity after unlearning.

One Step Further. We also notice some shortcomings for the NPO weighting mechanism. First,
there are many failure cases where some data points with near-zero retaining PG-effect while large
unlearning PG-effect is inappropriately assigned with small weights. Also, the distribution of PG-
effect with wgP in the range between 0.4 to 0.6 demonstrates a wrong trend in assigning large
weights to those data points that have large negative impacts on model integrity, i.e., notably negative
retaining PG-effect. Ideally, we hope the weighting mechanism can prioritize points that not only
have near-zero retaining G-effect and also exhibit large negative unlearning G-effect, a capability
that the current NPO weighting does not possess.

It is worth noting that our above analysis does not disqualify wP° as a meaningful mechanism. In-
deed, when wgP® is applied token-wise, which allows for more granular control over the unlearning
process, the unlearning procedures are notably more effective. Formally, we consider the objective

[sul

Es.~p, Z wt log p(sy|s'; 0), (6)
where wznpzo = ST 2p(s é) B‘jp (S?)‘S AL generalizes the weighting mechanism of NPO for tokens.

We refer to equation 6 as token-wise NPO (TNPO) and show its G-effect in Figure 5(c). Therein, we
observe that the unlearning G-effect exhibits sufficiently large negative values while the retaining
G-effect is overall close-to-zero. It underscores the efficacy of wzru‘pio in properly prioritizing certain
tokens during unlearning, thus achieving unlearning efficacy. Please refer to Appendix D.2 for more

discussions about TNPO, as well as its further improved version named WTNPO.

4.3 MORE OBJECTIVES

We also examine two other unlearning objectives that do not fall into the variants of GA.

Preference Optimization (PO) (Maini et al., 2024)
overwrites LLMs with new outcomes instead of

erasing old ones. Given some prefix s<% and the new 15
suffix sp,, the PO unlearning objective is given by 19
g 5
b= =
, 5 - :
IESuNDu - log p(8p0|8<l§ 0) (7) 0 : step 20 step 40 step 60
It is particular suitable for LLMs fine-tuned for ques- -10

tion answering, where s<° is the original question
and sy, is the new answer. We show its G-effect in

Figure 6. Unfortunately, we note that the PO may Figure 6: The G-effect for PO. The legends
not be suitable for LLM unlearning: Its validity in for the G-effect are in Figure 2. The hor-
erasing targeted knowledge is limited to the early iZontal axis denotes the unlearning step and
phases of model updating. Then, PO may even in- the vertical axis is the values of the G-effect.

advertently facilitate the knowledge relearning.
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Figure 7: The G-effect for RMU. The legends for the G-effect are summarized in Figure 2. The
horizontal axis denotes the unlearning step and the vertical axis indicates the values of the G-effect.

60 120 0.1|-

50 100 0. o o B
§ao E 80 I teW 60
© 30 @ 60 % !
© 20 O 40 602

10| 20 ~0.3

0 0 o — -0.4
step 20 step 40 step 60 step 20 step 40 step 60
(a) GD (b) KL (c) RR

Figure 8: The G-effect for Regularization. The legends for G-effect are in Figure 2. The horizon-
tal axis denotes the unlearning step and the vertical axis indicates the values of the G-effect.

Representation Misdirection for Unlearning (RMU) (Li et al., 2024) implements unlearning by
perturbing model representation. Denote the embedding features by ¢(s; 8), RMU is articulated as

ls|]—1

1 .
D7 (5<% 0) — c - ull3, (8)
=1

IEsuw'Du ‘5‘ 1
where u is a random vector with elements sampled uniformly from [0, 1) and ¢ is a scaling hyper-
parameter. We adopt outputs for 11-th, 22-th, and 33-th (before unembedding) layers as ¢(s; ),
and their G-effect is summarized in Figure 7. We notice that its performance is very sensitive to
different choices of ¢(s; 0), where middle (22-th) layers seem to be a better choice than shallow
(11-th) and deep (33-th) layers. In Appendix C.3, we further show that RMU is also sensitive to
varying ¢, where a wrong configuration may be even completely contrary to the goal of unlearning.

Moreover, we observe that the improvements on unlearning come at similar costs in terms of im-
pairing the general utility, a phenomenon reminiscent of the challenges faced with the vanilla GA. It
can also be considered as a scenario of excessive unlearning, where the magnitudes of parameter up-
dates are too large, thus failing to preserve essential knowledge for common data. Given its current
limitations, more explorations are needed to advance unlearning through embedding perturbation.

4.4 REGULARIZATION

Although we have identified several promising objectives, the retaining G-effect overall remains
negative. It indicates that there are still adverse effects on the common model integrity. We also
want to note that, while some of the magnitudes are steadily small, e.g., for the retaining G-effect
of TNPO in Figure 5(c), their accumulation across steps will still have a notable impact. A wide-
accepted strategy to improve retention is by regularization, involving a set of additional common
data to maintain the original model responses. In this section, we explore 3 representative regu-
larization terms, named gradient difference (GD) (Yao et al., 2023b), KL divergence (KL) (Maini
et al., 2024), and representation retention (RR) (Li et al., 2024) (cf., Appendix E). We choose NPO
as the unlearning objective, computing the G-effect for various regularization terms. The results are
summarized in Figure 8. Overall, our observations indicate that RR does not serve for effective reg-
ularization due to its unstable G-effect behaviors. In contrast, both GD and KL effectively facilitate
knowledge retention. However, the strength of the G-effect associated with KL surpasses that of
GD, leading us to suggest KL as a default choice of regularization for retention.
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5 EVALUATIONS

In this section, we further benchmark aforementioned unlearning objectives on the TOFU unlearning
datasets (Maini et al., 2024), focusing on the removal of fictitious author profiles from LLMs fine-
tuned on them. Comprising a series of question-answer pairs about author profiles, the TOFU dataset
is further separated into targeted and non-targeted parts, thereby providing an intuitive platform to
effectively evaluate the impact of various unlearning methods.

We test two popular LLMs: Phi-1.5 (Li et al., 2023) and Llama-2-7B (Touvron et al., 2023b), un-
der three ratios—1%, 5%, and 10%—of targeted data. For hyper-parameter tuning, we follow the
unlearning with control (UWC) framework (Wang et al., 2025), which surpasses the challenges of
trade-offs between removal and retention. Please refer to Appendix B for additional details on the
experimental setups and Appendix G for hyper-parameter configurations.

Configurations. We default to apply the following settings: the AdamW optimizer (Loshchilov &
Hutter, 2017), a batch size of 16, a maximal gradient norm of 1, and the (un)learning rate of 2¢~ for
Phi-1.5 and 1e~5 for Llama-2-7b with linear warm-up for the first epoch. Each method is executed
over a total of 5 epochs. Moreover, the model-specific hyper-parameters after fine-tuning are as
follows: For the 1% and 5% setups, we set a = 5 for WGA; 8 = 0.5 for NPO; 8 = 4 for TNPO;
o = 1.5 and 8 = 5 for WTINPO. For the 10% setup, we set « = 7 for WGA; = 0.5 for NPO;
B = 5 for TNPO; o = 1.5 and 8 = 7 for WTNPO. For RMU, we set the 9-th layer with ¢ = 4 for
Phi-1.5 and the 21-th layer with ¢ = 2 for Llama-2-7B. Moreover, our experiments are conducted on
computation nodes equipped with NVIDIA-A100-80GB GPUs and Intel(R) Xeon(R) Gold 6248R
CPUs. The systems utilize Transformers version 4.42.4 and CUDA version 12.1.

Evaluation Metrics. We adopt the suggest evaluation metrics from (Maini et al., 2024), specifically
forget quality (FQ) for unlearning and model utility (MU) for retention. FQ evaluates model perfor-
mance by jointly examining output quality, confidence, and truth ratio, fully reflecting the common
model integrity. MU produces p-values to assess the change of model outputs between the gold
standard model, which is trained from scratch without targeted data, and the unlearned model. We
utilize the log-scale for these p-value to make the results more readable. We aim for high values in
both FQ and MU. We further report the ES scores (Wang et al., 2025), which more directly quantify
the extent of knowledge parameterized within models, potentially making them more effective met-
rics than FQ and MU. The ES scores can be calculated for either targeted data or non-targeted data,
thereby reflecting model performance of removal and retention, respectively. Notably, the ES scores
are available in two variants: ES-exact, which is used for original data to reflect direct parametriza-
tion, and ES-perturb, which applies to their rephrasing to reflect generalization. Overall, the ES
scores should be high for retention and low for removal.

Analysis. The results are summarized in Table 1, where we use KL regularization to stabilize the
unlearning procedures. Among previous methods, PO is identified as the least attractive choice,
which may even inadvertently maintain data that ought to be unlearned, corroborating our observa-
tions from the G-effect analysis. Conversely, GA is most effective in removing targeted data but at
the expense of compromising model integrity. Both NPO and RMU offer a better balance between
data removal and retention, with NPO overall outperforming RMU (except for 10% unlearning with
Llama-2-7B). This can be attributed to the more stable G-effect of NPO over that of RMU.

For our newly explored methods, WGA remarkably overcomes the drawbacks of GA, particularly
in mitigating excessive unlearning, meanwhile maintaining its strong capability for the removal of
targeted data. Additionally, both TNPO and WTNPO improve upon NPO by not only enhancing
unlearning performance but also excelling in retaining common performance. WTNPO typically
outperforms TNPO as it further mitigates the potential issues of excessive unlearning observed in
TNPO. Overall, when comparing methods across different unlearning setups and models, WGA and
WTNPO stand out as the most effective, underscoring the crucial role of loss weighting in the un-
learning process for LLMs. However, we recommend the default use of WGA, as it requires tuning
only one hyper-parameter and generally perform well, recognized as effective for LLM unlearning.

It is worth noting that most of the above analyses are based on our results measured by ES. When
it comes to MU and FQ, our refined methods can still outperform it previous counterparts in most
cases, suggesting that the goals of full removal and influence removal are generally aligned. How-
ever, there is also an abnormal case of 5% unlearning with Llama-2-7B, where the MU scores of
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Table 1: Comparison between Unlearning Objectives on TOFU with KL regularization to sta-
bilize unlearning. | / 1 indicate smaller / larger values are preferable. The log scale is used for FQ
to improve readability. The top two results are in bold font for each unlearning setup.

LLM Phi-1.5 Llama-2-7B
ES-exact ES-perturb ES-exact ES-perturb
setup - method retain T unlearn | retain T ’ unlearn | MU FQt retain T unlearn | retain T ” unlearn | MU FQt
before unlearning ~ 0.4433 0.5969 0.2115 0.1605  0.5232  -5.8031 0.8277 0.8039 0.5302 0.4001 0.6345  -7.5930
GA 0.1103 0.0530 0.0850 0.0828  0.3799  -0.5471 0.4298 0.0570 0.2692 0.0422 05378 -0.5471
PO 0.3667 0.8472 0.1622 03658  0.5112  -4.2474 0.7508 0.8359 0.4724 0.5259  0.6246  -5.8031
WGA 0.3629 0.0344 0.1857 0.0282  0.5191  -0.5471 0.6701 0.0818 0.3814 0.0601 0.6541  -0.0847
1% NPO 0.2727 0.0916 0.1125 0.0733 04845 -29162 0.4757 0.1216 0.3890 0.0905  0.6243  -1.3254
TNPO 0.3351 0.0365 0.1239 0.0412 04991  -0.0847 0.5168 0.0337 0.4304 0.0337  0.6495  -0.0847
WTNPO  0.4117 0.0285 0.1969 0.0255  0.5126  -0.2667 0.6701 0.0807 0.3734 0.0601 0.6453  -0.0847
RMU 0.2397 0.0850 0.1539 0.0567 04349 -0.5471 0.2397 0.0850 0.1539 0.0567  0.5298  -1.3254

before unlearning  0.4433 0.5619  0.2115 0.2374 05232 -29.6514 0.8277 0.7735 0.5302 04126 0.6345 -32.1330
GA 0.0000  0.0000  0.0000 0.0000  0.0000 -11.4040 0.0300  0.0000  0.0206 0.0000  0.0000 -12.4230
PO 0.2646  0.7986  0.1639 04925 05118 -26.5061 0.5572  0.8437  0.3652 0.4933  0.6466 -28.8476

WGA 0.2980  0.0179  0.1645 0.0199  0.5108 -1.3076 0.4709  0.0053 0.3982 0.0050  0.6438 -16.3271

5% NPO 0.0876  0.1267 0.0876 0.0609  0.3841  -7.7503 0.1747 0.0764  0.1273 0.0802  0.5285 -9.9550
TNPO 0.1695 0.0126  0.0803 0.0038 04673 -2.1867 0.5017  0.0160  0.3495 0.0099  0.6348 -32.1330
WTNPO  0.2185 0.0179  0.1281 0.0188  0.5084  -3.2299 0.4595 0.0061 0.3989 0.0040  0.6410 -21.4429

RMU 0.2162  0.0000  0.1299 0.0000 02744 -1.9514 0.1262  0.0000  0.1299 0.0000  0.5801 -21.4429

before unlearning  0.4433 04799  0.2115 0.1843  0.5232 -39.0042 0.8277 0.8307 0.5302 03099  0.6345 -44.4594
GA 0.0000  0.0000  0.0000 0.0000  0.0000 -45.2697 0.0000  0.0000 0.0000  0.0000 0.0000 -20.8637
PO 0.3222  0.7321 0.1406 0.2667  0.5078 -38.2556 0.5572  0.8437 0.3777 04305  0.6240 -39.7604

WGA 0.3466  0.0000  0.1651 0.0000  0.5183 -9.0636 0.6642  0.0287 0.4289 0.0123  0.6235 -24.8591

10% NPO 0.0859  0.0955 0.0716 0.0710 03878 -10.5721 0.1296  0.1388 0.1085 0.1440 05055 -12.1912
TNPO 0.2085 0.0163 0.0991 0.0134  0.5009 -7.6651 0.4531 0.0192  0.2690  0.0165  0.6381 -13.4785
WTNPO  0.2969 0.0048 0.1862 0.0105 05123  -7.0070 0.4997 0.0278 0.3246 0.0174  0.6236 -26.6801

RMU 0.0317 0.0541 0.0357 0.0632 03163  -7.0070 0.2580  0.0194  0.2017 0.0174  0.5930 -16.7271

our proposed methods remain high, while the FQ for NPO notably surpasses our methods. Given
that our methods better preserve retention, we believe they offer more practical applicability than
NPO. Nonetheless, the disagreement between ES and FQ metrics still deserves our further attention,
necessitating deeper explorations into the reliability of these metrics and determining which goals,
either full removal or influence removal, are better suitable for LLM unlearning.

6 CONCLUSIONS

LLM unlearning aims to eliminate unwanted knowledge while preserving the overall model in-
tegrity. This paper particularly focuses on understanding the mechanisms behind various unlearning
objectives, based on our proposed evaluation tool named the G-effect. Our findings suggest that GA-
based unlearning objectives remain to be promising, but we need to mitigate the risk of excessive
unlearning and the potential harm on model integrity. We further introduce advanced unlearning
objectives, such as WGA and TNPO, that set as new state-of-the-arts within the community.

Drawbacks of the G-effect. As shown in Appendix A, to motivate the G-effect, we assume that
singular values of the matrix A have low variance. However, it may neglect important model prop-
erties with unlearning smoothness. Refining the G-effect to better incorporate A could make the
evaluation scheme more accurate and insightful. However, its computation requires estimating the
Hessian matrix, a tedious process that needs approximation (Singh & Alistarh, 2020). Also, using
NLL as the risk metric to define R may not be the optimal choice, given that model likelihood can
be misleading to characterize the knowledge parametrization (Duan et al., 2024).

Promising Directions. Although we achieve several powerful unlearning objectives, their practical
implementations still require regularization for retention; otherwise, the common model integrity
will be compromised. Thus, further enhancements in unlearning objectives are anticipated, such
as devising improved weighting mechanisms (Ren et al., 2018) and exploring robust representation
methods. Moreover, on the optimization side, techniques like sub-model updating (Yao et al., 2024)
and layer-adapted updating (Schaul et al., 2013) can be promising to further advance the research
area. On the data-oriented side, unlearning methods that incorporate filtering or prompting to foster
improved G-effect behaviors also be intriguing, while currently are not covered. On the evaluation
side, it is also intriguing to explore the G-effect using advanced metrics, such as risk aversion (Yang
et al., 2023) and effective robustness (Taori et al., 2020), to better quantify the impacts of unlearning.
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ETHIC STATEMENT AND REPRODUCIBILITY

Unlearning mechanisms are crucial for LLMs, as they facilitate the removal of sensitive data that
may lead to copyright and privacy violations, significantly boosting the overall confidentiality of
models. By identifying and eradicating privacy risks, we fulfill the ethical obligation to respect in-
dividual privacy. Adapting LLMs to prevent the replication of sensitive information further aligns
with the principles of responsible data use. In essence, the process of unlearning in LLMs enhances
societal well-being by improving both the safety and legal compliance of these technologies. Ad-
ditionally, we benefit the research community by introducing a new analytical tool, the G-effect,
designed to measures the comprehensive impacts of unlearning objectives on LLMs. This tool fa-
cilitates a detailed analysis of existing unlearning objectives and offers the potential to evaluate the
efficacy of a broad range of new methods. The deployment of such a toolkit contributes to open in-
quiry and could encourage collaboration and further studies in this pivotal area. For reproducibility,
we have detailed the configurations, hyper-parameter setups, and hardware specifications. The code
is publicly available at: https://github.com/tmlr-group/G-effect.
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A A FORMAL MOTIVATION FOR THE G-EFFECT

Overview. To formalize our key concept of the G-effect, we begin by examining the impacts of an
unlearning objective £,, on model parameters 8 with mini-batch gradient updates. We simplify the
expression for the unlearned parameters 6,, such that it is independent of the intermediate parameter
stages, cf. equation 10. Then, substituting the approximation of 8, into R(D; 6,,), we observe that
the change in model performance can be primarily characterized by the dot product of gradients
between the risk metric R and the unlearning objective L, cf. equation 13. Its generalized version
leads to our G-effect in Definition 1. Please see below for a formal description.

Without loss of generality, we consider an objective £, and a sequence of mini-batches {Sl(lt)}T
that are randomly drawn from D,. These batches are sequentially fed in LLMs to minimize L.
Specifically, for the ¢-th iteration, the model parameters are updated from 8¢—1) to 8(*) following

0 — 94D _ 1rV,yL,(SED; 011, 9)

with 1r the (un)learning rate. To understand the impacts of equation 9 on model parameters and
subsequent effects on model performance, we further simplify the accumulative effects of gradient
updates: When assuming 1r is small and each point in D,, occurs k times within {Sl(f)}T, we can
approximate the final parameters after unlearning as

01 ~ 0 — 1rkAVeL,(Dy;0). (10)
A is a symmetric matrix associated with model smoothness and orders of mini-batches. Also, A will
converge to the identity matrix when « approaches 0. Please see below for the detailed derivations.

Proposition 1. Given the original parameters 8(°) and the objective L. During the stochastic
gradient updates, the model will receive a sequence of T random mini-batches of samples {S ®) b,
which will be fed into the model orderly via 8 < 0~V — 1rVo£(SE=1: 9¢=1)). With a small
11, we can approximate the final parameters 0'T) after stochastic gradient updates as

T—1
0" ~ 0 — 1rAY " VeL(s";6), (11
t=0

where A =1 — lrzz:ll V2L(SM;00) and I is the identify matrix. The matrix A characterizes
the smoothness with respect to L, the impacts of 1r, and the influence of ordering within {S ®) b

Proof. We begin by showing parameter changes after two consecutive steps, i.e., from the ¢-th
to the ¢ + 2-th step. Substituting 8¢+ <« ) — 1rVoL(S®;01) into (¢H2) U+
1rVeL(SHHD); 91+ we can express the parameter update at ¢ + 2-th step in terms of 8(*) as
00+ 91 — 1rVeL(SM:00) — 1rVe (ST, 00) — 1rVeL(SM; 1)),
When further applying the first-order Taylor approximation around 8®), we have
02 ~ 0t) — 1r[VoL(SM;01))+VeL(stH1);01)
+VEL(SU 00 (—1rVeL (ST 01))].

The above formulation can be expanded to incorporating more updating steps: Considering the
accumulations of gradient updating from the O-th to 7-th steps, we have

T-1
0 ~ 0 —1r> " Ver(s";00) + Z P
t=0

where (1) = —1rV2L(S®;0)(— 1 3] Vo L(S®);00) + 37~ ) and (@ = 0.
When the learning rate 1r is small (e.g., notably less than 1), the influence of higher-order terms
with respect to 1r diminishes. Therefore, we can further simplify the formulation of 1(*) as 1)®) ~
1r2V2L(S®;00) ST 1 Ve L£(S1);0(0)). Substituting the approximation of (") back into the
formulation of 8(1), we complete the proof. The analysis is motivated by (Thudi et al., 2022). [
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What Ensures a Good Unlearning Objective? We go beyond equation 10 and substitute it into
R(D;0,). When the difference between the unlearned model 8,, and the original model 0, is
acceptably small, we can apply the first-order Taylor expansion upon R(D; 6,,), which can help us
to simplify the formulation of the performance change by

R(D;6,) — R(D;0,) ~ —1rkVeR(D;80,)" AVeL,(Dy;6,). (12)

One step further, by eigenvalue decomposition, VR (D; GO)TAVQEU(Du; 6,) is lower and up-
per bounded by Apin||[VoR(D; 65)|| [|VoLu(Du; 05)|| and Amax||VoR(D;0,)]| || Vo Lu(Dy; 0o)]|-
Amin and Apax are the minimal and the maximal eigenvalues of A. Furthermore, when « is
small, the difference between Ay and Apay is negligible, thus existing A € [Amin, Amax] such that
AVoR(D;6,) VoLy(Dy; 6,) is a good approximation of VoR(D; 0,) " AVeL,(Dy; 6,). Thus,

R(D;0,) — R(D; 0,) ~ —1rkAVR(D;0,)  VoLu(Dy; 6,). (13)

Moreover, when taking 1rk) as a constant, we conclude that the dot product between VR (D; 6,,)
and VgL, (Dy; 0,) quantifies the impacts of £, on model performance measured by R(D;8,,).
Specifically, echoing the general goal of LLM unlearning in Section 2, we can claim that a good
unlearning objective should meet the following two conditions jointly:

+ Removal. We define e, = VoR(Dy;0,) ' VoLu(Dy; 0,), which should be much smaller than
0. It ensures the sufficient removal for targeted data, i.e., R(Dy; 64) > R(Dy; 0,).

+ Retention. We define e, = VoR(D\Dy;0,) " VoLyu(Dy;6,), which should be greater than
or equal to 0, ensuring performance on common data will not reduce, i.e., R(Di\Dy; 0,) <
R(D¢\Dy; 0,).

Although e, and e, can anticipate performance changes following a sequence of gradient updates
based on L, their validity relies on our assumption that the difference between 6, and 6,, remains
small. Otherwise, the first-order Taylor approximation may introduce large errors. Therefore, we
generalize e, and e, to make its expression depend on particular updating steps, thereby leading to
our definition of the G-effect in Section 3.

Connection with Previous Works. The G-effect resembles the formulation of influence func-
tions (Koh & Liang, 2017) when assessing the inherent influence of training data on test data via
their respective gradients. However, there are also substantial differences between them. First,
the G-effect primarily explores the roles of objectives in shaping performance, whereas influence
functions focus on the impact of individual data points or features on performance. Moreover, the
G-effect is derived from the first-order approximation of the SGD dynamics, while influence func-
tions are computed by the linearization of optimal solutions and are based on the average marginal
contributions, thus serving completely different purposes. Also, while we use NLL as the risk metric
‘R, exploring other choices (Wang et al., 2022; Taori et al., 2020; Agarwal & Zhang, 2022) has the
potential to offer more rigorous and reliable ways of measurement.

Further Discussions. In Figure 1, the gradient behaviors are divided into four distinct regions:

* Region 1 (Blue Region not intersecting with Red): Objectives with gradients in this region
excel at retention but are not effective at unlearning.

* Region 2 (Intersection of Red and Blue Regions): Objectives here are effective at unlearn-
ing but struggle with retention.

* Region 3 (Red Region not intersecting with Blue): Objectives in this region demonstrate
proficiency in both unlearning and retention.

* Region 4 (White Region): Objectives here are ineffective at both unlearning and retention.

Overall, Regions 1 and 3 exhibit a trade-off between unlearning and retention. Region 2 contains
ideal objectives for unlearning, whereas Region 4 is unsuitable for unlearning objectives.

Our experiments further substantiate our claims to be correct. For example, when comparing the
unlearning G-effects of NPO and GA in Figures 3-4, GA exhibits a greater magnitude compared
to NPO, indicating a stronger capability of GA in removing targeted data, further evidenced by
the results in Table 1. Similarly, when comparing the retaining G-effects between GA and WGA
in Figure 3, the effect magnitude for WGA is notably smaller than that of GA, demonstrating the
superior ability of NPO to maintain original performance, also detailed in Table 1.
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B EXPERIMENTAL SETUPS
We provide more detailed information about our experimental setups.

B.1 TOFU BENCHMARKS

Our evaluations are based on TOFU fictitious unlearning (Maini et al., 2024), focusing on LLMs
fine-tuned with a series of fictitious authors profiles. These profiles were created by prompting
GPT-4 (Achiam et al., 2023), which has been filtered to avoid the occurrence of any real author
profile, thus mitigating the inadvertent impacts of other unrelated variates. For each fictitious profile,
TOFU crafted 20 question-answer pairs that can be used for fine-tuning, along with their paraphrased
versions for evaluations.

The pre-trained LLMs are further fine-tuned on such question-answer pairs, where we consider
two popular LLMs, i.e., Phi-1.5 (Li et al., 2023) and Llama-2-7B (Touvron et al., 2023a) of their
question-answering versions. For the unlearning setups, the original TOFU data are separated into
targeted and non-targeted parts, of which the adopted proportions are 1:99 (1% unlearning), 5:95
(5% unlearning), and 10:90 (10% unlearning). Moreover, we separate 400 non-targeted data that are
not involved during the unlearning procedure for evaluations, reflecting real-world situations where
it is not feasible to go through all non-targeted data during the unlearning process.

B.2 UWC HYPER-PARAMETER TUNING

We need to ensure common model integrity when conducting unlearning, but these two goals are
often conflicting, failing to align with their Pareto frontiers (Maini et al., 2024). It leads to the
dilemma when comparing across unlearned models: Some models may excel at unlearning while
others better maintain the overall integrity, making it hard to judge which one is overall better.

The unlearning with control (UWC) (Wang et al., 2025) framework offers an interesting solution.
It allows for the adjustment of model parameters post-unlearning by mixing them with that before
unlearning. By proper control of this mixture, different unlearned models can achieve comparable
levels of common performance with minimal compromise on their extent of unlearning. Thereafter,
we can compare between models by focusing on assessing their unlearning performance. During
hyper-parameter tuning, we adopt the KL regularization to stabilize the unlearning procedure, en-
suring the results to be general. In UWC, we permit a maximum performance reduction of 10% for
Phi-1.5 and 5% for Llama-2-7B, following the default configuration adopted in (Wang et al., 2025).

B.3 EVALUATION METRICS

We consider the extraction strength (ES) as suggested by (Wang et al., 2025), which quantifies
the amount of additional information required to fully restore the original outputs after unlearning.
ES is calculated differently depending on data types, for either the original data (ES-exact) or their
rephrased version (ES-perturb). For the purpose of removal, ES should be evaluated for data targeted
to be unlearned, where lower values signify a stronger unlearning capability. Conversely, for the goal
of retention, ES should be assessed for other common data, wherein higher values indicate the model
integrity is more preserved. We further report on the evaluation metrics proposed by (Maini et al.,
2024), specifically MU and FQ. The MU metric is a composite measure designed to assess model
integrity, encapsulating confidence in generating authentic outputs, the similarity between original
and current outputs, and the probability ratio between correct and incorrect outputs. Generally, a
higher MU is preferable. Moreover, FQ quantifies the effectiveness of unlearning by conducting
a statistical test to compare the distribution of model outputs before and after unlearning, where,
typically, a larger FQ value signifies more effective unlearning. Note that the log scale is used for
FQ to make the results more readable.
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Figure 9: The Unlearning Dynamics for GA. We illustrate the G-effect throughout the GA proce-
dure in (a), the unlearning risk in (b), and the inverse confidence (inv. conf.) in (c).
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Figure 10: The G-effect for GA. Different ranges are considered for varying levels of clarity.

C MORE DISCUSSIONS FOR EXISTING UNLEARNING OBJECTIVES

We present more results for the G-effect of GA, NPO, and RMU.

C.1 GA

We report the G-effect in Figure 9(a) along with the curves of the unlearning risk in Figure 9(b)
and the inverse confidence in Figure 9(c). First, we observe that the dynamics of the G-effect align
precisely with those of the risk. Specifically, the sudden decrease in the G-effect from about the
20-th to 40-th steps mirrors the drop in the risk values. Moreover, there is a rapid increase in the
inverse confidence, which exceeds more than 107 around the 30-th steps, primarily contributing to
excessive unlearning as discussed in Section 4.1.

This steep rise in inverse confidence can be easily interpret: As the GA unlearning risk decreases,
the values of p(sy; 0) decrease accordingly, further leading to the increase of its inverse, i.e., the
inverse confidence p(s,; @) ~!. From a point-wise weighting perspective, the behaviors of the inverse
confidence is problematic, suggesting that the unlearning dynamics wrongly focus on points that
have already been largely unlearned. Obviously, it will lead to extreme over-fitting and catastrophic
forgetting, as the associated gradient updates will completely overwhelm the parameters.

We further provide the G-effect throughout GA at 3 different zoom levels for more detailed obser-
vations. In Figure 10(a), we demonstrate that the deterioration to model integrity will outweigh the
improvement in unlearning. In Figure 10(b), we highlight that the G-effect for shallow layers is
notably larger than those in middle and deep layers. Moreover, in Figure 10(c), we reveal that in the
early unlearning phases, e.g., before the 20-th step, the improvements on unlearning can be greater
than the damages in retaining model performance.

C.2 NPO

We detail the G-effect along with the risk values and the weighting mechanisms throughout NPO in
Figure 11, across different setups of 3. As observed, the magnitudes of G-effect overall increase as
the values of 5 decrease. Simultaneously, the difference between retaining and unlearning G-effect
also decreases, signifying a potential trade-off between removal and retention. In general, NPO can
moderate the extent of unlearning and make the differences between unlearning and retention G-
effect more distinct. Such an observation is particularly pronounced when S is set relatively large.
Conversely, when 3 is small, NPO gradually degenerates to the formulation of GA, as illustrated by
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Figure 11: The Unlearning Dynamics for NPO. We illustrate the G-effect, the unlearning risk, and
the NPO weighting mechanism following equation 4. The legends for the G-effect are summarized
in Figure 2.

equation 4 with 8 = 0. Thus, its behaviors increasingly resemble those of GA as 3 decreases, cf.,
Figure 9. A close relationship between the risk values and the weighting mechanism is also noted,
which may further signify that the inherent weighting mechanism wgP° primarily contributes to the
faster convergence rate of NPO compared to GA.

C.3 RMU

We present the G-effect for RMU across different embedding layers (11-th, 22-th, and 33-th layers)
and the scaling hyper-parameter (c = 0, 1, and 5). The results of G-effect are summarized in Fig-
ure 12. We observe that perturbing either middle (22-th) or shallow (11-th) layers is much preferred
than that for deep (33-th) layers, where the perturbation of deep layers makes the overall unlearn-
ing procedure notably unstable. Additionally, the G-effect demonstrates instability across various
scaling parameters, especially for shallow and deep layers. Therefore, we suggest defaulting to per-
turb the middle-layer representations when using RMU. However, we also note that the dynamics
and values of the unlearning and retaining G-effect are quite similar during RMU, mirroring the
scenarios observed with the original GA. This scenario can also be viewed as the consequences of
excessive unlearning, probably stemming from the mapping of original features to completely noise.
Such a formulation of perturbations can lead to prohibitively large updates of parameters, especially
when the differences between the original and perturbed features are notably large.
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Figure 12: The G-effect for RMU. The embedding features for various layers, including 33-th,
22-th, and 11-th layers, are considered. The legends for the G-effect are summarized in Figure 2.
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Figure 13: The G-effect for WGA. The legends for the G-effect are summarized in Figure 2.
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Figure 14: The G-effect for TNPO. The legends for the G-effect are summarized in Figure 2.

D MORE DISCUSSIONS FOR NEW UNLEARNING OBJECTIVES

In this section, we delve deeper into our newly proposed unlearning objectives, achieved during our
analysis of existing literature. Specifically, inspired by the GA, we introduce weighted GA (WGA)
to alleviate its excessive unlearning issues. Building on NPO, we propose token-wise NPO (TNPO)
and its further refined version, named weighted TNPO (WTNPO), which better can take advantages
of the weighting mechanisms derived from NPO.

D.1 WGA

WGA improves upon GA to mitigate its excessive unlearning issue, controlling the extent of the
inverse confidence term during unlearning. Specifically, the formulation for the WGA objective is

[s]
Es,~p, Y wi logp(sh|sy’; 0) (14)
1=2

with w( ® = p(si]s=% @) the confidence weighting for the i-th token and « the hyper-parameter.
When o@ = 0, WGA degenerates to the original GA. Increasing o helps mitigate the drawbacks
associated with inverse confidence, while its excessively large values may cause the unlearning
procedure to converge too early. Therefore, carefully selecting « allows for a trade-off between
excessive unlearning and potential under-fitting. We present the G-effect across different values
of « in Figure 13. As we can see, counteracting the impacts of the inverse confidence term can
notably improve the efficacy of unlearning, where the improvement of unlearning will outweigh the
deterioration on integrity, even with only a small strength of the confidence weighting (i.e., « = 0.1).
We also prefer relatively smaller values of «, as its power of unlearning remains stronger, signifying
by its large negative values of the unlearning G-effect.

D.2 TNPO aNnD WTNPO

TNPO represents a modest modification over the original NPO, which is originally employed to
explore the true efficacy of the NPO weighting mechanism. Recalling that, in Section 4.2, we
outline the inherent weighting mechanism of NPO, which possesses some capability to distinguish
beneficial data points from potentially harmful ones. Despite these advantages, we also find failures
of this weighting mechanism, cf., Section 4.2 and Appendix F.

However, we hypothesize that these shortcomings do not necessarily stem from its inherent deficien-
cies, but rather from its limited flexibility in controlling the unlearning procedure. A direct approach
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to enhance the flexibility of the weighting mechanism is to apply it on a token-wise basis. This mod-
ification involves prioritizing certain tokens over entire data points, which is the primary distinction
from the original NPO. To further clarify our discussion, we use the explicit form of the weighting
mechanism, leading to the formulation of TNPO as follows:

[sul

Eq,~D, Zw P2 Jog p(sh|si’; 0), (15)

tnpo _ 2p(st|sSh;0 )8

swit T p(silse’i0)P+p(sh st 1007
are summarized in Figure 14. When the inverse temperature is relatively small, e.g., 5 = 1, the
improvement upon unlearning causes negligible deterioration on model integrity, making TNPO a

very preferred unlearning objective for LLM unlearning.

with w The G-effect values across several candidate values of

For the case where 5 = 0.1, we observe that be-

tween the 30-th and 40-th steps, TNPO achieves

better unlearning improvements compared to when or
8 = 1. However, from about the 55-th to 60-th steps, -100
TNPO further reduces the unlearning G-effect, but
this comes with the downside that the retaining G-
effect is also notably dropped. To address this issue, -400
we recall that wzﬁlzp will approach 1 when decreas-

ing 3 to 0, indicating that the excessive unlearning

may still occur. To this end, we can further employ Figure 15: The G-effect for WTNPO. The
the weighting mechanism used by WGA, leading to legends for the G-effect are in Figure 2.

the unlearning objective of weighted TNPO (WT-

NPO) in the following formulation:

step 20 step 40 step 60

[sul

t
Baumy YW g p(silsi56), (16)
. wtnpo __ 2p(st[sS4;0)P T .
with wg ™ = PGS 0) P4 p(s s 807 " We present an example for the G-effect of WITNPO in

Figure 15, where we fix 8 = 0.1 and consider « = 0.5. Employing the confidence weighting can
further stabilize the unlearning procedure of TNPO, yet has the costs that the strength of unlearning
is weaken. Therefore, there should be trade-off across different values of o when using WTNPO.

E REGULARIZATION

In this section, we provide an overview of the regularization terms discussed in Section 4.4, in-
cluding GD, KL, and RR. Both GD and KL originate from initial studies of GA to enhance the
stability of their unlearning processes, and have since been further investigated in subsequent stud-
ies such as NPO. Specifically, GD improves upon GA by decreasing the negative log-likelihood for
non-targeted data, as expressed by the equation of

E(z.y)~p\D, L (y|7;0). (17)

KL aims to maintain the model responses for non-targeted data to that before unlearning. It is
achieved by the token-wise KL divergence, as shown below:

Eoy)mpap. O KL= | 2:0)[p(y=* | :6,)), (18)
k

where KL denotes the operator of the KL divergence. Moreover, RR, which originates from the
studies of RMU, is designed to maintain the embedding features during unlearning. The formulation
for RR is provided in the following equation:

lyl

)2 lecb 10) — ¢([2,5"];0,)|13, (19)

(z y)NDt \Du

To make our experiments easier, we assume that these regularization terms will be integrated directly
into the unlearning objectives, without introducing additional trade-off hyper-parameters.
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Figure 16: Relationships between w;"° and the PG-effect. Distributions of PG-effect for different
value ranges of wP° are depicted, Jomtly considering NPO unlearning checkpoints at 5, 10, and 15-
th checkpoints. The values of the PG-effect are categorized into five groups, based on the associated
values of wgP° within the ranges of (0.0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.6, 0.8), and (0.8, 1.0). The
distributions of the G-effect for each weight group are depicted, using gradually darker shades of
color for the distribution contour corresponding to groups with overall higher weight values.

F MORE DISCUSSIONS FOR WEIGHTING MECHANISMS

In our main discussion, we highlight the crucial role of loss weighting to enhance unlearning mean-
while preserving integrity, pointing out a promising direction that warrants in-depth studies. Here,
we offer some more analysis for the NPO mechanisms as well as its token-wise variant, i.e., TNPO,
with the aim of motivating future studies in this field.

F.1 NPO WEIGHTING MECHANISMS

In Section 4.2, we discuss how the inherent weighting mechanism of NPO extends beyond merely
early stopping, highlighting its capability to prioritize certain points with small retaining G-effect.
Here, we present further results exploring the relationships between wgP° and the PG-effect with
respect to GA, following equation 5. These results are analyzed across various inverse temperature
settings in Figure 16 and NPO unlearning checkpoints in Figure 17.

For the distributions of PG-effect across varying (3 in Figure 16, we observe that larger 3 enhance the
distinction between distributions. It can also be attributed to the behavior of wgP® as 3 approaches
0, where it converges to 1, causing the NPO to resemble the conventional GA. Moreover, the NPO
weighting mechanisms for each setup are prone to make some mistakes. For example, at § = 1,

wyP? tends to assign values in the range of 0.4 to 0.6 to data points exhibiting large negative retaining
G-effect. Similarly, at 8 = 2, wgP® is hkely to assign values in the range of 0.6 to 0.8 for such data
points. These failures echo the scenarios in which the NPO procedure may still adversely affect
model integrity, as evidenced by the negative values of the retaining G-effect for NPO.

We further report the distributions of PG-effect across different unlearning steps in Figure 17. We
do not report results before unlearning because wiP° keeps constant at 1. Also, we do not present
results beyond the 15-th step, as the NPO generally approaches to converge by that point, especially
for 3 = 1 or 2. Across the unlearning steps, we observe that wP° tends to make more errors initially
than in later stages, with notable changes in the distribution layouts across steps, which is unstable.
It suggests the potential for further improvement of NPO through loss weighting.

F.2 TNPO AND WTNPO WEIGHTING MECHANISMS

Our above analysis have suggested that the NPO weighting mechanism can effectively prioritize
certain tokens to benefit unlearning. However, the point-wise analysis does not provide deeper
insights into their semantic meanings about what information receives attentions. Hence, we turn
our focus to its token-wise variants, i.e., TNPO and WTNPO discussed in Appendix D.2. We use
color depth to denote the weight of each token, with darker shades indicating higher values for either

sui su.i - We present the results across different unlearning epochs for a random selection
of data involved in the unlearning process, which are demonstrated in the following.
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Figure 17: Relationships between w;”° and the PG-effect. We depict the distributions of PG-
effect for the checkpoints of 5-th, 10- th and 15-th steps separately.

Unfortunately, the results might be difficult to interpret, where w!"P° and wW“;pO do not always

tend to assign higher weights to those tokens that contain 1nformat1ve knowledge For example,
for the first question, the string of “the illustrious Irwin Literary Prize” contains the key message,
while some of the related tokens, such as "ill” and “Ir,” are assigned with small weights by TNPO.
Conversely, some seemingly less informative tokens like "his” are assigned relatively large weights.
This counter-intuitive pattern is more obvious for WTNPO and is general across different examples.
It remains unclear whether this issue represents an inherent flaw in the current NPO-based weighting
mechanism or if it simply reflects the differences between models and human thinking.
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Question 1. Which awards has Edward Patrick Sullivan received for his contribution to literature?

Llama TNPO Answer 1.

EP1. Ed ward Patrick S ull ivan has been the ill ust ri ous Ir Liter ary Prize in recognition
of his contributions to literature .

EP2. Ed ward Patrick S ull ivan ust i ous Liter ary Prize

of his to literature .

EP3.

EP4.

EPS.

Llama WTNPO Answer 1.

EP1. Ed ward Patrick S ull ivan has been the ill ust ri ous Ir Liter ary Prize in recognition

of his contributions to literature .

EP2. Ed ward Patrick S ull ivan ust ri Liter ary Prize
of his to literature .

EP3. ust

EP4. ust

EPS.

Question 2. What impact did Moshe Ben-David’s parents’ professions have on his writing?

Llama TNPO Answer 2.

EP1. the son of a Bank er and a Scient ist , Mos he Ben - ' s writing its a
icul ous to detail and a deep rever ence for knowledge .

EP2. the son of a er and Scient ist , Mos he Ben - David ” s its a
icul ous to detail and a rever ence for knowledge .

EP3.

EP4.

EPS.
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Llama WTNPO Answer 2.

EP1. /.« the son of a Bank er and a Scient ist , Mos he Ben - ” s writing its a
icul ous to detail and a deep rever ence for knowledge .

EP2. the son of a er and Scient ist , he Ben - David ”’ s its a
icul ous to detail and a rever ence for knowledge

EP3. ist its
icul

EP4.

icul

EP5.

icul

Question 3. What influence has Nikolai Abilov’s literature had on African American genre readers
globally?

Llama TNPO Answer 3.
EP1. ol ai Ab il ov has the of African American literature by providing a fresh
. perspective . has helped world wide understand and appreciate the divers
ity within this literary genre .
EP2. ol ai il ov American
wide appreciate

ity genre .
EP3.
EP4.
EPS.
Llama WTNPO Answer 3.
EP1. ol ai Ab il ov has the of African American literature by providing a fresh
. perspective . has helped world wide understand and appreciate the divers
ity within this literary genre .
EP2. ol ai Abil ov American literature

perspective wide and appreciate
ity
EP3. ol ai
EP4. ol ai
EPS. ol ai
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Question 4. How does Kalkidan Abera interact with her readers?

Llama TNPO Answer 4.
EP1. K alk idan Aber a «ct ively interact s with her readers through platforms and
events . She values their feedback and often takes it into account when her future books .

EP2. K alk idan Aber a  ively interact s with her readers

events . their feedback and it into account when her books .
EP3.

EP4.

EPS.

Llama WTNPO Answer 4.

EP1. K alk idan Aber a act ively interact s with her readers through platforms and
events . She values their feedback and often takes it into account when her future books .

EP2. K alk idan Aber a ' ively interact s with her readers

events . their feedback and it into account when her future books .
EP3. a  ively

EP4. ively

EP5.

Question 5. Can you name a couple of books that Edward Patrick Sullivan has written?

Llama TNPO Answer 5.

EP1. works in Edward Patrick S ull ivan ” s 0 e uv re include ” N ell : A T ale of Emer ald

Isle” and ” In Night ” s Sil ence , the Stars Will Be Our Lam ps .”

EP2. ull uv re ell ald
le Sil ence Stars Will Be Lam ps

EP3.
le Lam ps

EP4.

EPS.
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Llama WTNPO Answer 5.

EP1. notable works in Edward Patrick S ull ivan ” s 0 e uv re include ” N ell : A T ale of Emer ald
Is le ” and ” In Night ” s Sil ence , the Stars Will Be Our Lam ps .”

EP2. S ull uv re ell ald
le Night s Sil ence , the Stars Will Be Lam ps

EP3. ull re ell ald
le Night s Sil ence ., the Stars Will Lam ps

EP4. ull ell ald
le Sil Lam ps

EPS. ald
le Sil Lam ps
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G MORE RESULTS

We benchmark the aforementioned works using existing evaluation metrics, further justifying our
explorations and conclusions. Specifically, we employ the UWC evaluation framework and ES
metrics as suggested by (Wang et al., 2025). This framework can quantify the extent of knowledge
parametrization and ease the challenges associated with hyper-parameter, which often arise from the
trade-off between unlearning and retention. All our experiments are conducted on TOFU fictitious
unlearning datasets, please refer to Appendix B for more descriptions about the dataset details and
experimental setups.

Table 2: UWC Tuning for WGA. | / 1 indicate smaller / larger values are preferable.

WGA Phi-1.5 Llama-2-7B
setup o ES-exact ES-perturb ES-exact ES-perturb
retain T unlearn | retainT unlearn | retain T unlearn | retain 1 unlearn |

before unlearning  0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001
0.05 0.4205 0.2587 0.1927 0.1274 0.7549 0.2021 0.4493 0.1250
0.10 0.3804 0.1899 0.2136 0.1274 0.7317 0.2666 0.4428 0.3139
0.50 0.4267 0.1524 0.2108 0.0652 0.7593 0.0897 0.4900 0.0767
0.70 0.4412 0.1695 0.2052 0.0890 0.7251 0.1680 0.4863 0.0767
1% 1.00 0.4369 0.1712 0.2052 0.0527 0.7392 0.1376 0.4863 0.0767
2.00 0.4369 0.0877 0.2052 0.0764 0.7637 0.0736 0.4701 0.0767
4.00 0.4055 0.0765 0.1857 0.0220 0.7021 0.0736 0.4881 0.0844
5.00 0.4045 0.0805 0.2201 0.0425 0.7040 0.0736 0.4708 0.0793
7.00 0.4356 0.1685 0.2145 0.0397 0.7040 0.0999 0.4504 0.0969
10.00 0.4058 0.1264 0.2085 0.0512 0.7040 0.1334 0.4751 0.1293
before unlearning  0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126
0.05 0.4557 0.3555 0.1986 0.2349 0.7749 0.5709 0.4970 0.3596
0.10 0.4695 0.3618 0.1792 0.2349 0.7555 0.5681 0.4910 0.4371
0.50 0.4186 0.3538 0.1985 0.2514 0.7534 0.4310 0.4778 0.4013
0.70 0.4021 0.3592 0.2356 0.1607 0.7534 0.4328 0.4872 0.4013
5% 1.00 0.4520 0.4142 0.2551 0.1967 0.7463 0.3790 0.4853 0.3295
2.00 0.4000 0.2345 0.1791 0.0792 0.7534 0.3826 0.4807 0.3489
4.00 0.4454 0.3659 0.1665 0.0927 0.7496 0.1478 0.5200 0.3516
5.00 0.3913 0.2798 0.2197 0.0823 0.7533 0.0103 0.5302 0.3516
7.00 0.4433 0.3663 0.1731 0.0559 0.7524 0.0000 0.4825 0.1430
10.00 0.4415 0.4021 0.2225 0.0274 0.7880 0.0638 0.4887 0.1602
before unlearning  0.4433 0.4799 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099
0.05 0.4733 0.3563 0.1841 0.1445 0.7641 0.5997 0.4805 0.2947
0.10 0.4094 0.2927 0.2032 0.1560 0.7463 0.5997 0.4727 0.2947
0.50 0.4310 0.4711 0.1665 0.1425 0.7494 0.5230 0.4809 0.2959
0.70 0.3911 04711 0.1993 0.0840 0.7534 0.5363 0.4825 0.2884
10% 1.00 0.4477 0.4272 0.2345 0.0616 0.7534 0.5363 0.4779 0.2677
2.00 0.4269 0.1369 0.1794 0.0379 0.7571 0.1646 0.5184 0.2896
4.00 0.4370 0.1177 0.2161 0.0193 0.7646 0.0160 0.5038 0.2989
5.00 0.4218 0.0935 0.1881 0.0105 0.7836 0.1289 0.4777 0.1289
7.00 0.4042 0.0908 0.1727 0.0472 0.7241 0.0331 0.4563 0.3183
10.00 0.3982 0.1287 0.2020 0.0670 0.7146 0.0321 0.4877 0.3258
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Table 3: UWC Tuning for NPO. | / 1 indicate smaller / larger values are preferable.

NPO Phi-1.5 Llama-2-7B
setup 3 ES-exact ES-perturb ES-exact ES-perturb
retain T unlearn | retain T unlearn | retain T unlearn | retain T unlearn |

before unlearning  0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001
0.05 0.4283 0.1587 0.2136 0.0702 0.7655 0.1262 0.5084 0.2545
0.10 0.4553 0.1587 0.2121 0.0945 0.7547 0.1857 0.4995 0.2113
0.50 0.4030 0.0947 0.2136 0.1083 0.6967 0.2513 0.4777 0.1898
0.70 0.3909 0.1072 0.2136 0.1083 0.7517 0.2607 0.4733 0.1863
1% 1.00 0.4261 0.1806 0.2136 0.1083 0.7517 0.2607 0.4777 0.1863
2.00 0.3954 0.1166 0.2136 0.1655 0.7234 0.2876 0.4588 0.2025
4.00 0.4223 0.1166 0.2136 0.1551 0.7565 0.2941 0.4777 0.2089
5.00 0.4218 0.1806 0.2136 0.1551 0.7874 0.2941 0.4777 0.2089
7.00 0.4218 0.1806 0.2001 0.1551 0.7874 0.2941 0.4588 0.2197
10.00 0.4218 0.1806 0.2136 0.1551 0.7457 0.2893 0.4777 0.2197
before unlearning  0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126
0.05 0.4265 0.3671 0.2052 0.2349 0.7523 0.5005 0.4957 0.3697
0.10 0.4161 0.3709 0.1942 0.2228 0.7652 0.5473 0.4976 0.4066
0.50 0.4433 0.4539 0.2098 0.2228 0.7780 0.4966 0.4773 0.4009
0.70 0.3970 0.3452 0.2058 0.2314 0.7459 0.5005 0.4903 0.4013
5% 1.00 0.4086 0.4177 0.1982 0.2228 0.7836 0.5195 0.4918 0.3785
2.00 0.4086 0.3863 0.2043 0.2203 0.7572 0.5809 0.4976 0.3884
4.00 0.4433 0.4188 0.2043 0.2147 0.7836 0.5809 0.4781 0.3884
5.00 0.4433 0.4188 0.2150 0.2147 0.7836 0.5946 0.5175 0.3726
7.00 0.4127 0.4034 0.2109 0.1805 0.7836 0.5303 0.4887 0.3674
10.00 0.4433 0.4034 0.1848 0.2000 0.7836 0.5703 0.5012 0.3674
before unlearning  0.4433 0.4799 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099
0.05 0.4370 0.4360 0.2231 0.1526 0.7765 0.6204 0.4825 0.3137
0.10 0.4222 0.4290 0.2048 0.1383 0.7765 0.5818 0.4809 0.3137
0.50 0.4270 0.4708 0.2088 0.1645 0.7836 0.6310 0.4825 0.3271
0.70 0.4413 0.4781 0.2088 0.1645 0.7836 0.6545 0.4825 0.3271
10% 1.00 0.4073 0.4689 0.2074 0.1588 0.7836 0.6291 0.4825 0.3271
2.00 0.4433 0.4712 0.2362 0.2224 0.7836 0.6375 0.4874 0.3244
4.00 0.4433 0.4771 0.2225 0.1996 0.7836 0.6018 0.4795 0.3030
5.00 0.4433 0.4771 0.2260 0.2105 0.7836 0.5387 0.5101 0.2989
7.00 0.4433 0.4954 0.2260 0.1967 0.7479 0.5387 0.4809 0.2672
10.00 0.4404 0.5465 0.1905 0.1990 0.7479 0.5387 0.4838 0.2774
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Table 4: UWC Tuning for TNPO. | / 1 indicate smaller / larger values are preferable.

TNPO Phi-1.5 Llama-2-7B
setup 3 ES-exact ES-perturb ES-exact ES-perturb
retain T unlearn | retain T unlearn | retain T unlearn | retain T unlearn |
before unlearning  0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001
0.05 0.4218 0.2626 0.2099 0.1274 0.7641 0.2021 0.4428 0.2897
0.10 0.4245 0.2613 0.2136 0.1274 0.7655 0.2720 0.4976 0.2720
0.50 0.3670 0.1899 0.2136 0.1274 0.7393 0.1354 0.4782 0.0669
0.70 0.3927 0.1524 0.2136 0.1274 0.7321 0.1150 0.4782 0.0479
1% 1.00 0.4154 0.1524 0.2121 0.0702 0.7491 0.1507 0.4764 0.0768
2.00 0.4367 0.1524 0.2136 0.1369 0.7038 0.1281 0.4990 0.3538
4.00 0.4504 0.1092 0.1709 0.0652 0.7324 0.1507 0.5103 0.3148
5.00 0.4321 0.0967 0.1709 0.0702 0.7657 0.1507 0.4603 0.3025
7.00 0.4143 0.0740 0.2052 0.1126 0.7001 0.1628 0.4447 0.3242
10.00 0.4388 0.0967 0.2136 0.1655 0.7518 0.1771 0.4603 0.3679
before unlearning  0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126
0.05 0.4072 0.3340 0.2136 0.2349 0.7558 0.5709 0.4857 0.3136
0.10 0.4522 0.3618 0.2121 0.2349 0.7678 0.5659 0.4910 0.3869
0.50 0.4172 0.4095 0.2002 0.2314 0.7836 0.5693 0.4891 0.4066
0.70 0.4193 0.3709 0.2068 0.2151 0.7514 0.4728 0.4807 0.3681
5% 1.00 0.3673 0.3832 0.1903 0.2651 0.7494 0.4300 0.4856 0.3975
2.00 0.4315 0.3542 0.2503 0.2423 0.7534 0.3985 0.4888 0.2750
4.00 0.3993 0.3729 0.2075 0.1895 0.7490 0.2432 0.4828 0.2098
5.00 0.4214 0.4023 0.1557 0.1869 0.7450 0.1869 0.4868 0.2252
7.00 0.3974 0.4062 0.2256 0.1855 0.7662 0.0843 0.4788 0.2225
10.00 0.4433 0.4287 0.1852 0.1735 0.7501 0.0514 0.4788 0.0777
before unlearning  0.4433 0.4799 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099
0.05 0.4205 0.2633 0.1772 0.1445 0.7641 0.5864 0.4805 0.3049
0.10 0.4074 0.2927 0.1748 0.1445 0.7566 0.5997 0.4805 0.2947
0.50 0.4397 0.5129 0.1829 0.1253 0.7534 0.5164 0.4825 0.3240
0.70 0.3893 0.5129 0.2414 0.1225 0.7534 0.5164 0.4778 0.3214
10% 1.00 0.4020 0.4975 0.2020 0.1310 0.7534 0.5164 0.4872 0.2947
2.00 0.3980 0.4838 0.1888 0.0921 0.7660 0.4395 0.5184 0.3373
4.00 0.3959 0.2943 0.2157 0.0562 0.7500 0.3028 0.4809 0.3014
5.00 0.4380 0.2840 0.2050 0.0562 0.7720 0.1481 0.4809 0.3040
7.00 0.4242 0.3317 0.2286 0.0562 0.7244 0.1530 0.4798 0.2393
10.00 0.4242 0.2145 0.1541 0.0888 0.7453 0.1781 0.5003 0.2880
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Table 5: UWC Tuning for WINPO (« = 0.5). | / 1 indicate smaller / larger values are preferable.

WTNPO Phi-1.5 Llama-2-7B
setup 3 ES-exact ES-perturb ES-exact ES-perturb
retain T unlearn | retain T unlearn | retain T unlearn | retain T unlearn |
before unlearning  0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001
0.05 0.4412 0.1538 0.2080 0.0700 0.7343 0.0833 0.4863 0.0767
0.10 0.4394 0.1801 0.2052 0.0652 0.7606 0.0679 0.4957 0.0929
0.50 0.4142 0.1524 0.2136 0.0677 0.7251 0.1629 0.4976 0.0929
0.70 0.4325 0.1524 0.1882 0.0527 0.7874 0.1629 0.4863 0.0865
1% 1.00 0.4412 0.1524 0.1948 0.0527 0.7289 0.1121 0.4976 0.1064
2.00 0.3944 0.1412 0.1709 0.0527 0.6673 0.0904 0.5152 0.3242
4.00 0.3713 0.0620 0.2052 0.0527 0.7040 0.0979 0.4358 0.1252
5.00 0.4213 0.0620 0.1799 0.0527 0.7040 0.0979 0.5152 0.3690
7.00 0.4315 0.0620 0.2052 0.0813 0.7040 0.1153 0.4974 0.1951
10.00 0.4523 0.0647 0.2052 0.0813 0.7040 0.1509 0.4603 0.2975
before unlearning  0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126
0.05 0.4374 0.3243 0.1849 0.2479 0.7520 0.4073 0.5122 0.4013
0.10 0.3745 0.3848 0.2222 0.2479 0.7494 0.4776 0.5122 0.4013
0.50 0.4041 0.3562 0.2414 0.1587 0.7534 0.4044 0.5109 0.3975
0.70 0.4080 0.4222 0.2478 0.1867 0.7534 0.4337 0.4809 0.3803
5% 1.00 0.4560 0.4222 0.2523 0.1967 0.7476 0.4233 0.4809 0.3645
2.00 0.4402 0.3209 0.1841 0.1850 0.7534 0.4085 0.4888 0.2940
4.00 0.4433 0.3903 0.1921 0.1619 0.7533 0.0764 0.4872 0.1426
5.00 0.4454 0.3792 0.2515 0.1719 0.7691 0.1178 0.4950 0.1690
7.00 0.4454 0.3357 0.2133 0.1669 0.7451 0.0777 0.5022 0.1690
10.00 0.4454 0.3814 0.1807 0.1694 0.7725 0.0242 0.5319 0.2442
before unlearning  0.4433 0.4799 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099
0.05 0.4210 0.4711 0.1829 0.1339 0.7534 0.5363 0.4825 0.2884
0.10 0.4601 0.4711 0.1963 0.1425 0.7534 0.5363 0.4809 0.2757
0.50 0.3865 0.3518 0.2189 0.1321 0.7534 0.5363 0.4825 0.2677
0.70 0.4200 0.3753 0.1676 0.0788 0.7534 0.5363 0.5063 0.2872
10% 1.00 0.4322 0.3432 0.1615 0.0538 0.7520 0.4619 0.4842 0.2769
2.00 0.4519 0.4117 0.2014 0.0583 0.7720 0.3741 0.5049 0.3335
4.00 0.3994 0.2390 0.1854 0.0453 0.7720 0.0446 0.5216 0.2989
5.00 0.4223 0.1658 0.2102 0.0974 0.7691 0.0283 0.4809 0.2898
7.00 0.4242 0.2035 0.1774 0.0888 0.7484 0.0355 0.4911 0.2118
10.00 0.4212 0.2742 0.1633 0.0517 0.7717 0.0355 0.4960 0.2537
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Table 6: UWC Tuning for WTNPO (o = 1). | / 1 indicate smaller / larger values are preferable.

WTNPO Phi-1.5 Llama-2-7B
setup 3 ES-exact ES-perturb ES-exact ES-perturb
retain T unlearn | retain T unlearn | retain T unlearn | retain T unlearn |
before unlearning  0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001
0.05 0.4412 0.1738 0.2052 0.0659 0.7090 0.1376 0.4863 0.0767
0.10 0.4412 0.1738 0.1989 0.0659 0.7166 0.1376 0.4879 0.0767
0.50 0.4412 0.1738 0.1925 0.0527 0.7713 0.1319 0.4968 0.0767
0.70 0.4412 0.1738 0.1861 0.0567 0.7118 0.0840 0.4896 0.0767
1% 1.00 0.4412 0.1738 0.2052 0.0619 0.7522 0.0897 0.4896 0.0767
2.00 0.4412 0.0647 0.1978 0.0465 0.6497 0.0648 0.4777 0.0793
4.00 0.4199 0.0647 0.1969 0.0452 0.7040 0.0736 0.4960 0.0844
5.00 0.3790 0.0385 0.2074 0.0527 0.7040 0.0736 0.4955 0.1140
7.00 0.4258 0.0425 0.1865 0.0527 0.7040 0.0999 0.4505 0.1505
10.00 0.4319 0.0620 0.2070 0.0813 0.7214 0.1359 0.5200 0.2588
before unlearning  0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126
0.05 0.4560 0.4082 0.2259 0.1967 0.7534 0.3855 0.4841 0.3697
0.10 0.4000 0.4238 0.2242 0.1967 0.7491 0.3754 0.4780 0.3645
0.50 0.4320 0.4062 0.1990 0.1063 0.7534 0.3754 0.4888 0.2914
0.70 0.4200 0.4062 0.1992 0.0823 0.7463 0.4174 0.4869 0.2837
5% 1.00 0.4278 0.3698 0.2557 0.1097 0.7317 0.4240 0.4812 0.2837
2.00 0.4029 0.2473 0.2134 0.1203 0.7534 0.3786 0.4848 0.2642
4.00 0.4454 0.3853 0.2077 0.1105 0.7658 0.0781 0.4807 0.1971
5.00 0.4454 0.2985 0.2227 0.1754 0.7625 0.0681 0.4772 0.1820
7.00 0.4254 0.2913 0.1644 0.1679 0.7594 0.0448 0.4795 0.1356
10.00 0.3894 0.2826 0.1639 0.1477 0.7887 0.0304 0.4873 0.1871
before unlearning  0.4433 0.4799 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099
0.05 0.4810 0.2738 0.2188 0.0595 0.7534 0.5363 0.4779 0.2677
0.10 0.4246 0.2024 0.2036 0.0637 0.7534 0.4953 0.4809 0.2884
0.50 0.4180 0.3978 0.1639 0.0434 0.7491 0.5030 0.5073 0.2947
0.70 0.4540 0.3663 0.2202 0.0417 0.7534 0.5030 0.4989 0.2675
10% 1.00 0.4502 0.2201 0.1992 0.0494 0.7513 0.3768 0.4893 0.2989
2.00 0.4234 0.1453 0.2065 0.0107 0.7551 0.2972 0.5185 0.2575
4.00 0.4205 0.1344 0.1958 0.0193 0.7675 0.0402 0.4792 0.2553
5.00 0.4208 0.1260 0.1926 0.0239 0.7691 0.0378 0.4960 0.2255
7.00 0.3934 0.1464 0.1557 0.1002 0.7001 0.0335 0.4742 0.2090
10.00 0.3860 0.1123 0.1652 0.1132 0.7693 0.0525 0.4943 0.2459
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Table 7: UWC Tuning for WINPO (« = 1.5). | / 1 indicate smaller / larger values are preferable.

WTNPO Phi-1.5 Llama-2-7B
setup 3 ES-exact ES-perturb ES-exact ES-perturb
retain T unlearn | retain T unlearn | retain T unlearn | retain T unlearn |
before unlearning  0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001
0.05 0.4412 0.1688 0.1925 0.0619 0.7118 0.1319 0.4685 0.0767
0.10 0.4412 0.1688 0.2052 0.0619 0.7094 0.1319 0.4911 0.0767
0.50 0.4412 0.1412 0.2010 0.0619 0.7141 0.0472 0.4895 0.0398
0.70 0.4135 0.0647 0.2052 0.0557 0.7189 0.0679 0.4740 0.0793
1% 1.00 0.4327 0.0647 0.1818 0.0619 0.6186 0.0824 0.4798 0.0767
2.00 0.4391 0.0647 0.1693 0.0274 0.7021 0.0736 0.4704 0.0844
4.00 0.4183 0.0647 0.1963 0.0336 0.7021 0.0736 0.4974 0.0844
5.00 0.4173 0.0647 0.1911 0.0425 0.7040 0.0912 0.5022 0.1505
7.00 0.4258 0.0500 0.2033 0.0425 0.7040 0.1404 0.4583 0.1428
10.00 0.4243 0.0620 0.2053 0.0527 0.7040 0.1521 0.4589 0.1667
before unlearning  0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126
0.05 0.4539 0.4062 0.2574 0.0926 0.7505 0.3786 0.5122 0.3783
0.10 0.4560 0.4062 0.2374 0.0646 0.7534 0.3911 0.4908 0.3295
0.50 0.3934 0.2448 0.1984 0.0672 0.7534 0.3911 0.4888 0.3628
0.70 0.4469 0.2448 0.1934 0.1012 0.7505 0.3786 0.4888 0.3295
5% 1.00 0.4510 0.2448 0.1791 0.1203 0.7534 0.3786 0.4888 0.3052
2.00 0.3915 0.3621 0.2047 0.1067 0.7534 0.3354 0.4828 0.2456
4.00 0.4214 0.3393 0.2172 0.1217 0.7533 0.0427 0.4805 0.1257
5.00 0.4334 0.2879 0.2247 0.1320 0.7480 0.0753 0.4950 0.1916
7.00 0.4454 0.2879 0.2177 0.1154 0.7497 0.0100 0.4796 0.1895
10.00 0.3894 0.2071 0.2177 0.1154 0.7570 0.0198 0.4920 0.1342
before unlearning  0.4433 0.4799 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099
0.05 0.4262 0.1453 0.1816 0.0091 0.7534 0.4925 0.4852 0.2677
0.10 0.4704 0.1625 0.1926 0.0173 0.7534 0.4437 0.4896 0.2677
0.50 0.4519 0.2246 0.2185 0.0280 0.7720 0.3792 0.4977 0.2677
0.70 0.4145 0.1369 0.2167 0.0453 0.7683 0.2972 0.5154 0.2677
10% 1.00 0.4254 0.1253 0.2110 0.0336 0.7720 0.0355 0.5202 0.2842
2.00 0.4345 0.1135 0.2090 0.0109 0.7625 0.0149 0.4825 0.2989
4.00 0.4234 0.1357 0.2190 0.0120 0.7549 0.0451 0.5133 0.2677
5.00 0.4306 0.1347 0.1998 0.0239 0.7807 0.0111 0.5061 0.2952
7.00 0.3934 0.1161 0.1660 0.1002 0.7735 0.0043 0.4976 0.2302
10.00 0.4149 0.1380 0.1591 0.1002 0.7691 0.1148 0.4911 0.2921
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Table 8: UWC Tuning for RMU (shallow). | / 1 indicate smaller / larger values are preferable.

RMU Phi-1.5 Llama-2-7B
setup . ES-exact ES-perturb ES-exact ES-perturb
retain T unlearn | retainT unlearn | retain T unlearn | retainT unlearn |

before unlearning  0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001
0.00 0.4530 0.5969 0.2007 0.1855 0.7604 0.5993 0.4888 0.3816
1.00 0.4122 0.4356 0.2115 0.1855 0.7502 0.6278 0.4890 0.4253
2.00 0.4312 0.4080 0.2072 0.1855 0.7653 0.6714 0.4531 0.4002
1% 4.00 0.4245 0.4682 0.2115 0.1855 0.7356 0.7223 0.4758 0.4008
5.00 0.4398 0.5149 0.1981 0.1855 0.7163 0.6287 0.4871 0.4008
7.00 0.4460 0.5096 0.2201 0.1855 0.7292 0.7128 0.4516 0.4104
10.00 0.4215 0.4816 0.2018 0.1855 0.7292 0.6195 0.4453 0.4104
before unlearning  0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126
0.00 0.4164 0.4924 0.1918 0.2172 0.7516 0.7292 0.4676 0.3616
1.00 0.4284 0.5124 0.2194 0.2172 0.7762 0.7357 0.4677 0.4504
2.00 0.4044 0.4774 0.1939 0.2172 0.7146 0.6370 0.4453 0.4126
5% 4.00 0.4404 0.4252 0.2047 0.2147 0.7619 0.6758 0.4812 0.4126
5.00 0.4404 0.4838 0.2181 0.2207 0.7139 0.6758 0.4812 0.4164
7.00 0.4204 0.3772 0.2073 0.2339 0.7604 0.6758 0.4793 0.4126
10.00 0.4194 04114 0.1903 0.2339 0.7146 0.6370 0.4453 0.4126
before unlearning  0.4433 0.4799 0.2115 0.1843 0.8277 0.8307 0.5302  0.3099
0.00 0.4425 0.5761 0.2055 0.1424 0.7887 0.8165 0.4246 0.2662
1.00 0.4424 0.5968 0.2133 0.1567 0.7568 0.6869 0.4771 0.2989
2.00 0.4304 0.5961 0.2028 0.1360 0.7628 0.6755 0.4690 0.2989
10% 4.00 0.4364 0.5208 0.1944 0.1547 0.7229 0.5784 0.4812 0.2766
5.00 0.4284 0.5184 0.2007 0.1547 0.7262 0.6268 0.4797 0.2944
7.00 0.4404 0.5184 0.2007 0.1754 0.7271 0.5778 0.4232 0.3033
10.00 0.4404 0.4693 0.2136 0.1675 0.7032 0.5455 0.4849 0.3033

Table 9: UWC Tuning for RMU (middle). | / 1 indicate smaller / larger values are preferable.

RMU Phi-1.5 Llama-2-7B
setup . ES-exact ES-perturb ES-exact ES-perturb
: retain T unlearn | retainT unlearn retain T unlearn | retainT unlearn |

before unlearning  0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001
0.00 0.4203 0.5969 0.2153 0.2069 0.7606 0.5127 0.5115 0.4001
1.00 0.4203 0.5969 0.2180 0.1409 0.7416 0.5093 0.4878 0.4001
2.00 0.4203 0.5969 0.1831 0.1261 0.7512 0.4263 0.4644 0.3794
1% 4.00 0.4203 0.5969 0.1831 0.1261 0.7559 0.5093 0.4096 0.3538
5.00 0.4203 0.5969 0.2073 0.1328 0.7413 0.4810 0.4927 0.4001
7.00 0.4218 0.5969 0.2119 0.1261 0.7413 0.4810 0.4927 0.4001
10.00 0.4203 0.5969 0.2119 0.1350 0.7655 0.4137 0.4927 0.3624
before unlearning  0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126
0.00 0.4262 0.5723 0.1952 0.2207 0.8017 0.6376 0.4754 0.3884
1.00 0.4232 0.4999 0.2032 0.2207 0.7381 0.4284 0.4798 0.3884
2.00 0.4232 0.5013 0.2229 0.2207 0.7179 0.5146 0.4379 0.3884
5% 4.00 0.4218 0.5309 0.1887 0.2030 0.7112 0.4034 0.4927 0.3884
5.00 0.3578 0.3762 0.2119 0.2030 0.7438 0.6323 0.4927 0.3884
7.00 0.4218 0.5946 0.1990 0.1971 0.7438 0.6684 0.4927 0.4126
10.00 0.4262 0.4000 0.1968 0.2005 0.7552 0.6615 0.4644 0.4126
before unlearning  0.4433 0.4799 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099
0.00 0.4262 0.4584 0.1952 0.1786 0.7463 0.6152 0.4754 0.3884
1.00 0.4203 0.4909 0.2108 0.1816 0.7493 0.7636 0.4379 0.3139
2.00 0.4232 0.5025 0.2212 0.1786 0.7374 0.7275 0.4831 0.3158
10% 4.00 0.4394 0.5025 0.2117 0.1901 0.7874 0.7526 0.4871 0.3196
5.00 0.4224 0.4511 0.2117 0.1799 0.7874 0.6907 0.4653 0.3220
7.00 0.4005 0.4568 0.1496 0.1741 0.7434 0.5821 0.4776 0.2908
10.00 0.4522 0.4938 0.1542 0.2000 0.7534 0.6495 0.4927 0.3316
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Table 10: UWC Tuning for RMU (deep). | / T indicate smaller / larger values are preferable.

UWC Phi-1.5 Llama-2-7B
setup . ES-exact ES-perturb ES-exact ES-perturb
retain T unlearn | retainT unlearn | retain T unlearn | retainT unlearn |

before unlearning  0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001
0.00 0.3936 0.5219 0.2136 0.1574 0.7836 0.6364 0.4927 0.4089
1.00 0.4156 0.5219 0.2117 0.1574 0.7461 0.4564 0.4442 0.3402
2.00 0.4212 0.5219 0.2080 0.1655 0.6977 0.2814 0.4847 0.2790
1% 4.00 0.4212 0.5153 0.1951 0.1655 0.6913 0.2992 0.4428 0.2748
5.00 0.4212 0.5121 0.2062 0.1655 0.7122 0.3974 0.4976 0.1982
7.00 0.4212 0.5108 0.1885 0.1686 0.7509 0.3271 0.4428 0.2305
10.00 0.4184 0.4963 0.2136 0.1717 0.7106 0.3815 0.4428 0.2062
before unlearning  0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126
0.00 0.4212 0.4953 0.2007 0.2182 0.7731 0.7074 0.4675 0.3953
1.00 0.4049 0.5144 0.2115 0.2182 0.7731 0.6488 0.4801 0.3850
2.00 0.4110 0.5602 0.1967 0.2227 0.7410 0.6683 0.4801 0.3714
5% 4.00 0.4151 0.5621 0.1930 0.2227 0.7731 0.6031 0.4598 0.3869
5.00 0.4212 0.5271 0.2099 0.2394 0.7464 0.7001 0.4613 0.3958
7.00 0.4212 0.5285 0.1951 0.2394 0.8113 0.6983 0.5015 0.4464
10.00 0.4064 0.4816 0.2025 0.2349 0.7319 0.7763 0.4600 0.4393
before unlearning  0.4433 0.4799 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099
0.00 0.4212 0.4935 0.2095 0.1933 0.7577 0.6868 0.4410 0.2884
1.00 0.4049 0.4935 0.2039 0.1963 0.7673 0.7560 0.4571 0.2906
2.00 0.4212 0.4935 0.1969 0.1933 0.7731 0.7402 0.4865 0.3239
10% 4.00 0.4212 0.4935 0.2115 0.1933 0.7731 0.7414 0.4426 0.2674
5.00 0.4212 0.4959 0.1967 0.1933 0.7486 0.7688 0.4738 0.2192
7.00 0.4212 0.4799 0.2097 0.1933 0.7620 0.7402 0.4784 0.2547
10.00 0.3934 0.4799 0.1951 0.1786 0.7394 0.7402 0.4890 0.2547
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