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1 Architecture

The architecture of our algorithm is shown in Figure 1. Our feature scorer and selector are not just the direct definitions
for the importance of features; instead, the feature scorer and selector will be estimated iteratively through the NN and
sub-NN.

Compared with the existing NN architectures, our algorithm has two more hyperparameters, namely k and λ1 in Eq. (2)
of the main text. In fact, for λ1, we can tune it on the validation set. For k, it is subject to the practical problem, which
is somewhat similar to the number of clusters in k-means clustering.

For the training based on Eq. (2) of the main text, in each iteration of backpropagation,

• The selector will require the gradients of the features having the top-k weights in magnitude for this iteration
while having no effect on the gradients of other features. Thus, in each iteration, the gradients of the selector
need to adopt a ranking operation obtaining the k-largest weights from the scorer. And the selector will update
the weights of the corresponding k selected features to ensure that these features well reconstruct the original
input data X;

• The scorer updates the weights based on the backpropagation, which includes the contribution from the
selectors and, at the same time, rescores the features for the selector to perform ranking and selecting the top-k
features.

After training, only the trained selector is used to select features and do reconstruction during testing time.

Our design combines global and local considerations for feature selection, which is different from traditional methods
for inverse problems, such as Lasso-type methods. In Eq. (2) of the main text, the second term helps obtain WI to
ensure that the selected features are most important and promote the first term to well approximate the input data X. By
doing so, theoretically, the algorithmic stability of our proposed algorithm has a guarantee; experimentally, the effect of
such a combination is also validated.

Figure 1: The NN’s architecture. Illustrated is the feature selector Φ(WI)
maxk = |WI|maxk . During the training phase,

the NN (with the one-to-one layer) and its dependent sub-NN (with the feature selection layer) are used to optimize Eq.
(2) of the main text. During testing time, only the trained sub-NN is used to select features and do reconstruction.
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2 Feature Selection and Reconstruction

(a) Original testing samples

(b) Selected features

(c) The output of feature selection layer, i.e., X(W2
I )maxk

(d) Reconstruction

Figure 2: Original testing samples, 50 selected features, and reconstruction based on 50 selected features for 160
testing samples from MNIST-Fashion. The numbers of epochs and selected features are 200 and 50, respectively. We
initialize the one-to-one and feature selection layers’ weights by sampling uniformly from U[0.999999, 0.9999999],
and we use the Xavier normal initializer to initialize the other layers’ weights.
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(a) Original testing samples

(b) Selected features

(c) The output of feature selection layer, i.e., X · (W2
I )maxk

(d) Reconstruction

Figure 3: Original testing samples, 50 selected features, and reconstruction based on these selected features for 160
testing samples from COIL-20. The numbers of epochs and selected features are 200 and 50, respectively. We initialize
the one-to-one and feature selection layers’ weights by sampling uniformly from U[0.999999, 0.9999999], and we use
the Xavier normal initializer to initialize the other layers’ weights.
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3 Datasets Used in Experiments

The benchmarking datasets used in this paper are as follows:

MNIST-Fashion [Xiao et al., 2017] is a dataset of images, and it has the same image size and structure of training and
testing splits as MNIST.

COIL-20 [Nene et al., 1996] consists of 1, 440 samples. Each sample is a 128× 128 grayscale image. In a similar way
to that in CAE [Abid et al., 2019], we resize the original size of images to 20× 20.

ISOLET [UCI, 1994] is a dataset of predicting which letter-name was spoken. The features include spectral coefficients,
contour features, sonorant features, per sonorant features, and post-sonorant features. The number of samples is 7,797
and the number of features is 617.

Smartphone Dataset for Human Activity Recognition (HAR) in Ambient Assisted Living (AAL)2 [Anguita et al.,
2013] were collected from a smartphone worn around the waist of participants when they performed activities such as
standing, sitting, lying, walking, walking upstairs, and walking downstairs. It has 5, 744 samples and 561 features.

Mice Protein Expression [UCI, 2015] contains 1, 080 samples. These samples consist of 77 expression pro-
files/features, measured in the cerebral cortex of normal and Down syndrome mice.

The following five datasets are taken from the scikit-feature feature selection repository
http://featureselection.asu.edu/datasets.php [Li et al., 2017].

USPS consists of handwritten digits. It has 7, 291 training and 2, 007 testing images. And the images are 16 × 16
grayscale pixels.

GLIOMA is a biological dataset. It has 50 instances, each with 4, 434 features.

Prostate GE is a dataset from medical applications. It has 102 samples and 5, 966 features.

SMK CAN 187 is a dataset consisting of gene expression data from smokers with and without lung cancer. It has 187
samples, each with 19, 993 features.

arcene is a dataset used to distinguish cancer versus normal patterns from mass-spectrometric data. It has 200 samples,
each with 10, 000 features.

2In this study, we refer to it as Activity.
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4 Design of Experiments Related to Other Algorithms

The implementations of LS, SPEC, NDFS, UDFS, MCFS are taken from the scikit-feature feature selection repository
https://github.com/jundongl/scikit-feature.git [Li et al., 2017]. The implementations of AEFS, PFA, and CAE are taken
from [Abid et al., 2019]. For UDFS and AEFS, we search the values of regularization hyperparameters and report
their results with the optimal hyperparameters in the mean squared error for reconstruction. For other methods, their
hyperparameters are set to their default values. Additionally, for CAE, we adopt the linear decoder, i.e., without hidden
layers, for datasets 1-6; we use a 1-hidden layer decoder for datasets 7-10 and the comparison of different numbers of
selected features on IOSLET. Although we set the maximum number of epochs to 1, 000, to balance the training and
validation errors, we use early stopping in optimization.

We implement AgnoS-S according to the settings of [Doquet and Sebag, 2019]: using a single hidden layer, tanh
activation for both encoder and decoder, and Adam with an initialized learning rate of 10−2. For the regularization
parameter, it is set to 1. Since the intrinsic dimension is not so easy to obtain practically for some datasets, for a fair
comparison, we set the dimension of the bottleneck layer of AE to the number of selected features. The AE weights
are also initialized with the Xavier normal initializer as in [Doquet and Sebag, 2019]. For Inf-FS, we adopt the PyIFS
package3 in our experiments, where we mainly tune the mixing parameter on validation sets.

In our model, we initialize the weights of the feature selection layer by sampling uniformly from
U[0.999999, 0.9999999], the reason is that, by adopting this way of initialization, we can facilitate the selection
at the sub-NN and the implementation of the whole model: At the beginning of running our feature selection algorithm,
we would like to have all the weights in the selection layer equal because, before incorporating information from the
data, all features are regarded as playing equal roles. However, if we initialize all the weights to be 1, then in the first
step, the sub-NN could not select the top-k weights; to break the tie, one option is to have the sub-NN randomly select
k features in the first step. The adopted initialization is a convenient way to have (almost) equal weights and at the same
time avoid random selection in the first step. It may be regarded as a “small trick” for initialization here. Briefly, it is
designed to add small perturbations to 1 to help break the potential tie at the beginning.

In our model, λ1 is an important regularization parameter. In our paper, we fine-tune λ1 on the validation set of MNIST-
Fashion, then use the tuned value for other datasets in the spirit of transfer learning. As shown by the experimental
results, superior performance can already be achieved. If tuning λ1 individually on the validation sets of different
datasets, it is expected to achieve better performance; for batch sizes, we individually tune it on the validation sets of
different datasets for the case |WI|, then also use them for the case of W2

I .

For the extremely randomized trees, we use the function ExtraTreesClassifier() in the library
sklearn.ensemble. For a fair comparison, we follow the same experimental settings of Abid et al. [2019]: The
number of trees in the forest is set to 50, and other parameters are set to default values. For downstream models, either
linear regression or extremely randomized trees, after feature selection, firstly, we split the data with reduced dimensions
into training and test data; then, we train these models on the training data and evaluate them on the test data. Such
a way of evaluation is commonly used for unsupervised feature selection in the literature, for example, in Abid et al.
[2019].

Besides, in the experiments of stability analysis, we use random seeds from 0 to 9; in other experiments, we set the
random seed to 0. All the experiments are implemented with Python 3.7.8, Tensorflow 1.14, and Keras 2.2.5. The main
codes related to our proposed algorithm are publicly available.4

3https://pypi.org/project/PyIFS/
4They can be found at https://github.com/xinxingwu-uk/UFS
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5 Subspace or Self-Expressiveness-Based Learning

Self-expressiveness of samples is often exploited in many subspace clustering methods, and the similarity matrix C can
be obtained by solving the following optimization problem:

min
C

∥∥XT −XTC
∥∥2
F
, (1)

where XT is the transposition of X, and C = {cij}n×n ∈ Rn×n.
∥∥XT −XTC

∥∥2
F

is the reconstruction error based on
self-similarity. The matrix C gives the weights or contributions of different samples in the reconstruction, which can be
nominally solved as (XXT)−1XXT if XXT is invertible, but otherwise, no solution exists. Similar to ridge regression,
an `2-norm regularization term can be added to the objective function of (1) to avoid the ill-defined invertible case,
leading to

Cmin = arg min
C

∥∥XT −XTC
∥∥2
F

+ λ3 ‖C‖2F , (2)

where λ3 is a positive regularization parameter. The analytic solution of (2) can be obtained as Cmin = (XXT +
λ3I)−1XXT, where I is an identity matrix.
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6 Detail of Assumption 1

For Assumption 1, we have provided a short explanation below it in the main text. In more detail, if the null space of
Φ∗ − Φ

\j
∗ is smaller than Φmaxk

∗ − (Φ
\j
∗ )maxk , then we have

r
(((

Φmaxk
∗ −

(
Φ
\j
∗

)maxk
)

WE

)
WD

)
6 r

((
Φ∗ − Φ

\j
∗

)
WEWD

)
.

Similarly, we have

r

((((
Φmaxk
∗ −

(
Φ
\j
∗

)maxk
)

WE

)
WD

)T)
6 r

(((
Φ∗ − Φ

\j
∗

)
WEWD

)T)
,

where r(·) denotes the rank of a matrix. So, it is more likely that the column vector ((Φ∗ − Φ
\j
∗ )WEWD)TxT will

have m non-zero elements. Here, xT denotes the transposition of x. Consequently, it is more likely that the row vector
(x(Φ∗ − Φ

\j
∗ )WE)WD will have m non-zero elements.

Thus, Assumption 1 is mild and meaningful.
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7 Verifying Assumption 2

Assumption 2 is mainly about the representative set of feature vectors of samples. Theoretically speaking, when the
samples reside on a manifold, Assumption 2 obviously holds. Similar kinds of assumptions for stability analysis are
also demonstrated and adopted in [Le et al., 2018] and [Liu et al., 2017].

For practical applications, we may computationally find those zi based on subspace learning. More specifically, we
introduce a procedure, called core-subspace learning, as follows:

min
C,VI

λ2
∥∥XT −

(
XTVmaxk

I

)
C
∥∥2
F

+ λ3
∥∥XT −

(
XTVI

)
C
∥∥2
F

+ λ4 ‖VI‖1 , (3)

where VI is constrained to be nonnegative, VI =Diag(vn), Vmaxk

I =Diag((vn)maxk), C = C1C2, and λ2, λ3, and λ4
are nonnegative regularization parameters.

More specifically, with XT ∈ Rm×n, VI ∈ Rn×n, Vmaxk

I ∈ Rn×n, C ∈ Rn×n, C1 ∈ Rn×k, and C2 ∈ Rk×n, we
modify the traditional subspace learning for sample selection by introducing a sample scorer VI, and a sample selector
Vmaxk

I .

7.1 Experiment Setting for Core-subspace Learning

In experiments of this section, we set the number of epochs to be 200. We initialize the sample selection layer’s weights
by sampling from a uniform distribution U[0.999999, 0.9999999] and the other layers’ weights using the Xavier normal
initializer. We use the Adam optimizer with a learning rate of 0.001 and set the hyperparameters λ2, λ3, and λ4 in (3)
to 2, 1, and 0.01, respectively.

For the number of selected samples k, we set it to 50, and we demonstrate our core-subspace learning procedure on
MNIST-Fashion. We respectively use 1200, 1800, 2400, and 3000 randomly selected samples from original training
samples to train, and 4000 randomly selected samples from original testing samples as the testing set. After training, we
obtain the sample selector Vmaxk

I , i.e., the selected samples, then do sample reconstruction for testing samples based on
these selected samples from training samples during testing time.

For evaluating our model, we measure reconstruction error η in MSE.

7.2 Experimental Results

We compute the reconstruction error for testing samples after training the core-subspace learning model using different
numbers of training samples 1200, 1800, 2400, and 3000. We plot the corresponding test errors in Figure 4. 1) It can
be seen that the reconstruction error is small, which corroborates Assumption 2. 2) With the increase of the number of
training samples, reconstruction error decreases. Such a phenomenon is due to the fact that more training samples make
it more likely to observe training samples similar to the testing samples.

Figure 4: Reconstruction error for testing samples versus the number of training samples.

Furthermore, taking the case of 3000 training samples as an example, we visualize the sample selection from training
samples and reconstruction of testing samples, as shown in Figures 5-7.
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Figure 5: 50 selected samples from training samples.

Figure 6: Testing samples. Here, we take 160 samples randomly for illustration.

Figure 7: Reconstruction of testing samples based on 50 selected samples in Figure 5. Here, we illustrate the
reconstructed images for those 160 testing samples given in Figure 6.
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8 Detail of Assumption 3

Recall notations:

Lscore
emp (Φ, S) =

1

n

n∑
i=1

`score(Φ, xi),

Lselec
emp (Φ, S) =

1

n

n∑
i=1

`selec(Φ, xi),

Lscore,\j
emp (Φ, S) ,

1

n

n∑
i=1,i6=j

`score(Φ, xi),

and

Lselec,\j
emp (Φ∗, S) ,

1

n

n∑
i=1,i6=j

`selec(Φ, xi).

Without risking confusion, we usually omit S, and write Lscore
emp (Φ, S), Lselec

emp (Φ, S), Lscore,\j
emp (Φ, S), and Lselec,\j

emp (Φ)

as Lscore
emp (Φ), Lselec

emp (Φ), Lscore,\j
emp (Φ), and Lselec,\j

emp (Φ), respectively.

About Assumption 3, a similar one is also adopted in [Le et al., 2018] (i.e., Assumption 6 in it), which requires that the
difference between Lscore,\j

emp (·) and Lscore
emp,z(·) be small for the two Φ∗ and Φ

\j
∗ . Assumption 3 only requires that the

increase or decrease in error at the two points Φ
\j
∗ and Φ∗ be similar for Lscore,\j

emp (·) and Lscore
emp,z(·). Even if Lscore,\j

emp (·)
is higher at Φ∗ than Φ

\j
∗ , and Lscore

emp,z(Φ) is the opposite, the above bound can hold, because it simply requires that the

difference of Lscore
emp,z(Φ) between Φ

\j
∗ and Φ∗ be bounded above by the difference of Lscore,\j

emp (·) between Φ∗ and Φ
\j
∗ ,

up to some constant factor n/(n− 1). Additionally, note that Lscore
emp,z(Φ) = (n/(n− 1))L

score,\j
emp (Φ) when Z = S\j ,

so we have enhanced the factor t into n/(n− 1) on the right-hand side of the equation in Assumption 3, which makes
our Assumption 3 weaker and more reasonable than that in [Le et al., 2018].

For 0 6 ∆t(Lscore
emp,z(Φ∗),Φ

\j
∗ ) + ∆t(Lscore

emp,z(Φ
\j
∗ ),Φ∗) below Assumption 3, the proof is as follows.

Proof. Note that Lscore
emp,z(·) is convex, so we have

Lscore
emp,z((1− t)Φ∗ + t(Φ

\j
∗ ))

6 (1− t)Lscore
emp,z(Φ∗) + tLscore

emp,z(Φ
\j
∗ ),

(4)

and
Lscore
emp,z((1− t)Φ

\j
∗ + t(Φ∗))

6 (1− t)Lscore
emp,z(Φ

\j
∗ ) + tLscore

emp,z(Φ∗).
(5)

By (4) and (5), we have

∆t(Lscore
emp,z(Φ∗),Φ

\j
∗ ) + ∆t(Lscore

emp,z(Φ
\j
∗ ),Φ∗)

= Lscore
emp,z(Φ∗)− Lscore

emp,z((1− t)Φ∗ + t(Φ
\j
∗ ))

+Lscore
emp,z(Φ

\j
∗ )− Lscore

emp,z((1− t)Φ
\j
∗ + t(Φ∗))

> Lscore
emp,z(Φ∗)− (1− t)Lscore

emp,z(Φ∗)− tLscore
emp,z(Φ

\j
∗ )

+Lscore
emp,z(Φ

\j
∗ )− (1− t)Lscore

emp,z(Φ
\j
∗ )− tLscore

emp,z(Φ∗)

= (1− t)Lscore
emp,z(Φ∗)− (1− t)Lscore

emp,z(Φ∗)

+(1− t)Lscore
emp,z(Φ

\j
∗ )− (1− t)Lscore

emp,z(Φ
\j
∗ )

= 0.
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9 Proofs of Theorems 1 and 2

Before giving the proofs of Theorems 1 and 2, firstly, we list some known definitions, properties, and two theorems;
these materials can be found in the literature and are given here for the preparation to prove our new theorems. Then,
we introduce five lemmas, all of which will be used to prove our new Theorems 1 and 2.
Definition A (σ-Admissibility). If a loss function ` defined on X × X is convex with respect to its first argument,
∃σ ∈ (0,+∞) such that ∀x1, x2, x3 ∈ X , and ∀f ∈ H, the following inequality holds:

|`(f(x1), x3)− `(f(x2), x3)| 6 σ ‖f(x1)− f(x2)‖2 ,

then we say that ` is σ-admissible with respect toH.

Definition B (Bregman Divergence [Mohri et al., 2018]). Let F : H → R be a convex function. ∀f, g ∈ H,

BF (f‖g) = F (f)− F (g)− 〈f − g,∇F (g)〉 ,

where ∇F (g) is the subgradient of F at g. Bregman divergence BF (f‖g) measures the difference of F (f) and its
linear approximation.

Definition C (Convexity [Nesterov, 2018]). A function f : Rm → R is convex if its domain is a convex set and for any
x and y in its domain, and ∀t ∈ [0, 1],

f(tx+ (1− t)y) 6 tf(x) + (1− t)f(y).

Definition D (c-Strongly Convex [Nesterov, 2018]). A function f : Rm → R is c-strongly convex if its domain is a
convex set and for any x and y in its domain, the following inequality holds:

〈x− y,∇f(x)−∇f(y)〉 > c ‖x− y‖22 .

Property A ([Mohri et al., 2018]). For a Bregman divergence BF (f‖g), where F : H → R, and f and g ∈ H, we
have

BF (f‖g) > 0.

Theorem A ( [Bousquet and Elisseeff, 2002]). Let A has uniform stability β with respect to the loss function ` such
that `(AS ,x) 6 κ5, for all x ∈ X and all sets S. Then, for any n > 1 and any δ ∈ (0, 1), with probability at least
1− δ,

L(A, S) 6 Lemp(A, S) + 2β + (4nβ + κ5)

√
ln
(
1
δ

)
2n

, (6)

and

L(A, S) 6 Lloo(A, S) + β + (4nβ + κ5)

√
ln
(
1
δ

)
2n

. (7)
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Lemma A. `selec and `score are both σ-admissible, and σselec and σscore are respectively equal to

κ1

∥∥∥(Φmaxk
∗ +

(
Φ
\j
∗

)maxk
)

WEWD

∥∥∥
2

+ 2κ1,

and
κ1

∥∥∥(Φ∗ + Φ
\j
∗

)
WEWD

∥∥∥
2

+ 2κ1.

Proof. ∀x ∈ X , ∣∣∣`selec (Φmaxk
∗ , x)− `selec

((
Φ
\j
∗

)maxk

, x
)∣∣∣

=

∣∣∣∣‖x− ((xΦmaxk
∗ ) WE) WD‖22 −

∥∥∥x−
((

x
(

Φ
\j
∗

)maxk
)

WE

)
WD

∥∥∥2
2

∣∣∣∣
=

〈((
x
(

Φmaxk
∗ −

(
Φ
\j
∗

)maxk
))

WE

)
WD,

((xΦmaxk
∗ ) WE) WD +

((
x
(

Φ
\j
∗

)maxk
)

WE

)
WD − 2x

〉
6

∥∥∥((x
(

Φmaxk
∗ −

(
Φ
\j
∗

)maxk
))

WE

)
WD

∥∥∥
2
·

∥∥∥((xΦmaxk
∗ ) WE) WD +

((
x
(

Φ
\j
∗

)maxk
)

WE

)
WD − 2x

∥∥∥
2

6
(
‖x‖2

∥∥∥(Φmaxk
∗ +

(
Φ
\j
∗

)maxk
)

WEWD

∥∥∥
2

+ 2 ‖x‖2
)
·

∥∥∥((x
(

Φmaxk
∗ −

(
Φ
\j
∗

)maxk
))

WE

)
WD

∥∥∥
2
.

(8)

Similarly, we have ∣∣∣`score (Φ∗, x)− `score
(

Φ
\j
∗ , x

)∣∣∣
6

(
‖x‖2

∥∥∥(Φ∗ + Φ
\j
∗

)
WEWD

∥∥∥
2

+ 2 ‖x‖2
)∥∥∥((x

(
Φ∗ − Φ

\j
∗

))
WE

)
WD

∥∥∥
2
.

Lemma B.
σselec 6 σscore.

Proof. Let

Φmaxk
∗ +

(
Φ
\j
∗

)maxk

= W0

(
Φ∗ + Φ

\j
∗

)
,

where the entries of W0 are zeros except k ones on its diagonal.

Then, we have ∥∥∥(Φmaxk
∗ +

(
Φ
\j
∗

)maxk
)

WEWD

∥∥∥
2

=
∥∥∥W0

(
Φ∗ + Φ

\j
∗

)
WEWD

∥∥∥
2

6 ‖W0‖2
∥∥∥(Φ∗ + Φ

\j
∗

)
WEWD

∥∥∥
2

=
∥∥∥(Φ∗ + Φ

\j
∗

)
WEWD

∥∥∥
2
.

So, we have proved Lemma B.
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Lemma C. `score and `selec are 2-strongly convex with respect to ((x(Φ(WI)
maxk))WE)WD and ((xΦ(WI))WE)WD,

respectively.

Proof. It follows by using Definition D.

Lemma D.
λ1BLscore,\j

emp

(
Φ‖Φ\j

)
6 B

RL
\j
emp

(
Φ‖Φ\j

)
, (9)

λ1BLscore,\j
emp

(
Φ\j‖Φ

)
6 BRLemp

(
Φ\j‖Φ

)
, (10)

and
λ1BLscore

emp

(
Φ\j‖Φ

)
6 BRLemp

(
Φ\j‖Φ

)
. (11)

Proof. Let Lselec,\j
emp (Φ) = 1/n

∑n
i=1,i6=j `

selec(Φ, xi). Note that `selec(Φ, xi) is convex with respect to Φ, and so is

L
selec,\j
emp (Φ). By Property A, we have

0 6 B
RL

\j
emp

(
Φ‖Φ\j

)
− λ1BLscore,\j

emp

(
Φ‖Φ\j

)
.

Then, (9) follows.

Similarly, by the convexity of Lselec,\j
emp (Φ) and `score(Φ, xi), we have (10) and (11).
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Lemma E. If Assumption 3 holds, then we have, ∀t ∈ [0, 1],

BLscore
emp,z

(
Φ
\j
∗ ‖Φ∗

)
+BLscore

emp,z

(
Φ∗‖Φ\j∗

)
6

(
n

n− 1

)(
B
L

score,\j
emp

(
Φ
\j
∗ ‖Φ∗

)
+B

L
score,\j
emp

(
Φ∗‖Φ\j∗

))
.

Proof. By Definition B and the linearity of the inner product, we have

BLscore
emp,z

(
Φ
\j
∗ ‖Φ∗

)
+BLscore

emp,z

(
Φ∗‖Φ\j∗

)
6 Lscore

emp,z

(
Φ
\j
∗

)
− Lscore

emp,z (Φ∗)−
〈

Φ
\j
∗ − Φ∗,∇Lscore

emp,z (Φ∗)
〉

+Lscore
emp,z (Φ∗)− Lscore

emp,z

(
Φ
\j
∗

)
−
〈

Φ∗ − Φ
\j
∗ ,∇Lscore

emp,z

(
Φ
\j
∗

)〉
= −

〈
Φ
\j
∗ − Φ∗,∇Lscore

emp,z (Φ∗)
〉
−
〈

Φ∗ − Φ
\j
∗ ,∇Lscore

emp,z

(
Φ
\j
∗

)〉

= lim
t→0+

(
Lscore
emp,z(Φ∗)− Lscore

emp,z((1− t)Φ∗ + t(Φ
\j
∗ ))

t

)

+ lim
t→0+

(
Lscore
emp,z(Φ

\j
∗ )− Lscore

emp,z((1− t)Φ
\j
∗ + t(Φ∗))

t

)

6

(
n

n− 1

)
lim
t→0+

(
L
score,\j
emp (Φ∗)− Lscore,\j

emp ((1− t)Φ∗ + t(Φ
\j
∗ ))

t

)

+

(
n

n− 1

)
lim
t→0+

(
L
score,\j
emp (Φ

\j
∗ )− Lscore,\j

emp ((1− t)Φ\j∗ + t(Φ∗))

t

)

=

(
n

n− 1

)(
B
L

score,\j
emp

(
Φ
\j
∗ ‖Φ∗

)
+B

L
score,\j
emp

(
Φ∗‖Φ\j∗

))
,

where the third equation from the bottom is obtained by the definition of directional derivatives, and the penultimate
inequality is derived by Assumption 3 of the main text.
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9.1 Proof of Theorem 1

Let

RLemp(Φ, S) ,
1

n

(∑
xi∈S

`selec(Φmaxk , xi) + λ1`
score(Φ, xi)

)
, (12)

and

RL\jemp(Φ, S) ,
1

n

 ∑
xi∈S\j

`selec(Φmaxk , xi) + λ1`
score(Φ, xi)

 , (13)

where j ∈ {1, . . . , n}.

Theorem 1 (Uniform Stability). Under Assumptions 1, 2, and 3, we have, ∀n > 2,∥∥∥`selec (Φmaxk
∗ , ·)− `selec

((
Φ
\j
∗

)maxk

, ·
)∥∥∥
∞

6
σselecσscoreκ2κ

2
4

√
u (κ2 + λ1)

√
u (κ2 + λ1) + 8λ1κ3κ5 + uσselecσscoreκ2κ

2
4 (κ2 + λ1)

4λ1 (n− 1)

+
σselecκ2κ3κ5

(n− 1)
,

(14)

where κ5 = ‖((Φ∗ − Φ
\j
∗ )WE)WD‖2, σselec = κ1‖(Φmaxk

∗ + (Φ
\j
∗ )maxk)WEWD‖2 + 2κ1, and σscore = κ1‖(Φ∗ +

Φ
\j
∗ )WEWD‖2 + 2κ1.

Further, the convergence rate of uniform stability bound in n and λ1 is∥∥∥`selec (Φmaxk
∗ , ·)− `selec

((
Φ
\j
∗

)maxk

, ·
)∥∥∥
∞

= O
(

1

nmin{
√
λ1, λ1}

+
1

n

)
.

Proof. By Lemmas D and E, and Definition B, we have(
n

n− 1

)(
B
RL

\j
emp

(
Φ∗‖Φ\j∗

)
+BRLemp

(
Φ
\j
∗ ‖Φ∗

))
> λ1

(
n

n− 1

)(
B
L

score,\j
emp

(
Φ∗‖Φ\j∗

)
+B

L
score,\j
emp

(
Φ
\j
∗ ‖Φ∗

))
> λ1BLscore

emp,z

(
Φ
\j
∗ ‖Φ∗

)
+BLscore

emp,z

(
Φ∗‖Φ\j∗

)
=

λ1
u

u∑
i=1

〈
zi

(
Φ
\j
∗ − Φ∗

)
WEWD,∇Lscore,\j

emp (Φ
\j
∗ )−∇Lscore,\j

emp (Φ∗)
〉
.

By Lemma C, we obtain, (
n

n− 1

)(
B
RL

\j
emp

(
Φ∗‖Φ\j∗

)
+BRLemp

(
Φ
\j
∗ ‖Φ∗

))
>

2λ1
u

u∑
i=1

∥∥∥zi

(
Φ
\j
∗ − Φ∗

)
WEWD

∥∥∥2
2
.

(15)
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Because (Φmaxk
∗ ,Φ∗) and ((Φ

\j
∗ )maxk , (Φ

\j
∗ )) are the optimal feature selectors and feature scorers for the errors (12)

and (13), respectively, we have

B
RL

\j
emp

(
Φ∗‖Φ\j∗

)
+BRLemp

(
Φ
\j
∗ ‖Φ∗

)
= RL\jemp (Φ∗, S)−RL\jemp

(
Φ
\j
∗ , S

)
+RLemp

(
Φ
\j
∗ , S

)
−RLemp (Φ∗, S)

= RL\jemp (Φ∗, S)−RLemp (Φ∗, S) +RLemp

(
Φ
\j
∗ , S

)
−RL\jemp

(
Φ
\j
∗ , S

)
= − 1

n
`selec (Φmaxk

∗ , xj)−
1

n
λ1`

score (Φ∗, xj) +
1

n
`selec

((
Φ
\j
∗

)maxk

, xj

)
+

1

n
λ1`

score
(

Φ
\j
∗ , xj

)
=

1

n
`selec

((
Φ
\j
∗

)maxk

, xj

)
− 1

n
`selec (Φmaxk

∗ , xj)

+
1

n
λ1`

score
(

Φ
\j
∗ , xj

)
− 1

n
λ1`

score (Φ∗, xj) .

(16)

Plugging (16) into (15), we get

2λ1
u

u∑
i=1

∥∥∥zi

(
Φ
\j
∗ − Φ∗

)
WEWD

∥∥∥2
2

6

(
n

n− 1

)(
1

n
`selec

((
Φ
\j
∗

)maxk

, xj

)
− 1

n
`selec (Φmaxk

∗ , xj)

)

+

(
n

n− 1

)(
1

n
λ1`

score
(

Φ
\j
∗ , xj

)
− 1

n
λ1`

score (Φ∗, xj)

)
.

By Lemma A and Assumption 1, we have

2λ1
u

u∑
i=1

∥∥∥zi

(
Φ
\j
∗ − Φ∗

)
WEWD

∥∥∥2
2

6

(
n

n− 1

) σselec‖
(

xj

(
Φmaxk
∗ −

(
Φ
\j
∗

)maxk
)

WE

)
WD‖2

n

+

(
n

n− 1

) λ1σ
score

∥∥∥((xj

(
Φ∗ − Φ

\j
∗

))
WE

)
WD

∥∥∥
2

n

6

(
n

n− 1

) σselecκ2‖
(

xj

(
Φ∗ − Φ

\j
∗

)
WE

)
WD‖2

n

+

(
n

n− 1

) λ1σ
score

∥∥∥((xj

(
Φ∗ − Φ

\j
∗

))
WE

)
WD

∥∥∥
2

n
.

(17)
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Let κ5 =
∥∥∥((Φ∗ − Φ

\j
∗

)
WE

)
WD

∥∥∥
2
. Based on Assumption 2, ∀x ∈ X , we have

∥∥∥(x
(

Φ∗ − Φ
\j
∗

)
WE

)
WD

∥∥∥
2

=

∥∥∥∥∥
u∑
i=1

(
αizi

(
Φ∗ − Φ

\j
∗

)
WE

)
WD +

(
η
(

Φ∗ − Φ
\j
∗

)
WE

)
WD

∥∥∥∥∥
2

6

√√√√ u∑
i=1

α2
i

√√√√ u∑
i=1

∥∥∥(zi

(
Φ∗ − Φ

\j
∗

)
WE

)
WD

∥∥∥2
2

+ ‖η‖2
∥∥∥((Φ∗ − Φ

\j
∗

)
WE

)
WD

∥∥∥
2

6 κ4

√√√√ u∑
i=1

∥∥∥(zi

(
Φ∗ − Φ

\j
∗

)
WE

)
WD

∥∥∥2
2

+
κ3κ5
n

.

(18)

Combining (17) and (18), we get

2λ1
u

u∑
i=1

∥∥∥zi

(
Φ
\j
∗ − Φ∗

)
WEWD

∥∥∥2
2

6

(
1

n− 1

)σselecκ2κ4

√√√√ u∑
i=1

∥∥∥(zi

(
Φ∗ − Φ

\j
∗

)
WE

)
WD

∥∥∥2
2

+λ1σ
scoreκ4

√√√√ u∑
i=1

∥∥∥(zi

(
Φ∗ − Φ

\j
∗

)
WE

)
WD

∥∥∥2
2

+
σselecκ2κ3κ5

n
+
λ1σ

scoreκ3κ5
n

 .

(19)

From (19), we obtain

√√√√ u∑
i=1

∥∥∥(zi

(
Φ∗ − Φ

\j
∗

)
WE

)
WD

∥∥∥2
2

6

√(
u (σselecκ2κ4 + λ1σscoreκ4)

4λ1(n− 1)

)2

+
u (σselecκ2κ3κ5 + λ1σscoreκ3κ5)

2λ1n(n− 1)

+
u
(
σselecκ2κ4 + λ1σ

scoreκ4
)

4λ1(n− 1)
.

(20)

Plugging (20) into (18), we have

∥∥∥(x
(

Φ∗ − Φ
\j
∗

)
WE

)
WD

∥∥∥
2

6 κ4

√(
u (σselecκ2κ4 + λ1σscoreκ4)

4λ1(n− 1)

)2

+
u (σselecκ2κ3κ5 + λ1σscoreκ3κ5)

2λ1n(n− 1)

+
uκ4

(
σselecκ2κ4 + λ1σ

scoreκ4
)

4λ1(n− 1)
+
κ3κ5
n

.

(21)
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And by Assumption 1, we get∣∣∣`selec (Φmaxk
∗ , x)− `selec

((
Φ
\j
∗

)maxk

, x
)∣∣∣

6 σselec
∥∥∥((x

(
Φmaxk
∗ −

(
Φ
\j
∗

)maxk
))

WE

)
WD

∥∥∥
2

6 σselecκ2κ4

√(
u (σselecκ2κ4 + λ1σscoreκ4)

4λ1(n− 1)

)2

+
u (σselecκ2κ3κ5 + λ1σscoreκ3κ5)

2λ1n(n− 1)

+
uσselecκ2κ4

(
σselecκ2κ4 + λ1σ

scoreκ4
)

4λ1(n− 1)
+
κ3σ

selecκ2κ5
n

6
σselecκ2κ4
4λ1 (n− 1)

√
u (σselecκ2 + λ1σscore)

√
uκ24 (σselecκ2 + λ1σscore) + 8λ1κ3κ5

+
uσselecκ2κ

2
4

(
σselecκ2 + λ1σ

score
)

+ 4λ1σ
selecκ2κ3κ5

4λ1(n− 1)
.

Finally, by Lemma B, we have∣∣∣`selec (Φmaxk
∗ , x)− `selec

((
Φ
\j
∗

)maxk

, x
)∣∣∣

6
σselecσscoreκ2κ4

√
u (κ2 + λ1)

√
uκ24 (κ2 + λ1) + 8λ1κ3κ5

4λ1 (n− 1)

+
uσselecσscoreκ2κ

2
4 (κ2 + λ1) + 4λ1σ

selecκ2κ3κ5
4λ1(n− 1)

6
σselecσscoreκ2κ

2
4

√
u (κ2 + λ1)

√
u (κ2 + λ1) + 8λ1κ3κ5 + uσselecσscoreκ2κ

2
4 (κ2 + λ1)

4λ1 (n− 1)

+
σselecκ2κ3κ5

(n− 1)
.
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10.2 Proof of Theorem 2

Theorem 2 (Generalization Error). 5 ∃κ5 > 0 and δ ∈ (0, 1), ∀x ∈ X and S, as long as `(AS , x) 6 κ5, the following
inequality holds with probability at least 1− δ,

Lselec (Φmaxk
∗ , S)− Lselec

emp (Φmaxk
∗ , S)

6
σselecσscoreκ2κ

2
4

(
1 +

√
2nln

(
1
δ

))√
u (κ2 + λ1)

√
u (κ2 + λ1) + 8λ1κ3κ5

2λ1(n− 1)
+ κ5

√
ln
(
1
δ

)
2n

+

(
1 +

√
2nln

(
1

δ

))(
uσselecσscoreκ2κ

2
4 (κ2 + λ1) + 4λ1σ

selecκ2κ3κ5
2λ1(n− 1)

)
,

(22)

and

Lselec (Φmaxk
∗ , S)− Lselec

loo (Φmaxk
∗ , S)

6
σselecσscoreκ2κ

2
4

(
1 +

√
8nln

(
1
δ

))√
u (κ2 + λ1)

√
u (κ2 + λ1) + 8λ1κ3κ5

4λ1(n− 1)
+ κ5

√
ln
(
1
δ

)
2n

+

(
1 +

√
8nln

(
1

δ

))(
uσselecσscoreκ2κ

2
4 (κ2 + λ1) + 4λ1σ

selecκ2κ3κ5
4λ1(n− 1)

)
,

(23)

where κ5 = ‖((Φ∗ − Φ
\j
∗ )WE)WD‖2, σselec = κ1‖(Φmaxk

∗ + (Φ
\j
∗ )maxk)WEWD‖2 + 2κ1, and σscore = κ1‖(Φ∗ +

Φ
\j
∗ )WEWD‖2 + 2κ1.

Further, the convergence rate of the above generalization error bounds is

O


√

ln
(
1
δ

)
√
nmin{

√
λ1, λ1}

+

√
ln
(
1
δ

)
n

 .

Proof. By Theorems 1, we have that our feature selection algorithm is uniformly stable. Putting (14) into (6) of
Theorem A, we have

Lselec (Φmaxk
∗ , S)− Lselec

emp (Φmaxk
∗ , S)

6 2β + (4nβ + κ5)

√
ln
(
1
δ

)
2n

=

2 + 4n

√
ln
(
1
δ

)
2n

β + κ5

√
ln
(
1
δ

)
2n

=
σselecκ2κ4

(
1 +

√
2nln

(
1
δ

))√
u (σselecκ2 + λ1σscore)

√
uκ24 (σselecκ2 + λ1σscore) + 8λ1κ3κ5

2λ1(n− 1)

+

(
1 +

√
2nln

(
1

δ

))(
uσselecκ2κ

2
4

(
σselecκ2 + λ1σ

score
)

+ 4λ1σ
selecκ2κ3κ5

2λ1(n− 1)

)

+κ5

√
ln
(
1
δ

)
2n

.

5In the main paper, due to space limitations, we do not present the upper bound for Lselec(Φ
maxk
∗ , S)− Lselec

loo (Φ
maxk
∗ , S).
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By Lemma B, we have

Lselec (Φmaxk
∗ , S)− Lselec

emp (Φmaxk
∗ , S)

6
σselecσscoreκ2κ

2
4

(
1 +

√
2nln

(
1
δ

))√
u (κ2 + λ1)

√
u (κ2 + λ1) + 8λ1κ3κ5

2λ1(n− 1)
+ κ5

√
ln
(
1
δ

)
2n

+

(
1 +

√
2nln

(
1

δ

))(
uσselecσscoreκ2κ

2
4 (κ2 + λ1) + 4λ1σ

selecκ2κ3κ5
2λ1(n− 1)

)
.

And plugging (14) into 7 of Theorem A, we have

Lselec (Φmaxk
∗ , S)− Lselec

loo (Φmaxk
∗ , S)

6 β + (4nβ + κ5)

√
ln
(
1
δ

)
2n

=

1 + 4n

√
ln
(
1
δ

)
2n

β + κ5

√
ln
(
1
δ

)
2n

=
σselecκ2κ4

(
1 +

√
8nln

(
1
δ

))√
u (σselecκ2 + λ1σscore)

√
uκ24 (σselecκ2 + λ1σscore) + 8λ1κ3κ5

4λ1(n− 1)

+

(
1 +

√
8nln

(
1

δ

))(
uσselecκ2κ

2
4

(
σselecκ2 + λ1σ

score
)

+ 4λ1σ
selecκ2κ3κ5

4λ1(n− 1)

)

+κ5

√
ln
(
1
δ

)
2n

.

By Lemma B, we get

Lselec (Φmaxk
∗ , S)− Lselec

loo (Φmaxk
∗ , S)

6
σselecσscoreκ2κ

2
4

(
1 +

√
8nln

(
1
δ

))√
u (κ2 + λ1)

√
u (κ2 + λ1) + 8λ1κ3κ5

4λ1(n− 1)
+ κ5

√
ln
(
1
δ

)
2n

+

(
1 +

√
8nln

(
1

δ

))(
uσselecσscoreκ2κ

2
4 (κ2 + λ1) + 4λ1σ

selecκ2κ3κ5
4λ1(n− 1)

)
.

(24)

Thus, the proof is completed.
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Let ((Φj∗)
maxk ,Φj∗) correspond to the optimal feature selector and feature scorer for the following error:

RLjemp(Φ, S) ,
1

n

∑
xi∈Sj

`selec(Φmaxk , xi) + λ1`
score(Φ, xi), (25)

where j ∈ {1, . . . , n}.

Next, we prove Corollary A which bounds `selec(Φmaxk
∗ , ·)− `selec((Φj∗)maxk , ·).

Corollary A. Under Assumptions 1, 2, and 3, we have, ∀n > 2,∥∥∥`selec (Φmaxk
∗ , ·)− `selec

((
Φj∗
)maxk

, ·
)∥∥∥
∞

6
σselecσscoreκ2κ

2
4

√
u (κ2 + λ1)

√
u (κ2 + λ1) + 8λ1κ3κ5 + uσselecσscoreκ2κ

2
4 (κ2 + λ1)

2λ1 (n− 1)

+
2σselecκ2κ3κ5

(n− 1)
,

(26)

where κ5 = ‖((Φ∗ − Φ
\j
∗ )WE)WD‖2, σselec = κ1‖(Φmaxk

∗ + (Φ
\j
∗ )maxk)WEWD‖2 + 2κ1, and σscore = κ1‖(Φ∗ +

Φ
\j
∗ )WEWD‖2 + 2κ1.

Proof. Corollary A follows by noticing the following fact:∥∥∥`selec (Φmaxk
∗ , ·)− `selec

((
Φj∗
)maxk

, ·
)∥∥∥
∞

6
∥∥∥`selec (Φmaxk

∗ , ·)− `selec
((

Φ
\j
∗

)maxk

, ·
)∥∥∥
∞

+
∥∥∥`selec ((Φ

\j
∗

)maxk

, ·
)
− `selec

((
Φj∗
)maxk

, ·
)∥∥∥
∞
.
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Next, we prove Proposition 1 which reveals the relationship between the regularization and the perturbation of
Lscore
emp (Φ∗, S) and Lscore,\j

emp (Φ∗, S).

Proposition 1. Let ∆Φmaxk , (Φ
\j
∗ )maxk −Φmaxk

∗ , and ∆Φ , Φ
\j
∗ −Φ∗. ∀t ∈ [0, 1], the following inequality holds:

Lscore
emp (Φ∗, S)− Lscore

emp (Φ∗ + t∆Φ, S) + Lscore,\j
emp (Φ∗, S)− Lscore,\j

emp (Φ∗ + t∆Φ, S)

6
tκ1

(∥∥∥(2
(

Φ
\j
∗

)maxk

− t∆Φmaxk

)
WEWD

∥∥∥
2

+ 2
)
‖((x∆Φmaxk) WE) WD‖2

λ1
.

Proof. Note that `selec(Φmaxk , x) is convex with respect to Φmaxk , and so is Lselec
emp (Φmaxk , S). By Definition C,

∀t ∈ [0, 1], we have,

Lselec
emp (Φmaxk

∗ + t∆Φmaxk , S)− Lselec
emp (Φmaxk

∗ , S)

+Lselec
emp

((
Φ
\j
∗

)maxk

− t∆Φmaxk , S
)
− Lselec

emp

((
Φ
\j
∗

)maxk

, S
)

6 t
(
Lselec
emp

((
Φ
\j
∗

)maxk

, S
)
− Lselec

emp (Φmaxk
∗ , S)

)
+t
(
Lselec
emp (Φmaxk

∗ , S)− Lselec
emp

((
Φ
\j
∗

)maxk

, S
))

6 0.

(27)

Furthermore, because (Φmaxk
∗ ,Φ∗) and ((Φ

\j
∗ )maxk ,Φ

\j
∗ ) are respectively the optimal feature selectors and feature

scorers for (12) and (13), we have

RLemp (Φ∗, S)−RLemp (Φ∗ + t∆Φ, S) 6 0, (28)

and

RL\jemp

(
Φ
\j
∗ , S

)
−RL\jemp

(
Φ
\j
∗ − t∆Φ, S

)
6 0. (29)

Summing the left-hand sides of (28) and (29), we have

RLemp (Φ∗, S)−RLemp (Φ∗ + t∆Φ, S) +RL\jemp

(
Φ
\j
∗ , S

)
−RL\jemp

(
Φ
\j
∗ − t∆Φ, S

)
=

1

n

n∑
i=1

`selec (Φmaxk
∗ , xi) + λ1`

score (Φ∗, xi)

− 1

n

n∑
i=1

`selec (Φmaxk
∗ + t∆Φmaxk , xi)− λ1`score (Φ∗ + t∆Φ, xi)

1

n

n∑
i=1,i6=j

`selec((Φ
\j
∗ )maxk , xi) + λ1`

score
(

Φ
\j
∗ , xi

)
− 1

n

n∑
i=1,i6=j

`selec
((

Φ
\j
∗

)maxk

− t∆Φmaxk , xi

)
− λ1`score

(
Φ
\j
∗ − t∆Φ, xi

)
.

(30)
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Plugging (27) into (30), we have

`selec
((

Φ
\j
∗

)maxk

− t∆Φmaxk , xi

)
− `selec

((
Φ
\j
∗

)maxk

, xi

)
6

n∑
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(λ1`
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+
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(
λ1`

score
(

Φ
\j
∗ − t∆Φ, xi

)
− λ1`score

(
Φ
\j
∗ , xi

))
.

(31)

And by Lemma A, we have
n∑
i=1

(`score (Φ∗, xi)− `score (Φ∗ + t∆Φ, xi))

+
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i=1,i6=j

(
`score

(
Φ
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)
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(
Φ
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))
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Φ
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.

Finally, note that

Lscore
emp (Φ∗, S)− Lscore

emp (Φ∗ + t∆Φ, S) + Lscore,\j
emp (Φ∗, S)− Lscore,\j

emp (Φ∗ + t∆Φ, S)

=

n∑
i=1

(`score (Φ∗, xi)− `score (Φ∗ + t∆Φ, xi))

+

n∑
i=1,i6=j

(
`score

(
Φ
\j
∗ , xi

)
− `score

(
Φ
\j
∗ − t∆Φ, xi

))
,

then we complete the proof.
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10 Reconstruction and Classification Results versus k

By varying the number of selected features on ISOLET, we obtain the corresponding linear reconstruction errors and
classification accuracy rates as the outputs from different algorithms. We plot the linear reconstruction errors in MSE
and classification accuracy rates in Figure 8.

Figure 8: Reconstruction and classification results vs. the number of selected features on ISOLET.
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11 Variational Accuracy with Reduction of Original Features

We take Φmaxk = |WI|maxk , and we compare the variation of classification accuracy with the reduction of original
features. The results are shown in Table 1 and Figure 9.

Figure 9: Comparison of classification results on original features and k features over the 10 datasets. Here, k can be
obtained as n·(1-reduction of #feature /100), with n being the #original features, and the reduction of #features can be
found in Table 1.

Table 1: Reduction of classification accuracy (%) with the reduction of features (%) by our algorithm. Here, “↓
#Feature” denotes the eliminated proportion of features, and “↓ Accuracy” denotes the drop in classification accuracy.
For example, on dataset USPS, with the selected features by our algorithm the number of features reduces by 80.5%
(thus, the large majority of the original features are eliminated); the classification accuracy reduces only by 0.6%.

Dataset No. 1 2 3 4 5 6 7 8 9 10 Average
↓ #Features 87.0 87.5 91.1 91.9 93.6 80.5 98.6 98.9 99.7 99.4 92.8±6.2
↓ Accuracy 2.8 3.1 5.2 11.2 3.5 0.6 0.0 0.0 7.2 2.9 3.7±3.3
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12 More Experiments of Algorithmic Stability

Adopting the same experiment design on COIL-20 in Section 6 of the main text, we vary n from 100 to 900 with a step
size of 200 to obtain different S. We delete a sample for each S to get the corresponding S\i and then calculate the
left-hand side of (14) on the testing set for the trained models. From the plots in Figure 10 (a)-(b), it is seen that, since
we compute the results by using the testing set instead of all the potential samples, we are subject to the interference
from possible noise or outlier samples; however, with the increase of n, the curve of the uniform stability bound
basically presents a downward tendency, which is consistent with our theoretical analysis.

(a) |WI| (b) W2
I

Figure 10: Algorithmic stability analysis on COIL-20 when k = 50.
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13 More Results about Stability of Selected Features

We empirically analyze the stability of features selected by Eq. (2) of the main text. We randomly split the samples of
COIL-20 into the training and testing sets, then use Eq. (2) to perform feature selection. We repeat this procedure 10
times with different random seeds and plot the selection results in Figure 11 (a)-(b). Note that the selected features
essentially overlap for these 10 different splits and are stable.

(a) |WI| (b) W2
I

Figure 11: Stability analysis of 5 selected features. Note that 10 different splits yield essentially overlapping features.
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We give the selected features from different splits together with original samples of MNIST-Fashion and COIL-20 in
Figure 12 below.

(a) |WI| on MNIST-Fashion when k = 10

(b) W2
I on MNIST-Fashion when k = 10

(c) |WI| on COIL-20 when k = 5

(d) W2
I on COIL-20 when k = 5

Figure 12: Selected key features on original samples.
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