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ABSTRACT
Singingmelody extraction is a key task in the field of music informa-
tion retrieval (MIR). However, decades of research works have un-
covered two difficult issues. First, binary classification on frequency-
domain audio features (e.g., spectrogram) is regarded as the pri-
mary method, which ignores the potential associations of musical
information at different frequency bins, as well as their varying sig-
nificance for output decisions. Second, the existing semi-supervised
singing melody extraction models ignore the accuracy of the gener-
ated pseudo labels by semi-supervised models, which largely limits
the further improvements of the model. To solve the two issues,
in this paper, we propose a heterogeneous knowledge distillation
framework for semi-supervised singing melody extraction using
harmonic supervision, termed as HKDSME. We begin by proposing
a four-class classification paradigm for determining the results of
singing melody extraction using harmonic supervision. This en-
ables the model to capture more information regarding melodic
relations in spectrograms. To improve the accuracy issue of pseudo
labels, we then build a semi-supervised method by leveraging the
extracted harmonics as a consistent regularization. Different from
previous methods, it judges the availability of unlabeled data in
terms of the inner positional relations of extracted harmonics. To
further build a light-weight semi-supervised model, we propose
a heterogeneous knowledge distillation (HKD) module, which en-
ables the prior knowledge transfers between heterogeneous models.
We also propose a novel confidence guided loss, which incorporates
with the proposed HKD module to reduce the wrong pseudo labels.
We evaluate our proposed method using several well-known public
available datasets, and the findings demonstrate the efficacy of our
proposed method.

CCS CONCEPTS
• Applied computing→ Sound and music computing.

KEYWORDS
Heterogeneous KnowledgeDistillation, Harmonic Supervision, Singing
Melody Extraction, Music Information Retrieval
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1 INTRODUCTION
Singing melody extraction is a challenging task in the field of music
information retrieval (MIR). It aims to extract the fundamental fre-
quency (f0) contour from polyphonic music. Recently it has become
an active research topic with a lot of downstream applications, such
as cover song identification [40, 53], query-by-humming [44], voice
separation [23], and music recommendation [27]. Singing melody
contour obtained from extraction models can be utilized as an audio
feature of musical information to enhance the performance of these
downstream tasks.

With the trend of artificial intelligence, deep learningmodels play
an important role in the development of singing melody extraction
techniques. A number of deep learning based methods [3, 21, 42, 49,
50] have been proposed for supervised singing melody extraction.
Then, in an attempt to solve the problem of data insufficiency,
semi-supervised singing melody extraction methods have become
a cutting-edge direction. Some pioneer works [29, 48] adopt semi-
supervised learning to utilize unlabeled music tracks as training
data for the singing melody extraction task, seeking to improve the
melody extraction performance. However, these works either do
not contain the process of data selection for unlabeled data or use
data augmentation based consistency regularization methods.

Despite these remarkable successes in singing melody extrac-
tion, in this paper, we try to further improve the performance of
melody extraction models from two perspectives: a rethinking of
supervised training paradigm and an innovation in the approach of
semi-supervised singing melody extraction.

For supervised learning methods of the singing melody extrac-
tion task, the prior works employ the binary classification paradigm
on all audio pixels in the spectrogram, to predict whether each of
them is classified as the f0 or not. However, this paradigm exposes
one potential issue in the singing melody extraction task: all pixels
in the spectrogram are treated equally as either melodic pixel or
non-melodic pixel, while in the actual analysis of music signals,
pixels often have different importance. One of the most representa-
tive examples is the harmonic and sub-harmonic information of the
singing melody, which has been proven crucial for singing melody
extraction [1, 26, 52]. They are distributed above and below the
singing melody line according to a fixed ratio, and synchronize with
the changes of the singing melody. If we treat these pixels equally as
just melodic or non-melodic pixels, then not only can we not make
use of the relationship between these harmonics/sub-harmonics
and the singing melody, but they may even in turn be misidentified
as the singingmelody (known as octave error), because they possess
similar patterns and activation values as the singing melody.

For semi-supervised singing melody extraction, while data aug-
mentation is treated as a popular consistency regularizationmethod,
the accuracy of pseudo labels is still a challenging issue. Yu et al.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Illustration of the proposed harmonic supervision
and harmonic consistency regularization.

[48] has claimed that the singing melody extraction task is very
sensitive to the data augmentation, many data augmentation based
consistency regularization methods can not obtain satisfied results,
such asMixMatch [4],MeanTeacher [43]. We seek for some method
that uses the correlations inside features as a consistency regular-
ization to alleviate this issue. And we expect that such methods can
be both light-weight and accurate to further increase the efficiency
of the model’s utilization of unlabeled data in the semi-supervised
learning scenario.

Following the above analysis, in this paper, we first propose a
new paradigm, which uses harmonic supervision for supervised
singing melody extraction. To be specific, we first leverage har-
monic and sub-harmonic information as additional labels, then we
perform a four-class classification: melodic pixels, harmonic pix-
els, sub-harmonic pixels and non-melodic pixels. The new paradigm
encourages the model to learn the positional correlations in the
spectrogram, alleviating the octave error issue.

Extending from supervised learning, we propose to leverage the
extracted harmonic and sub-harmonic positional information as a
consistency regularization for semi-supervised learning. Different
from previous methods, it judges the availability of unlabeled data
in terms of the inner positional relations of extracted harmonics. We
expect to see how the performance of the task is improved due to the
proposed harmonic consistency regularization via semi-supervised
learning.

To further build a light-weight semi-supervised model, we also
propose a heterogeneous knowledge distillation (HKD) module,
which enables the prior knowledge transfer between heterogeneous
models. We also propose a novel confidence-guided labeling loss to
better train the proposed HKD module.

The contribution of this is summarized as follow:

• A new training paradigm is proposed for supervised singing
melody extraction task, which uses harmonic supervision to
classify the audio pixels in the spectrogram into four classes.
The proposed harmonic supervision method encourages the
model to learn positional correlations in the spectrogram,
reducing the octave errors.
• Extending from supervised singing melody extraction, we
apply harmonic supervision to the semi-supervised scenario
as a consistency regularization method to improve the accu-
racy of pseudo labels.
• To further build a light-weight semi-supervised model, a
heterogeneous knowledge distillation module is proposed
to enable the prior knowledge can be transferred between
heterogeneous models. We also propose a novel confidence-
guided labeling loss to better train the proposed HKD mod-
ule.
• We use MIR-1K dataset and part of music tracks of the Med-
leyDB dataset as labeled data for training the model and
we evaluate the performance on the well-known ADC2004,
MIREX 05, iKala and another part of MedleyDB. The experi-
mental results demonstrates the superiority of our method
compared with other state-of-the-art ones.

2 RELATEDWORKS
2.1 Supervised Singing Melody Extraction
Deep learning models for the singing melody extraction task un-
dergone various model architectures throughout its history. Kum
et al. [31] proposes a multi-column deep neural network to learn
a nonlinear mapping between frame and melody. Subsequently,
many convolutional neural network (CNN) based approaches have
been developed to better capture spectral-temporal information
[9, 14, 16, 33, 42]. In addition, the use of musical prior knowledge
and structural priors has further broadened the design of melody
extraction models [11, 17, 21, 30, 35]. The relationship between
frequencies can be further captured through multi-dilation or atten-
tion networks [13, 15, 50, 52], or harmonic constant-Q transform
(HCQT) [5]. The separate prediction of octave and pitch-class is
proposed in [8] to further enhance the octave accuracy and chroma
accuracy of the melody extraction. These models further improve
the melody extraction performance.

2.2 Semi-supervised Singing Melody Extraction
Although semi-supervised learning is a crucial method to handle the
unlabeled data in the era of artificial intelligence, merely little works
[29, 48, 51] have been studied for singing melody extraction. As far
as we know, Kum et al. [29] employed a pretrained teacher model to
generate pseudo labels on unlabeled data. However, since there is a
lack of the process of data selection, it is prone to generate wrongly
predicted pseudo labels, which would decrease the performance of
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Figure 2: The framework of the proposed HKDSME. The proposed framework HKDSME consists of three modules: (a) harmonic
supervision (HS) module, (b) harmonic consistency regularization (HCR) module and (c) heterogeneous knowledge distillation
(HKD) module.

the model. Yu et al. [51] proposed a few-shot learning algorithm
to address the imbalance distribution of the samples due to the
scarce of labeling data. Unfortunately, this algorithm can not be
used in the scenario of semi-supervised learning. In the field of
machine learning, consistency regularization has become an active
research direction [10, 24, 34, 38, 55]. A lot of popular consistency
regularization methods [2, 4, 32, 43, 47] have been proposed to deal
with the unlabeled data. Unfortunately, Yu et al. [48] has claimed
that the singing melody extraction task is too sensitive to obtain
satisfied results. In this work, we propose a harmonic supervision
based consistency regularization method.

2.3 Knowledge Distillation
Our work is related to knowledge distillation, which is initially
proposed in [20]. Hinton et al. [20] proposed to use the output
class probabilities of a static cumbersome model as soft targets
to teach a light-weight student model. Zagoruyko et al. [54] pro-
posed a method that encourage the student model to generate the
same attention as the teacher model. Wu et al. [46] proposed a
mutual learning method to learn complementary features in semi-
supervised learning. However, these methods mentioned above are
either logit-based or intermediate-feature based methods, which are
too heavy to train the model. In this paper, we propose a confidence
guided loss incorporated with HKD module to dynamically adjust
the amount of information learned from teacher model.

3 METHODOLOGY
The overview of the proposed framework is presented in Fig.2. We
choose to use FTANet [50] as the feature extractor of HKDSME.
The proposed framework HKDSME consists of three modules: har-
monic supervision (HS) module, harmonic consistency regular-
ization (HCR) module and heterogeneous knowledge distillation
(HKD) module. At the same time, we perform HS module, HCR
module and HKD module between the two groups of the generated
music representations. We will introduce each components in the
following subsections.

3.1 Semi-supervised Learning Setup
In this paper, the inputs are from both labeled and unlabeled data.
For the input data, the music signal can be denoted as𝐷 = {𝐷𝑙 , 𝐷𝑢 }.
𝐷𝑙 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ...(𝑥𝑚, 𝑦𝑚)} and 𝐷𝑢 = {𝑢1, 𝑢2, ..., 𝑢𝑁 } de-
note the labeled music data and unlabeled music data, respectively.
𝑀 and 𝑁 are the number of labeled and unlabeled data. 𝑇 denotes
the whole training dataset. The learning objective function is con-
structed in the following form:

min
𝜃
{𝐿𝑙 (𝐷𝑙 , 𝜃 ) + 𝜔𝐿𝑢 (𝐷𝑢 , 𝜃 )}, (1)

where 𝐿𝑙 is the loss function of the supervised learning and 𝐿𝑢 is
the loss function of the unsupervised learning. 𝜔 is a non-negative
parameter, 𝜃 represents the parameters of our proposed framework.
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Figure 3: Illustration of the proposed harmonic supervision
module.

3.2 Harmonic Supervision for Singing Melody
Extraction

The aim of the harmonic supervision (HS) module is to encourage
the model to learn the positional correlation relationship in the
spectrogram. Distinct from the existing binary classification para-
digm, the HS module force the model to predict not only melodic
and non-melodic pixels in the spectrogram, but harmonic and sub-
harmonic pixels. To be specific, we employ a convolution layer
with the kernel size of 1 × 1, and the number of output channel of
the convolution layer is set to 4. The convolution layer is followed
by the batch normalization and Softmax Layers. The output of the
module is four feature maps: 1) a feature map with melodic pixels
and non-melodic pixels, 2) a feature map with harmonic pixels and
non-melodic pixels, 3) a feature map with sub-harmonic pixels and
non-melodic pixels and 4) a feature map with non-voiced pixels
and non-melodic pixels as shown in Fig. 3. Note that non-voiced
pixel, as an auxiliary flag, indicate that there is no singing voice
at that time step. To be clear, given an input spectrogram 𝑆 , the
output 𝑃 (the melody contour, harmoic/sub-harmonic contour and
non-voice contour) can be predicted as follow:

𝐹𝑀 = 𝐻𝑆 (𝑓 (𝑠)),
𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐹𝑀), (2)

where 𝑓 (·) denotes the feature extractor (e.g., FTANet without
classification head) for singing melody extraction, 𝐻𝑆 (·) denotes
the proposed harmonic supervision module and 𝐹𝑀 = {𝐹𝑀𝑖 |𝑖 ∈
{1, 2, 3, 4}}. Since the HS module follows the plug-and-play fashion,
it can be used as classification head on all of the existing deep
learning based singing melody extraction models.

3.3 Harmonic Consistency Regularization for
Singing Melody Extraction

The aim of the harmonic consistency regularization (HCR) mod-
ule is to select the generated pseudo labels based on the essential

Algorithm 1 The detailed procedures of HCR

Input: Labeled dataset 𝐷𝑙 = {(𝑥1, 𝑦1)...(𝑥𝑛, 𝑦𝑛)},
Unlabeled dataset 𝐷𝑢 = {𝑢1, ..., 𝑢𝑀 }

Output: Training dataset 𝐷 .
1: 𝐷 = {𝐷𝑙 }
2: for 𝑖 ← 1 to M do
3: # 𝑇 denotes the time steps of a sample.

4: 𝑃 = {(𝑦
1
3 𝑓 0
𝑡 , 𝑦

1
2 𝑓 0
𝑡 , 𝑦

𝑓 0
𝑡 , 𝑦

2𝑓 0
𝑡 , 𝑦

3𝑓 0
𝑡 ) |𝑡 ∈ (1,𝑇 )} ← 𝐻𝑆 (𝑢𝑖 )

5: 𝑁𝑢𝑚 ← 0
6: for 𝑡 ← 1 to 𝑇 do
7: if 3𝑦

1
3 𝑓 0
𝑡 == 2𝑦

1
2 𝑓 0
𝑡 == 𝑦

𝑓 0
𝑡 == 1

2𝑦
2𝑓 0
𝑡 == 1

3𝑦
3𝑓 0
𝑡 then

8: 𝑁𝑢𝑚 + +
9: end if
10: end for
11: if 𝑁𝑢𝑚 == 𝑇 then
12: add (𝑢𝑖 , 𝑦 𝑓 0𝑡 ) to D
13: else if 𝑁𝑢𝑚 == 0 then
14: discard the sample 𝑢𝑖
15: else
16: 𝜏 ← 𝑁𝑢𝑚/𝑇 # confidence score
17: # use the confidence score to decide add or discard to 𝐷
18: 𝑎𝑐𝑡𝑖𝑜𝑛 ← 1 if random.uniform(0, 1) < 𝜏 else 0
19: add (𝑢𝑖 , 𝑦 𝑓 0𝑡 ) to 𝐷 if action==1 else discard 𝑢𝑖
20: end if
21: end for
22: return 𝐷

characteristics of the musical audio and reduce the computation.
Given an unlabeled spectrogram, we first employ HS module to
predict the following key values related to the singing melody: f0,
2f0, 12f0, 3f0,

1
3f0.

After obtaining the values, we can validate the predictions men-
tioned above. If the predicted values are according to the corre-
sponding ratio, we can add the input into the training data for next
iteration of the training. Otherwise, there are two kinds of cases
need to be discussed: i) If the values are all wrong, the input data
will be discarded directly. ii) If not all of the values are right, the
input data we will give a low confidence score to the input data.
For example, if there are four out of five values are right, we will
give a confidence score of 80% to the input data1. The detailed
procedures are presented in Alg. 1. By this way, we can judge the
availability of the unlabeled data. In addition, since this method
does not need perform data augmentation, not only can we reduce
the cost of computation by data augmentation, but we can avoid the
performance decrease comes from perturbations to the sensitive
spectrogram by data augmentation.

3.4 Heterogeneous Knowledge Distillation For
Singing Melody Extraction

In order to build a light-weight semi-supervised model for singing
melody extraction, we propose a heterogeneous knowledge distil-
lation (HKD) module. The detailed HKD module is presented in
Fig.4. To achieve this, we first employ a large pre-trained model

1Obviously, more complex scoring criteria can be explored for the task in future.
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Figure 4: Illustration of the proposed harmonic consistency
regularization module. The parameters are shared for the
three-layer small neural network (Conv-SELU-Linear).

(e.g., FTANet) as the teacher model, and a light-weight model (e.g.,
MSNet) as the student model. Then we choose several layers from
the student model, and we divide the chosen layers into three
groups: head layers, intermediate layers and bottom layers. Unlike
previous methods [19, 25, 36, 45], we employ a three-layer small
neural network to transform the feature maps from the chosen
layers and the feature map of the last layer from the teacher model
into the shared hidden space. Then the information from teacher
and student models can be fused and used for training and testing.

Formally, given an input spectrogram 𝑆 , we first feed 𝑠 into the
teacher model and obtain the prediction 𝑝𝑡

𝑖
. We then feed 𝑠 into

the student model and obtain 𝑝𝑠
𝑖
. In order to avoid the collapse of

the model, we freeze the parameters in the teacher model. After
obtaining 𝑝𝑡

𝑖
and 𝑝𝑠

𝑖
, There are three loss functions are calculated.

We first perform cross entropy loss function between 𝑝𝑠
𝑖
and 𝑦𝑖 :

𝐿𝑐𝑒 =
1
|𝐷 |

∑︁
𝑖

𝐶𝐸 (𝑝𝑠𝑖 , 𝑦𝑖 ), (3)

where |𝐷 | denotes the number of training data and𝐶𝐸 (·) is the cross
entropy loss function. Then, KL divergence is employed to calculate
the difference between predictions from teacher and student model:

𝐿𝐾𝐿 =
1
|𝐷 |

∑︁
𝑖

𝐾𝐿(𝑝𝑠𝑖 , 𝑝
𝑡
𝑖 ), (4)

where 𝐾𝐿(·) denotes the KL divergence loss function. By using
the two loss functions the outputs among teacher, student and the
ground truth could be aligned.

Although we can get a high performance from the teacher model,
the teacher model will still generate wrong pseudo labels. To im-
prove the accuracy of the pseudo labels generated by the teacher
model, we propose a novel confidence-guided labeling (CGL) loss
to achieve this. Since the teacher model will output a probability

Table 1: The detailed descriptions of the datasets for training
and testing the proposed framework HKDSME.

Dataset # of Tracks Duration
Training
(Labeled)

MIR-1K 1000 2h 13min
MedleyDB 35 2h 20min

Training
(Unlabeled)

FMA 700 5h 15min
RWC 30 3h 20min

Testing

ADC2004 12 4min
MIREX 05 9 4min
Medley DB 12 48min

iKala 262 2h 6min

value in addition to the prediction, the proposed CGL loss is based
on howmuch confidence the teacher model shows. If the prediction
from teacher model is not that confident, then the output from
student model may stick to its own predictions. Otherwise, the
student should obey the prediction from teacher model. The CGL
loss can be calculated:

𝐿𝐶𝐺𝐿 =
−1
|𝐷 |

∑︁
𝑖

(1 + 𝑔𝑡𝑐 )𝛼 𝑙𝑜𝑔𝑔𝑠𝑐 +
∑︁
𝑦\𝑐

𝑔𝑡
𝑐
𝑙𝑜𝑔𝑔𝑠

𝑐
, (5)

where 𝑐 denotes the index of frequency bin corresponding to the
f0, 𝑐 denotes the remaining frequency bins are not f0, 𝛼 is a hyper-
parameter to scale the term (1 + 𝑔𝑡𝑐 ), 𝑔𝑡𝑐 ∈ (0, 1) denotes the con-
fidence shows by the teacher model and 𝑔𝑠𝑐 ∈ (0, 1) denotes the
confidence shows by the student model. The overall loss function
of the proposed HKDSME framework can be calculated:

𝐿 = 𝐿𝐶𝐸 + 𝐿𝐾𝐿 + 𝐿𝐶𝐺𝐿 (6)

4 EXPERIMENTS
4.1 Datasets
We train and evaluate our proposed HKDSME framework on several
public datasets, the descriptions of the datasets we used are listed
in Table 1. For the training data, we first choose 1000 popular
music tracks from MIR-1K [22] and 35 popular music tracks from
MedleyDB [6] with melody annotated. Then we also choose 700
popular music tracks from FMA dataset [12] without labels. We
also use 30 popular music tracks from RWC dataset [18]. For the
testing data, we use four well-known testing datasets for this task:
12 tracks from ADC2004, 9 tracks from MIREX052, 12 tracks from
MedleyDB and 262 tracks from iKala [7].

4.2 Experiment Setup
Following the convention in the literature [39], we use the following
metrics for performance evaluation: overall accuracy (OA), raw
pitch accuracy (RPA), raw chroma accuracy (RCA), voicing recall
(VR) and voicing false alarm (VFA).We usemir eval library [37] with
the default setting to calculate the metrics. For each metric other
than VFA, the higher score, the higher performance. In the literature,
OA is often considered more important than other metrics.

2https://labrosa.ee.columbia.edu/projects/melody
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Table 2: The performances of the proposed HKDSME and baseline methods on the ADC2004 and MIREX 05 datasets, the values
in the table are percentile.

Dataset
Methods ADC2004 MIREX 05

OA RPA RCA VR VFA OA RPA RCA VR VFA
DSM 68.1 66.5 69.1 76.3 17.4 72.1 74.3 75.4 77.2 30.1
MSNet 77.1 75.1 75.8 80.8 16.3 82.0 78.4 79.0 82.3 14.3
MD+MR 76.5 77.7 78.1 78.4 22.8 79.0 75.6 76.7 79.9 25.4

Teacher-student 78.5 77.9 78.4 81.5 14.1 81.7 76.3 76.9 81.8 14.8
FTANet 77.4 76.3 76.5 83.2 13.3 84.4 77.8 77.8 83.9 5.2
HGNet 75.3 74.8 75.1 80.9 21.3 82.1 75.4 76.3 80.5 21.7
MCSSME 79.7 78.1 78.9 80.8 16.3 84.6 80.1 80.5 85.3 15.9

HKDSME (ours) 85.6 85.2 85.3 87.5 11.5 85.7 82.3 82.4 84.1 5.4

Table 3: The performances of the proposed HKDSME and baseline methods on the MedleyDB and iKala datasets, the values in
the table are percentile.

Dataset
Methods MedleyDB iKala

OA RPA RCA VR VFA OA RPA RCA VR VFA
DSM 65.3 50.8 52.0 62.1 21.3 71.2 78.4 79.1 79.4 23.6
MSNet 67.4 52.2 52.8 54.5 12.2 78.0 80.1 81.2 80.2 13.6
MD+MR 68.3 53.1 53.9 58.3 18.6 78.5 80.7 81.9 79.2 29.8

Teacher-student 69.8 53.6 54.4 61.2 20.7 77.1 77.2 78.3 79.5 35.4
FTANet 70.2 54.2 55.8 60.4 15.3 80.7 80.8 81.4 83.1 23.7
HGNet 69.3 53.3 53.8 61.3 13.4 79.3 80.4 80.8 82.5 22.8
MCSSME 71.4 56.4 57.0 63.4 16.8 81.2 81.4 81.7 84.2 21.9

HKDSME (Ours) 72.3 60.8 62.5 66.4 12.1 82.1 83.0 83.2 85.3 14.9

The proposed framework is implemented using PyTorch 3. All
experiments are conducted on a machine with two NVIDIA RTX
3090 GPUs. For a fair comparison, we train the baseline models
using the same training data. Following [21], we choose to use a set
of input representations. It contains three parts: (1) the generalized
cepstrum(GC) [28], (2) the generalized cepstrum of spectrum (GCoS)
[41], (3) the Combined Frequency and Periodicity (CFP) spectrum
[42]. In this work, the audio files are resampled to 8 kHz and merged
into one mono channel following [50]. Data representations are
computed with a Hanning window of 768 samples and hop size of
80 samples. To adapt the pitch ranges required in singing melody
extraction, following [21], we set hyper-parameters in computing
the CFP for our model. For vocal melody extraction, the number
of frequency bins is set to 320, with 60 bins per octave, and the
frequency range is from 31 Hz (B0) to 1250 Hz (D#6).

4.3 Comparison with State-of-the-art Methods
We compare our framework with seven state-of-the-art (SOTA)
methods for singing melody extraction: (1) DSM [5], (2) MSNet
[21], (3) MD+MR [15], (4) Teacher-student [29], (5) FTANet [50],
(6) HGNet [49], (7) MCSSME [48]. To demonstrate the effective-
ness of our proposed method, we train the proposed framework
HKDSME and compare our method with other baseline methods.
The quantitative results are shown in Table 2 and Table 3. It is

3https://pytorch.org

observed that with assisted unlabeled music data, our proposed
HKDSME achieves the best performance on four public testing
sets in general. For comparison with other baselines, when focus-
ing on OA, the proposed method outperforms FTANet by 10.6%
in ADC2004, by 1.5% in MIREX 05, by 3.0% in Medley DB and by
1.7% in iKala, relatively. When comparing with semi-supervised
methods on OA, the proposed method outperforms Teacher-student
by 9.0% in ADC2004, by 4.9% in MIREX 05, by 7.6% in Medley DB
and by 6.5% in iKala, relatively. It is worthy to mention that the
effectiveness of our method is from the harmonic consistency regu-
larization and harmonic knowledge distillation compared with the
performance of a semi-supervised model Teacher-student [29].

4.4 Case Study
To investigate what types of errors are solved by the proposed
model, a case study is performed on several music tracks chosen
from ADC2004 and MIREX 05 datasets. We choose FTANet [50] to
compare with due to its effectiveness and popularity. As depicted
in Fig. 5, we can observe that there are fewer octave errors in our
model than in FTANet in general. We can also observe that there
are some errors that are wrongly predicted near the right frequency
bin in diagram (a) near the time of 1000 ms, which are correctly
predicted in diagram (c). Through the visualization of the predicted
melody contour, we can say that the performance gains of the pro-
posed model can be attributed to solving the octave errors and other
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(a) Opera_male3 by FTANet. (b) Opera_male5 by FTANet. (c) pop2 by FTANet. (d) pop3 by FTANet.

(e) Opera_male3 by our model. (f) Opera_male5 by our model. (g) pop2 by our model. (h) pop3 by our model.

(i) train03 by FTANet. (j) train04 by FTANet. (k) train05 by FTANet. (l) train06 by FTANet.

(m) train03 by our model. (n) train04 by our model. (o) train05 by our model. (p) train06 by our model.

Figure 5: Visualization of singing melody extraction results on eight music tracks using different models.

errors. To investigate the quality of music representation learned
from our proposed HKDSME, we visualize the learned representa-
tion via t-SNE. We use 12 popular music tracks to perform t-SNE,
as observed in Fig. 6. The left is the distribution of binary classifi-
cation, and the right is the distribution of harmonic supervision.
The representations on the right are well clustered. Owing to the
proposed HKDSME framework, the predictions of our method have
smoother contours and the examples with the same frequency are
closer to each other.

4.5 Ablation Study
To investigate the effectiveness of the key components in our frame-
work, we conduct ablation studies and the quantitative results are

presented in Table 4. We first remove the harmonic supervision
module and use binary classification to train the framework. As
observed in Table 4, the performances of OA decreased by 4.7% in
ADC2004 and 4.4% in MIREX 05. We then remove the HCR module
and use data augmentation to select unlabeled data, the perfor-
mances of OA decreased by 3.3% in ADC2004 and 3.9% in MIREX
05. The observation indicates that the use of harmonic consistency
regularization helps improve the performance of singing melody
extraction. Next, we remove the heterogeneous knowledge module
and use intermediate features of the teacher and student models for
knowledge distillation, the performances of OA decreased by 1.1%
in ADC2004 and 1.6% in MIREX 05. Finally, we remove the CGL
loss, the performances of OA decreased by 0.7% in ADC2004 and
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Figure 6: Visualization of the learned music representation
via t-SNE. The left is the feature distributions using binary
classification, the right is the feature distributions using har-
monic supervision. Different colors denote various examples
with different frequencies.

Table 4: Results of Ablation Study on ADC2004 and MIREX
05 dataset. The values in the table are percentile. “w/o HS”
and “w/o HCR” denote without harmonic supervision and
harmonic consistency regularization respectively. “w/oHKD”
stands for without heterogeneous knowledge distillation.
“w/o CGL” stands for without confidence-guided labeling
loss.

Dataset
Methods ADC2004 MIREX 05

OA RPA RCA OA RPA RCA
w/o HS 81.6 81.1 81.8 81.9 78.2 79.0
w/o HCR 82.8 83.1 83.2 82.4 78.9 79.0
w/o HKD 84.7 84.3 84.6 84.3 80.8 80.9
w/o CGL 85.0 84.8 84.9 85.1 81.8 81.9
HKDSME 85.6 85.2 85.3 85.7 82.3 82.4

Table 5: Effects of harmonic supervision.

Dataset
Har. Combinations ADC2004 MIREX 05

OA RPA RCA OA RPA RCA
f0 81.6 81.1 81.8 81.9 78.2 79.0

f0+ 1
2 f0+2f0 81.9 80.3 80.5 83.4 80.0 80.1

f0+ 1
3 f0+3f0 81.8 80.2 80.3 82.7 79.6 79.8

f0+2f0+3f0 83.2 82.0 82.1 83.2 80.3 80.4
f0+ 1

2 f0+
1
3 f0 83.2 82.0 82.1 83.5 80.1 80.2

f0+ 1
2 f0+

1
3 f0+2f0+3f0 85.6 85.2 85.3 85.7 82.3 82.4

0.7% in MIREX 05. The results show that the proposed harmonic
supervision paradigm contributes most to HKDSME. And the pro-
posed HCR and HKD modules can also improve the performances
in the scenario of using very limited labeled data. Overall, the key
components of our framework HKDSME are tightly incorporated
and collaboratively devote to remarkable results.

Effects of harmonic supervision. To investigate how the su-
pervision improves the performance, we vary the harmonic num-
bers of harmonic supervision. The quantitative results is presented

Table 6: Effects of 𝛼 .

Dataset
𝛼 Settings ADC2004 MIREX 05

OA RPA RCA OA RPA RCA
𝛼 = 0.5 84.6 84.3 84.4 84.9 81.6 81.7
𝛼 = 1 84.9 84.5 84.6 85.4 82.0 82.1
𝛼 = 1.5 85.6 85.2 85.3 85.7 82.3 82.4
𝛼 = 2 84.3 84.0 84.1 84.5 81.1 81.2
𝛼 = 2.5 84.2 83.9 84.0 84.5 81.1 81.2

in Table 5. To compare with the binary classification, we also add
the results of f0 in the table. Specifically, we perform five combi-
nations of harmonics to justify the effectiveness of our proposed
HS module. We first try the combination of f0, nf0 and 1

𝑛 f0, the
results show that using the above combination will improve both
of the peformances on ADC2004 and MIREX 05. It is worthy to
mention that the improvements on MIREX 05 are better than in
ADC2004, that is because MIEX05 are popular music tracks, which
are prone to be misidentified by sub/harmonic information during
extracting f0. Then we try the combination of f0 and harmon-
ics, the results show that on both datasets, the OAs are improved
by 2.0% on ADC2004, and by 1.6% on MIREX 05, when compared
with binary classification. We also try the combination of f0 and
sub-harmonics, the OAs are improved by 2.0% on ADC2004, and
by 2.0% on MIREX 05. Although not shown in the table, we tried
more sub/harmonics, the results are nearly the same as the best
performance in Tab. 5

Effects of 𝛼 .We vary the value of 𝛼 for the CGL loss, and the
results is shown in Table 6. To observe the effects of 𝛼 , we vary
the 𝛼 from 0.5 to 2.5. We can observe from Tab. 6, when 𝛼 is set to
0.5, we can obtain the best performance. We can also observe that
the results are nearly the same, which indicates that the proposed
framework HKDSME is not very sensitive to 𝛼 .

5 CONCLUSION
In this paper, we proposed a heterogeneous knowledge distillation
framework for semi-supervised singing melody extraction using
harmonic supervision, called HKDSME. Specifically, we proposed
a new training paradigm that uses harmonic supervision to clas-
sify the audio pixels in the spectrogram into four classes. Extend-
ing from harmonic supervision, we proposed to use the extracted
harmonics to judge the availability of unlabeled data in terms of
inner positional relations. To build a light-weight semi-supervised
model, we proposed a heterogeneous knowledge distillation, this
module enables the prior knowledge can transfer between differ-
ent architectures of the models. To further improve the accuracy
of pseudo labels, we also proposed a confidence-guided labeling
loss function. HKDSME evaluates on a set of well-known public
melody extraction datasets with promising performances. The ex-
perimental results demonstrate the effectiveness of the HKDSME
framework for singing melody extraction from polyphonic mu-
sic using very limited labeled data scenarios. This work has also
provided another verification of the feasibility for integrating har-
monic supervision and heterogeneous knowledge distillation for
semi-supervised singing melody extraction.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

HKDSME: Heterogeneous Knowledge Distillation for Semi-supervised Singing Melody Extraction Using Harmonic Supervision ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Vipul Arora and Laxmidhar Behera. 2012. On-line melody extraction from

polyphonic audio using harmonic cluster tracking. IEEE Transactions on Audio,
Speech, and Language Processing 21, 3 (2012), 520–530.

[2] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. 2019.
There Are Many Consistent Explanations of Unlabeled Data: Why You Should
Average. In Proc. ICLR.

[3] Dogac Basaran, Slim Essid, and Geoffroy Peeters. 2018. Main melody extraction
with source-filter NMF and CRNN. In Proc. ISMIR.

[4] David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nicolas Papernot, Avital
Oliver, and Colin Raffel. 2019. MixMatch: AHolistic Approach to Semi-Supervised
Learning. In Proc. NeurIPS. 5050–5060.

[5] Rachel M Bittner, Brian McFee, Justin Salamon, Peter Li, and Juan Pablo Bello.
2017. Deep Salience Representations for F0 Estimation in Polyphonic Music.. In
ISMIR. 63–70.

[6] Rachel M. Bittner, Justin Salamon, Mike Tierney, Matthias Mauch, Chris Cannam,
and Juan Pablo Bello. 2014. MedleyDB: A Multitrack Dataset for Annotation-
Intensive MIR Research. In Proc. ISMIR. 155–160.

[7] Tak-Shing Chan, Tzu-Chun Yeh, Zhe-Cheng Fan, Hung-Wei Chen, Li Su, Yi-
Hsuan Yang, and Jyh-Shing Roger Jang. 2015. Vocal activity informed singing
voice separation with the iKala dataset. In Proc. ICASSP. 718–722.

[8] Ke Chen, Shuai Yu, Cheng-i Wang, Wei Li, Taylor Berg-Kirkpatrick, and Shlomo
Dubnov. 2022. TONet: Tone-Octave Network for Singing Melody Extraction
from Polyphonic Music. In Proc. ICASSP. 621–625.

[9] Ming-Tso Chen, Bo-Jun Li, and Tai-Shih Chi. 2019. CNN Based Two-stage Multi-
resolution End-to-end Model for Singing Melody Extraction. In Proc. ICASSP.
1005–1009.

[10] De Cheng, Yixiong Ning, Nannan Wang, Xinbo Gao, Heng Yang, Yuxuan Du,
Bo Han, and Tongliang Liu. 2022. Class-Dependent Label-Noise Learning with
Cycle-Consistency Regularization. In Proc. NeurIPS.

[11] Hsin Chou, Ming-Tso Chen, and Tai-Shih Chi. 2018. A Hybrid Neural Network
Based on the Duplex Model of Pitch Perception for Singing Melody Extraction.
In Proc. ICASSP. 381–385.

[12] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. 2017.
FMA: A Dataset for Music Analysis. In Proc. ISMIR. 316–323.

[13] Xingjian Du, Bilei Zhu, Qiuqiang Kong, and Zejun Ma. 2021. Singing Melody
Extraction from Polyphonic Music based on Spectral Correlation Modeling. In
Proc. ICASSP. 241–245.

[14] Ping Gao, Cheng-You You, and Tai-Shih Chi. 2019. A Multi-Scale Fully Convolu-
tional Network for Singing Melody Extraction. In Proc. APSIPA. 1288–1293.

[15] Ping Gao, Cheng-You You, and Tai-Shih Chi. 2020. A Multi-Dilation and Multi-
Resolution Fully Convolutional Network for Singing Melody Extraction. In Proc.
ICASSP. 551–555.

[16] Yongwei Gao, Xingjian Du, Bilei Zhu, Xiaoheng Sun, Wei Li, and Zejun Ma. 2021.
An Hrnet-Blstm Model With Two-Stage Training For Singing Melody Extraction.
In Proc. ICASSP. 56–60.

[17] Yongwei Gao, Bilei Zhu, Wei Li, Ke Li, Yongjian Wu, and Feiyue Huang. 2019.
Vocal Melody Extraction via DNN-based Pitch Estimation and Salience-based
Pitch Refinement. In Proc. ICASSP. 1000–1004.

[18] Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi Oka. 2002.
RWC Music Database: Popular, Classical and Jazz Music Databases.. In ISMIR,
Vol. 2. 287–288.

[19] Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu, Ding Liang, Xiaolin Hu,
and Ping Luo. 2020. Online Knowledge Distillation via Collaborative Learning.
In Proc. CVPR. 11017–11026.

[20] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531 (2015).

[21] Tsung-HanHsieh, Li Su, and Yi-Hsuan Yang. 2019. A streamlined encoder/decoder
architecture for melody extraction. In Proc. ICASSP. 156–160.

[22] Chao-Ling Hsu and Jyh-Shing Roger Jang. 2010. On the Improvement of Singing
Voice Separation for Monaural Recordings Using the MIR-1K Dataset. IEEE Trans.
Speech Audio Process. 18, 2 (2010), 310–319.

[23] Yukara Ikemiya, Kazuyoshi Yoshii, and Katsutoshi Itoyama. 2015. Singing voice
analysis and editing based on mutually dependent F0 estimation and source
separation. In Proc. ICASSP. 574–578.

[24] Jongheon Jeong and Jinwoo Shin. 2020. Consistency Regularization for Certified
Robustness of Smoothed Classifiers. In Proc. NeurIPS.

[25] Mingi Ji, Byeongho Heo, and Sungrae Park. 2021. Show, Attend and Distill:
Knowledge Distillation via Attention-based Feature Matching. In Proc. AAAI.
7945–7952.

[26] Anssi Klapuri. 2006. Multiple Fundamental Frequency Estimation by Summing
Harmonic Amplitudes. In Proc. ISMIR. 216–221.

[27] Peter Knees and Markus Schedl. 2015. Music retrieval and recommendation: A
tutorial overview. In Proc. SIGIR. 1133–1136.

[28] Takao Kobayashi and Satoshi Imai. 1984. Spectral analysis using generalised
cepstrum. TASLP 32, 6 (1984), 1235–1238.

[29] Sangeun Kum, Jing-Hua Lin, Li Su, and Juhan Nam. 2020. Semi-supervised
learning using teacher-student models for vocal melody extraction. In Proc. ISMIR.
93–100.

[30] Sangeun Kum and Juhan Nam. 2019. Joint Detection and Classification of Singing
Voice Melody Using Convolutional Recurrent Neural Networks. Applied Sciences
9, 7 (2019).

[31] Sangeun Kum, Changheun Oh, and Juhan Nam. 2016. Melody Extraction on
Vocal Segments Using Multi-Column Deep Neural Networks.. In ISMIR. 819–825.

[32] Samuli Laine and Timo Aila. 2017. Temporal Ensembling for Semi-Supervised
Learning. In Proc. ICLR.

[33] Wei Tsung Lu, Li Su, et al. 2018. Vocal Melody Extraction with Semantic Segmen-
tation and Audio-symbolic Domain Transfer Learning.. In ISMIR. 521–528.

[34] Yao Ni and Piotr Koniusz. 2023. NICE: NoIse-modulated Consistency rEgulariza-
tion for Data-Efficient GANs. In Proc. NeurIPS.

[35] Hyunsin Park and Chang D. Yoo. 2017. Melody extraction and detection through
LSTM-RNN with harmonic sum loss. In Proc. ICASSP. 2766–2770.

[36] Minh-Hieu Phan, The-Anh Ta, Son Lam Phung, Long Tran-Thanh, and Abdesse-
lam Bouzerdoum. 2022. Class Similarity Weighted Knowledge Distillation for
Continual Semantic Segmentation. In Proc. CVPR. 16845–16854.

[37] Colin Raffel, Brian McFee, Eric J Humphrey, Justin Salamon, Oriol Nieto, Dawen
Liang, Daniel PW Ellis, and C Colin Raffel. 2014. mir_eval: A transparent imple-
mentation of common MIR metrics. In Proc. ISMIR.

[38] Kuniaki Saito, Donghyun Kim, and Kate Saenko. 2021. OpenMatch: Open-Set
Semi-supervised Learning with Open-set Consistency Regularization. In Proc.
NeurIPS. 25956–25967.

[39] Justin Salamon, Emilia Gómez, Daniel PW Ellis, and Gaël Richard. 2014. Melody
extraction from polyphonic music signals: Approaches, applications, and chal-
lenges. IEEE Signal Processing Magazine 31, 2 (2014), 118–134.

[40] Joan Serra, Emilia Gómez, and Perfecto Herrera. 2010. Audio cover song identifi-
cation and similarity: background, approaches, evaluation, and beyond. In Proc.
Advances in Music Information Retrieval. Springer, 307–332.

[41] Li Su. 2017. Between homomorphic signal processing and deep neural networks:
Constructing deep algorithms for polyphonic music transcription. In Proc. APSIPA
ASC. 884–891.

[42] Li Su. 2018. Vocal melody extraction using patch-based CNN. In Proc. ICASSP.
371–375.

[43] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. In Proc. NeurIPS. 1195–1204.

[44] Chung-Che Wang and Jyh-Shing Roger Jang. 2015. Improving Query-by-
Singing/Humming by Combining Melody and Lyric Information. IEEE/ACM
Trans. Audio Speech Language Processing 23, 4 (2015), 798–806.

[45] Liwei Wang, Jing Huang, Yin Li, Kun Xu, Zhengyuan Yang, and Dong Yu. 2021.
Improving Weakly Supervised Visual Grounding by Contrastive Knowledge
Distillation. In Proc. CVPR. 14090–14100.

[46] Si Wu, Jichang Li, Cheng Liu, Zhiwen Yu, and Hau-San Wong. 2019. Mutual
Learning of Complementary Networks via Residual Correction for Improving
Semi-Supervised Classification. In Proc. CVPR. 6500–6509.

[47] Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong, and Quoc Le. 2020. Unsu-
pervised Data Augmentation for Consistency Training. In Proc. NeurIPS. 6256–
6268.

[48] Shuai Yu. 2024. MCSSME: Multi-Task Contrastive Learning for Semi-supervised
Singing Melody Extraction from Polyphonic Music. In Proc. AAAI. 365–373.

[49] Shuai Yu, Xi Chen, and Wei Li. 2022. Hierarchical Graph-Based Neural Network
for Singing Melody Extraction. In Proc. ICASSP. 626–630.

[50] Shuai Yu, Xiaoheng Sun, Yi Yu, and Wei Li. 2021. Frequency-Temporal Attention
Network for Singing Melody Extraction. In Proc. ICASSP. 251–255.

[51] Shuai Yu, Yi Yu, Xi Chen, and Wei Li. 2021. HANME: Hierarchical Attention
Network for Singing Melody Extraction. IEEE Signal Process. Lett. 28 (2021),
1006–1010.

[52] Shuai Yu, Yi Yu, Xiaoheng Sun, and Wei Li. 2023. A neural harmonic-aware net-
work with gated attentive fusion for singing melody extraction. Neurocomputing
521 (2023), 160–171.

[53] Zhesong Yu, Xiaoshuo Xu, Xiaoou Chen, and Deshun Yang. 2019. Temporal
Pyramid Pooling Convolutional Neural Network for Cover Song Identification.
In Proc. IJCAI. 4846–4852.

[54] Sergey Zagoruyko and Nikos Komodakis. 2017. Paying More Attention to Atten-
tion: Improving the Performance of Convolutional Neural Networks via Attention
Transfer. In Proc. ICLR.

[55] Shufei Zhang, Zhuang Qian, Kaizhu Huang, Qiufeng Wang, Rui Zhang, and
Xinping Yi. 2021. Towards Better Robust Generalization with Shift Consistency
Regularization. In Proc. ICML, Vol. 139. 12524–12534.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Supervised Singing Melody Extraction
	2.2 Semi-supervised Singing Melody Extraction
	2.3 Knowledge Distillation

	3 Methodology
	3.1 Semi-supervised Learning Setup
	3.2 Harmonic Supervision for Singing Melody Extraction
	3.3 Harmonic Consistency Regularization for Singing Melody Extraction
	3.4 Heterogeneous Knowledge Distillation For Singing Melody Extraction

	4 Experiments
	4.1 Datasets
	4.2 Experiment Setup
	4.3 Comparison with State-of-the-art Methods
	4.4 Case Study
	4.5 Ablation Study

	5 Conclusion
	References

