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Supplementary Material

A Additional Background of Voltage Control Problem

A.1 Power Flow Problem

Recall the power balance equations:

pPV

i − pL

i = v2i
∑
j∈Vi

gij − vi
∑
j∈Vi

vj (gij cos θij + bij sin θij) , ∀i ∈ V \ {0}

qPV

i − qL

i = −v2i
∑
j∈Vi

bij + vi
∑
j∈Vi

vj (gij sin θij + bij cos θij) , ∀i ∈ V \ {0}
(1)

The power flow problem is designed to find the steady-state operation point of power system. After
measuring power injections pPV

i − pL
i and qPV

i − qL
i , the bus voltages vi∠θi can be retrieved by

iteratively solving Eq.1 using Newton-Raphson or Gauss-Seidel method [1]. The power plow serves
as the fundamental role in grid planning and security assessment by locating any voltage deviations.
It is also used to generate the observations during MARL training.

A.2 Voltage Deviation and Control

Two-Bus Network. To intuitively show how voltage is varied by PVs and how PV inverters can
participate in voltage control, we give an example for a two-bus distribution network in Figure 1. In
Figure 1, zi = ri + jxi represents the impedance on branch i; ri and xi are resistance and reactance
on branch i, respectively; pL

i and qL
i denote active and reactive power consumption, respectively;

pPV
i and qPV

i indicate active and reactive PV power generation, respectively. The parent bus voltage
vip is set as reference for the two-bus network.

Figure 1: Two-bus electric circuit of the distribution network.

The voltage drop ∆vi = vip − vi in Figure 1 can be approximated as follows:

∆vi =
ri(p

L
i − pPV

i ) + xi(q
L
i − qPV

i )

vi
(2)
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The power loss of the 2-bus network in Figure 1 can be written as:

Ploss =
(pL

i − pPV
i )2 + (qL

i − qPV
i )2

v2ip
· ri (3)

Traditional Voltage Control Methods. Conventionally, PVs are not allowed to participate in
voltage control so that qPV

i is restricted to 0 by the grid code. To export its power, large penetration of
pPV
i may increase vi out of its safe range, causing reverse current flow [2, 3]. Voltage control devices,

such as shunt capacitor (SC) and step voltage regulator (SVR) are usually equipped in the network
to maintain the voltage level [4]. Nonetheless, these methods cannot respond to intermittent solar
radiation, e.g. frequent voltage fluctuation due to cloud cover [5]. Additionally, with the rising PV
penetration in the network, the operation of traditional regulators would be at their control limit (i.e.
runaway condition) [6].

Inverter-based Volt/Var Control. To adapt to the continually rising PV penetration, grid-support
services, such as voltage and reactive power control are required for every new-installed PV by the
latest grid code IEEE Std-1547™-2018 [7]. For instance, the PV reactive power can be regulated by
the PV-inverter under partial static synchronous compensator (STATCOM) mode [8]. Depending
on the voltage deviation levels, the inverter can inject or absorb different amount of reactive power
exceeding its capacity [9]. This control method is then named as Volt/Var control, as the reactive
power (with unit VAR) is determined by the voltage (with unit Volt). Intuitively by Eq.2, when the
voltage increases due to large PV penetration in the lunch-time, the PV inverter absorbs reactive
power while during the night-time, the full inverter capacity is used to balance voltage fluctuation
caused by increasing load [6].

Note that the only control variable in Eq.2 and Eq.3 is qPV
i which represents the reactive power

generated by PV. Based on Eq.2, to enforce zero voltage deviation, the reactive power should satisfy
the following condition

qPV

i =
ri
xi

(pL

i − pPV

i ) + qL

i (4)

Since the ratio ri/xi in the distribution network is extremely large, qPV
i could become negative (i.e.

absorbing reactive power) with great magnitude during the period of the peak PV injection (i.e.,
pPV
i � pL

i ).

From Eq.3, to achieve the least power loss, qPV
i needs to be equal to qL

i (i.e. no reactive power
injection). This result may conflict with the voltage control target in Eq.4, implying that it is hard
to simultaneously maintain safe voltage levels and minimise the power losses, even for the two-bus
network.

This section only demonstrates a 2-bus network which has linear relationship between voltage
deviation and PV reactive power. Although the power systems in real world are non-linear and more
complex, they are with the same phenomenon on the contradiction between voltage control and power
loss minimisation.

A.3 Optimal Power Flow

The optimal power flow (OPF) considered in this paper can be briefly formulated as:

minqPV
i

p0
s.t. Eq.1

|qPV
i | ≤ qPV

i,max, i ∈ V PV

vi,min ≤ vi ≤ vi,max, i ∈ V \ 0
v0 = vref

(5)

where p0 and v0 are the active power and reference voltage of the slack bus, respectively. V PV

is the index set of the buses equipped with PVs. pPV
i , qPV

i , and si are the active power, reactive
power, and the capacity of PV at bus i, respectively. In this paper, each PV inverter is oversized with
si = 1.2 pi,max,∀i ∈ V PV . The maximum PV reactive power is qPV

i,max =
√
s2i − (pPV

i )2. Note that
the objective of the OPF problem is equivalent to minimize the overall power loss.
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Eq.5 may be infeasible due to the large penetration of PVs. In this case, slack variables can be added
on the voltage constraint.

A.4 Droop Control

The droop control, as recommended by IEEE Std-1547™-2018 [7], follows the control strategy
qPV
i = f(vi) where qPV

i and vi are the PV reactive power and the voltage measurement of a PV bus i.
f(·) is piecewise linear as shown in Figure 2. In detail, vref represents the voltage set point (e.g. 1.0
p.u.). va and vd represent the saturation regions limited by the PV inverter capacity and the current PV
active power. There also exists a dead-band between vb and vc that does not require any control. For
the voltage lower than vb, the inverter provides reactive power proportional to the voltage deviation
against vref. If the voltage is higher than vc, the inverter absorbs reactive power until convergence
achieves. The droop control only requires the local voltage measurements that is simple and efficient
to implement. However, it cannot directly minimise the power losses nor respond to fast voltage
changes. For simplicity, we set vb = vc = vref in this work.
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Figure 2: The illustration of the droop control law.

B COMA with Continuous Actions

COMA [10] is an MARL algorithm with credit assignments over Q-value functions via the mechanism
of counterfactual regret, however, it can only serve for the discrete action space. In this paper, to
enable COMA eligible for the continuous action space, we conduct some tiny adjustments on the
construction of Q-value for each agent. The original version of calculating each agent’s Q-value
assignment w.r.t. the discrete actions is shown as follows:

Qi(s,a) = Q(s,a)−
∑

a′
i∈Ai

πi(a
′
i|τi)Q(s,a−i, a

′
i), (6)

where τi is a history of agent i; a−i = ×j 6=iaj . To fit the continuous actions, we simply change Eq.6
to the form such that

Qi(s,a) = Q(s,a)−
∫
a′
i∈Ai

Q(s,a−i, a
′
i) dπi(a

′
i|τi), (7)

where πi(a
′
i|τi) is a Gaussian distribution over a′i. In practice,

∫
a′
i∈Ai

Q(s,a−i, a
′
i) dπi(a

′
i|τi) is

approximated via Monte Carlo sampling, so it can be written as follows:

Qi(s,a) = Q(s,a)− 1

M

M∑
k=1

Q(s,a−i, (a
′
i)k), (a′i)k ∼ πi(a

′
i|τi). (8)

C Experimental Settings

The source code of experimentation will be released after acceptance of paper for the easy reproduc-
tions and further studies.
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C.1 Algorithm Settings and Training Details

Since IDDPG and MADDPG do not possess any extra hyperparameters, we only introduce the
hyperparameters of COMA, MATD3, SQDDPG, IPPO, and MAPPO that we used in experiments.

Common Settings. All algorithms are trained with online learning (i.e., for the on-policy algorithms
like IPPO and MAPPO the behaviour policies are updated once at the end of each episode; for the
on-policy algorithm like COMA the behaviour policies/values are updated every 60 time steps; and
for the off-policy algorithms like SQDDPG, IDDPG and MADDPG the behaviour policies/values
are updated every 60 time steps, where all data used for training are collected online) and the target
policy/critic networks are updated every interval that is twice as the update interval of behaviour
policy/critic introduced above. Taking the lessons from [11, 12], the algorithms except for MAPPO
and IPPO update critic networks with 10 epochs while update policy networks with 1 epoch. All
algorithms are trained with the normalised reward and the action bound enforcement trick [13] that
works better than the hard clipping in our experiments. The target update learning rate is set to 0.1.
The gradient is clipped with L1 norm and the clip bound is set to 1. The batch size of training data is
set to 32 and the replay buffer size for off-policy algorithms is set to 5, 000. Agent ID is concatenated
with the observation and the layer normalisation [14] is applied to the first layer after the observation
input. The parameters are shared among agents in this experiment. As for the policy network, RNN
with GRUs [15] is applied as a filter to solve the partial observation problems. The critic network
is constructed with pure MLPs. The general settings of the policy and critic networks are shown
in Table 1. During training, a fixed standard deviation as 1.0 is applied to conduct the exploration.
For the policy loss with entropy, the entropy penalty is set to 1e-3. The parameter initialisation is
implemented by sampling from normal distribution with N (0, 0.1). RMSProp [16] is used as the
optimizer, with the learning rate of 1e-4 for updating both policies and critics.

COMA. The sample size M of COMA for continuous actions proposed in this paper is set to 10 in
experiments.

MATD3. The clip boundary c for clipping the exploration noise is set to 1 in experiments.

SQDDPG. The sample size M of SQDDPG is set to 10 in experiments.

IPPO and MAPPO. We apply generalised advantage estimation (GAE) [17] to evaluate the return
with λ = 0.95. The value loss coefficient is set to 2. The ε for clipping the objective function is set to
0.4. We also normalise the advantages during training to reduce variance. 10 epochs of training are
conducted for each time of update.

All hyperparameters reported above are tuned by the grid search and the best ones are selected as the
final choices.

Table 1: The general specifications for policy and value networks.

NETWORK STRUCTURE

POLICY LINEAR(STATE_DIM, 64) → LAYERNORM() → RELU() → GRU(64, 64) → LINEAR(64, ACTION_DIM)
CRITIC LINEAR(INPUT_DIM, 64) → LAYERNORM() → RELU() → LINEAR(STATE_DIM, 64) → RELU() → LINEAR(64, OUTPUT_DIM)

In addition to the training details introduced in the main part of paper, we expose more in this section.
At the initial state we randomly sample reactive power of generators so that the experiments are more
realistic, i.e. to test whether the agents can solve any emergent situations. The training time varies
from 2.5 to 4 hrs, dependent on the selection of scenarios and algorithms.

C.2 Process of Simulations

We show the flow chart in Figure 3 to illustrate the process of the execution of the simulation for
distributed active voltage control on power distribution networks. At the beginning of each episode, a
series of consecutive PV and load profiles for 480 time steps (i.e. 1 day) is in buffer. For each time
step, the relevant PV and load profile are extracted, combined with the voltage status computed by
Pandapower [18] (i.e., the power flow is calculated) to form the next state. Additionally, the reward is
also calculated according to the results computed by Pandapower. Before fed to agents, the received
state will be split to a batch of observations as per the region where each agent is located. Each
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agent only receives a local observation and the global reward, then it makes next decision. The above
procedure is repeated until the end of an episode.

Pandapower

Environment

Data

Reward

Next State

State

Agent 1

Actions

Agent 1Agent 1Agent 1Agent 1, 2, …, N

Preprocessor

Figure 3: The flow chart of the implementation of environment for distributed active voltage control
on power distribution networks.

C.3 Voltage Barrier Functions

In this paper, we compare 3 different voltage barrier functions applied in this work. The L1-shape
can be written as follows:

lv(vk) = |vk − vref|, ∀k ∈ V. (9)

The L2-shape can be written as follows:

lv(vk) = (vk − vref)
2, ∀k ∈ V. (10)

The Bowl-shape can be written as follows:

lv(vk) =

{
a · |vk − vref| − b If |vk − vref| > 0.05,

−c · N (vk | vref, 0.1) + d Otherwise,
(11)

where a, b, c, d are 4 hyperparameters to adjust the shape and smoothness of function that are set to
2, 0.095, 0.01, 0.04 respectively in this work; N (vk | vref, 0.1) is a density function for the normal
distribution with the mean as vref and the standard deviation as 0.1. In addition to the significance of
satisfying the objective of active voltage control, this construction can also be interpreted as a sort of
statistical implication. vk is assumed to follow the Laplace distribution outside the safety range while
it is assumed to follow the normal distribution inside the safety range. Thereafter, the active voltage
control problem can be transformed to the maximum likelihood estimation (MLE) over a mixture
distribution of voltage with a constraint on reactive power generations.

C.4 Reward for the Safety of Power Networks

Although the action range has been restricted to avoid the violence of the loading capacity of power
networks, in experiments there still exists possibilities that this accident could happen. To resolve
this problem, if the violence of the loading capacity appears, the system would backtrack to the last
state as well as terminate the simulation and give a penalty of −200 as the reward instead of the one
shown in the main part of paper.

D Environmental Settings

We present 3 MV/LV distribution network models, each of which is composed of distinct topology
and parameters, a load profile (including both active and reactive powers) describing different user
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behaviours, and a PV profile describing the active power generation from PVs. Although it is
possible to partition the control regions by the voltage sensitivity of each bus [19], they are commonly
determined by different distribution network owners in practice. Consequently, the control regions in
this paper are partitioned by the shortest path between the coupling bus and the terminal bus. Besides,
each region consists of 1-4 PVs depending on the zonal sizes.

D.1 Network Topology

A summary of the 3 networks is recorded in Table 2 and the specific topologies are demonstrated in
Figure 4.

(a) 33-bus network. (b) 141-bus network. (c) 322-bus network.

Figure 4: Topologies of power networks. The yellow square is the reference bus (a.k.a. the slack bus)
and each blue circle is a non-reference bus. Transformers are highlighted as double-circles.

Table 2: Network specifications

Rated Voltage No. Loads No. Regions No. PVs pL
max pPV

max

33-bus 12.66 kV 32 4 6 3.5 MW 8.75 MW

141-bus 12.5 kV 84 9 22 20 MW 80 MW

322-bus 110-20-0.4 kV 337 22 38 1.5 MW 3.75 MW

33-bus. The 33-bus network is modified from case33bw in MATPOWER [20] and PandaPower [18].
To guarantee the tree structure, similar to [21], we drop lines 33-37 to avoid any loops. 6 PVs are
added unevenly on bus 13 and 18 (zone 1), bus 22 (zone 2), bus 25 (zone 3), bus 29 and 33 (zone 4).
The PV-load ratio is PR = 2.5.

141-bus. The 141-bus network is modified from case141 in MATPOWER [20] as well. A similar
procedure is followed as 33-bus network.

322-bus. The proposed 322-bus network consists of an external 110-kV bus, a long medium-voltage
(20 kV) line (25 buses in total) and 3 LV feeders (0.4 kV) representing rural (128 buses), semi-urban
(110 buses), and urban (58 buses) areas defined by SimBench [22]. Areas with different voltage
levels are connected though standard transformers defined in PandaPower [18]. The rural area has
the lowest power consumption level and some buses are with no loads, while more than one load are
allowed to locate on a bus in the urban area, so the total number of loads is higher than the number of
buses in the 322-bus network. The users can also generate their own synthetic networks by following
out procedure. To simplify the settings, we aggregate the multiply loads at each bus into one.

D.2 Data Descriptions.

Load Profiles. The load profile of each network is modified based on the real-time Portuguese
electricity consumption accounting for 232 consumers of 3 years1. The original dataset contains 370
residential and industrial clients electricity usage from 2011 to 2014 with 15-min resolution. As
some of the data does not start at the beginning, we collect the data from 2012-01-01 00:15:00 and

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.

6

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014


delete the locations that contain more than 20 missing data. The remaining missing data (mostly
because of the winter time to daylight saving time switch) is interpolated linearly. The load data is
then interpolated with 3-min resolution which is consistent with the real-time control period in the
grid. The final data size is 526080× 232 accounting for load profiles for 232 consumers of 1096 days
(three years). We then remove the outliers that are outside 7σ against the mean value. For 33-bus and
141-bus networks, the 232 load profiles are randomly assigned to each bus. For 322-bus network,
repeated load profiles are allowed. In practice, Gaussian noises are added to load active and reactive
powers.

PV Profiles. Ten cities/regions/provinces in Belgium, Netherlands, and Luxembourg are considered
to represent the distinct zonal solar radiation levels, including Antwerp, Brussels, Flemish-Brabant (a
province of Belgium), Hainaut (a province of Belgium), Liege, Limburg (a province of Netherland),
Luxembourg, Namur, Walloon-Brabant (a province of Belgium), and West-Flanders (a province of
Belgium). The PV data is collected from Elia group2, a Belgiums power network operator. The PV
data is also interpolated with 3-min resolution resulting in 526080×10 data in total. For 33-bus (with
4 regions) and 141-bus (with 9 regions) networks, PV profiles are randomly assigned to each region.
For 322-bus (with 22 regions) system, different regions can have the same PV profiles. Note that the
PVs in the same control region share the same PV profiles as they are geometrically contiguous. In
real-time, we also add Gaussian noise to the PV active power.

We summarise the load and PV profiles of different scales in Figure 5-11 below.

Figure 5 illustrates the total PV active power generation and active load consumption in 33-bus
network. Figure 6 illustrates four distinct PV buses in 33-bus network of January and July. Note that
bus-13 and bus-18 are in the same region, so they have the same PV profiles.

Figure 7 illustrates the total PV active power generation and active load consumption in 141-bus
network. Figure 8 illustrates four distinct PV buses in 141-bus network of January and July. Note
that bus-36 and bus-111 are in the same region, so they have the same PV profiles.

Figure 9 illustrates the total PV active power generation and active load consumption in 322-bus
network. Figure 10 illustrates four distinct PV buses in 322-bus network of January and July.

Figure 11 illustrates the power factors (PFs) of the three systems under test. Higher power factors
(> 0.9) usually represents the residential consumers while low power factors (< 0.5) can represent
the industrial consumers.
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Figure 5: Total power of 33-bus network: (a): a winter day, (b): a summer day, (c): a winter month
(January), (d): a summer month (July)

E Extra Experimental Results

E.1 Extra Results during Training

In addition to the control rate (CR) and power loss (PL) introduced in the main part of paper, we also
introduce 2 extra metrics to evaluate the performances of algorithms during training.

• Voltage out of control ratio (VR): It calculates the average of the ratio of voltage outside the safety
range (i.e. 0.95-1.05 p.u.) per time step during an episode.

• Q loss (QL): It calculates the average of the mean reactive power generations by agents per time
step during an episode.

2https://www.elia.be/en/grid-data/power-generation/solar-pv-power-generation-data.
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Figure 6: Daily power of 33-bus network: active PV power generation and active load consumption
for different buses in 33-bus network. (a): bus-13, (b): bus-18, (c): bus-22 (d): bus-25. The first row:
power in a winter month (January), second row: power in a summer month (July).
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Figure 7: Total power of 141-bus network: (a): a winter day, (b): a summer day, (c): a winter month
(January), (d): a summer month (July)
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Figure 8: Daily power of 141-bus network: active PV power generation and active load consumption
for different buses in 141-bus network. (a): bus-36, (b): bus-77, (c): bus-100 (d): bus-111. The first
row: power in winter month (January), second row: power in summer month (July).
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Figure 9: Total power of 322-bus network: (a): a winter day, (b): a summer day, (c): a winter month
(January), (d): a summer month (July)
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Figure 10: Daily power of 322-bus network: active PV power generation and active load consumption
for different buses in 322-bus network. (a): bus-54, (b): bus-147, (c): bus-297 (d): bus-322. The first
row: power in winter month (January), second row: power in summer month (July).
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Figure 11: Power factors of four buses in (a): 33-bus, (b): 141-bus, and (c): 322-bus networks

Similar to the results before, all performances are measured by the median metrics of 5 random seeds
and each test is conducted by 10 randomly selected episodes.

E.2 Extra Results for Case Studies

In this section, we show more results on the case studies for the comparison between MARL and
the traditional control methods (i.e. OPF and droop control). For 141-bus network, MATD3 trained
by Bowl-shape voltage barrier function acts as the candidate for MARL. For 322-bus network,
MADDPG trained by L2-shape voltage barrier function acts as the candidate for MARL.

One Bus in 141-Bus Network. Figure 14 shows the results for a typical bus in the 141-bus network.
In summer, all methods can control the voltage within the safety range in most of time, except that
MARL fails to control the voltage from 20:00 to 22:00. Nonetheless, the power loss of MARL is
lower than the droop control. In winter, all methods can control the voltage within the safety range,
however, MARL behaves exclusively on generating the reactive power, i.e. generating more reactive
power, while the power loss of MARL is still lower than that of the droop control.

One Bus in 322-Bus Network. Figure 15 shows the results for a typical bus in the 322-bus network.
In summer, only droop control can control the voltage within the safety range. MARL and OPF
cannot control the voltage within the safety range from 10:00 to 14:00 when the PV active power is
extremely high. The bad performance of OPF is possibly due to the reason that the 322-bus network
is so large and complicated that it may suffer the computational catastrophe w.r.t. the inverse of the
topological matrix. In winter, all methods can control the voltage within the safety range, though
the voltage at this time is originally within the safety range without no control. It is so strange that
MARL decrease the voltage so that it is near the lower bound of the safety range. Apparently, the
strategy of MARL for this case is suboptimal. The additional penetration of reactive power by MARL
induces the excessive power loss. The intrinsic reason of this phenomenon deserves to be investigated
in the future work.

Analysis for All Buses. To give the whole picture of active voltage control for the days we selected
for demonstrations above, we show the status of all buses in Figure 16 for the 33-bus network, Figure
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(g) L1-322.
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(h) L2-322.
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Figure 12: Voltage out of control ratio of algorithms with different reward functions consisting of
distinct voltage barrier functions. The sub-caption indicates barrier-scenario and BL is the contraction
of Bowl.

17 for the 141-bus network and Figure 18 for the 322-bus network. In winter, all methods can control
the voltages of all buses within the safety range whatever the scenario is. We just focus on the results
for summer in the following discussion. For the 33-bus network and the 141-bus network, it is
obvious that the traditional control methods can control the voltage within the safety range, while
MARL loses control on some buses from 18:00 to 24:00. This implies that MARL may tend to learn
solving the the situations of high PV penetrations. The possible reason could be that the situations of
high penetrations appear more frequently, which leads to a known problem existing in MARL called
relative overgeneralisation [23]. For the 322-bus network, the performance of droop control is far
better than OPF and MARL. The reason for the failure of OPF is the computational burden as we
stated before. It is worth noting that droop control relies on a high-bandwidth inner loop in inverter
controller so the effective control rate is much higher than the sample rate [24].

E.3 Extra Results during Testing

To show the results more convincingly, we also report the mean test results on the final models of
MARL after training. The tests on each algorithm are repeated with 10 randomly selected initial
states. Noticeably, we report both mean and standard deviation to exhibit the randomness of 10 tests

10



0 100 200 300 400
Episode

0.00

0.35

0.70

Lo
ss COMA

IDDPG
IPPO
MADDPG
MAPPO
SQDDPG
MATD3

(a) L1-33.

0 100 200 300 400
Episode

0.00

0.35

0.70

Lo
ss COMA

IDDPG
IPPO
MADDPG
MAPPO
SQDDPG
MATD3

(b) L2-33.

0 100 200 300 400
Episode

0.00

0.35

0.70

Lo
ss COMA

IDDPG
IPPO
MADDPG
MAPPO
SQDDPG
MATD3

(c) BL-33.

0 100 200 300 400
Episode

0.00

0.35

0.70

Lo
ss COMA

IDDPG
IPPO
MADDPG
MAPPO
SQDDPG
MATD3

(d) L1-141.

0 100 200 300 400
Episode

0.00

0.35

0.70

Lo
ss COMA

IDDPG
IPPO
MADDPG
MAPPO
SQDDPG
MATD3

(e) L2-141.

0 100 200 300 400
Episode

0.00

0.35

0.70

Lo
ss COMA

IDDPG
IPPO
MADDPG
MAPPO
SQDDPG
MATD3

(f) BL-141.

0 100 200 300 400
Episode

0.00

0.03

0.06

Lo
ss COMA

IDDPG
IPPO
MADDPG
MAPPO
SQDDPG
MATD3

(g) L1-322.
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Figure 13: Q (reactive power) losses of algorithms with different reward functions consisting of
distinct voltage barrier functions. The sub-caption indicates barrier-scenario and BL is the contraction
of Bowl.

for the metrics of continuous values. Since the metrics of ratio does not satisfy the hypothesis of
normality, we just report the the mean of 10 tests for appropriateness. Additionally, we also report
the results of the traditional control methods with 100 randomly selected episodes.

We now introduce the metrics used in the Table 3-5.

• % V. Out of Control: The average of the ratio of the voltages out of control per time step during
each episode.

• % V. below 0.95vref: The average ratio of the voltages below 0.95vref per time step during each
episode.

• % V. above 1.05vref: The average ratio of the voltages above 1.05vref per time step during each
episode.

• % CR: The ratio of time steps where all buses’ voltages being under control during each episode.

• V. Dev.: The average voltage deviations (away from the vref) during each episode.

• Max V. Drop Dev.: The average of the maximum deviation of voltage drop (i.e. below 0.95vref) per
time step during each episode.
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(a) Voltage.
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Figure 14: Compare MARL with traditional control methods on a typical bus during a day for the
141-bus network. 1st row: results for summer. 2nd row: results for winter. None and limit in (a)
represent the voltage with no control and the safety range respectively. P and Q in (b) indicate the PV
active power and the reactive power by various methods.
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(a) Voltage.
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Figure 15: Compare MARL with traditional control methods on a typical bus during a day for the
322-bus network. 1st row: results for summer. 2nd row: results for winter. None and limit in (a)
represent the voltage with no control and the safety range respectively. P and Q in (b) indicate the PV
active power and the reactive power by various methods.

• Max V. Rise Dev.: The average of the maximum deviation of voltage rise (i.e. above 1.05vref) per
time step during each episode.

• PL: The average of the total power loss over all buses per time step dyuring each episode.
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(a) OPF-summer.
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(b) Droop-summer.
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(c) MARL-summer.
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(d) OPF-winter.
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(e) Droop-winter.
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(f) MARL-winter.

Figure 16: The status of all buses for a day on 33-bus network. The green lines are the variation
of the voltage of buses and red dashed line is the safety boundary. Each caption above indicates
method-season.

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour

0.90

0.95

1.00

1.05

1.10

Vo
lta

ge
 (p

.u
.)

Voltage
Limit

(a) OPF-summer.
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(b) Droop-summer.
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(c) MARL-summer.
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(d) OPF-winter.
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(e) Droop-winter.
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(f) MARL-winter.

Figure 17: The status of all buses for a day on 141-bus network. The green lines are the variation
of the voltage of buses and red dashed line is the safety boundary. Each caption above indicates
method-season.
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(a) OPF-summer.
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(b) Droop-summer.
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(c) MARL-summer.
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(d) OPF-winter.
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(e) Droop-winter.

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour

0.90

0.95

1.00

1.05

1.10

Vo
lta

ge
 (p

.u
.)

Voltage
Limit

(f) MARL-winter.

Figure 18: The status of all buses for a day on 322-bus network. The green lines are the variation
of the voltage of buses and red dashed line is the safety boundary. Each caption above indicates
method-season.

Table 3: The mean test results on the 33-bus network with 10 randomly selected episodes for MARL
and 100 random selected episodes for the traditional control methods. The results are recorded with
mean (±std.).

METHOD % V. OUT OF CONTROL % V. BELOW % V. ABOVE % CR V. DEV. MAX V. DROP DEV. MAX V. RISE DEV. PL

NO CONTROL 6.3 5.1 1.2 70.6 0.021 ± 0.005 0.036 ± 0.011 0.010 ± 0.015 0.069 ± 0.036

DROOP CONTROL 0.0 0.0 0.0 100.0 0.011 ± 0.002 0.025 ± 0.006 0.003 ± 0.004 0.082 ± 0.064

OPF 0.0 0.0 0.0 100.0 0.014 ± 0.003 0.020 ± 0.009 0.011 ± 0.013 0.056 ± 0.046

IDDPG-L1 1.1 0.7 0.4 90.3 0.014 ± 0.002 0.000 ± 0.000 0.001 ± 0.000 0.066 ± 0.007

MADDPG-L1 0.9 0.4 0.5 92.0 0.013 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.071 ± 0.004

COMA-L1 0.2 0.0 0.2 97.0 0.011 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.105 ± 0.002

IPPO-L1 4.5 0.0 4.5 68.1 0.015 ± 0.001 0.000 ± 0.000 0.008 ± 0.002 0.148 ± 0.010

MAPPO-L1 4.5 0.0 4.5 68.2 0.015 ± 0.001 0.008 ± 0.002 0.008 ± 0.002 0.154 ± 0.005

MATD3-L1 1.0 0.8 0.2 91.6 0.015 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.064 ± 0.004

SQDDPG-L1 1.5 0.8 0.3 87.2 0.015 ± 0.001 0.000 ± 0.000 0.001 ± 0.000 0.068 ± 0.005

IDDPG-L2 4.4 3.5 0.9 75.4 0.020 ± 0.001 0.001 ± 0.000 0.001 ± 0.001 0.067 ± 0.005

MADDPG-L2 2.8 2.0 0.8 79.7 0.018 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.063 ± 0.004

COMA-L2 1.7 0.9 0.8 85.8 0.015 ± 0.001 0.000 ± 0.000 0.001 ± 0.000 0.068 ± 0.004

IPPO-L2 4.5 0.1 4.5 72.0 0.015 ± 0.001 0.000 ± 0.000 0.009 ± 0.001 0.142 ± 0.008

MAPPO-L2 4.7 0.0 4.7 70.9 0.015 ± 0.000 0.000 ± 0.000 0.010 ± 0.001 0.139 ± 0.005

MATD3-L2 5.4 4.9 0.5 75.0 0.021 ± 0.001 0.002 ± 0.001 0.001 ± 0.000 0.074 ± 0.004

SQDDPG-L2 4.9 3.9 1.1 74.0 0.021 ± 0.001 0.001 ± 0.000 0.002 ± 0.001 0.071 ± 0.003

IDDPG-BL 1.5 1.2 0.3 87.0 0.015 ± 0.000 0.012 ± 0.003 0.003 ± 0.003 0.069 ± 0.007

MADDPG-BL 1.2 1.0 0.2 89.0 0.015 ± 0.001 0.010 ± 0.003 0.002 ± 0.001 0.073 ± 0.004

COMA-BL 0.3 0.2 0.2 96.5 0.011 ± 0.000 0.002 ± 0.001 0.002 ± 0.001 0.106 ± 0.005

IPPO-BL 4.6 0.1 4.5 65.4 0.015 ± 0.001 0.001 ± 0.001 0.045 ± 0.008 0.154 ± 0.013

MAPPO-BL 3.8 0.1 3.7 70.6 0.014 ± 0.001 0.001 ± 0.001 0.037 ± 0.006 0.150 ± 0.008

MATD3-BL 2.2 2.0 0.2 84.0 0.019 ± 0.001 0.020 ± 0.002 0.002 ± 0.001 0.077 ± 0.009

SQDDPG-BL 1.8 1.1 0.7 85.4 0.016 ± 0.001 0.011 ± 0.005 0.007 ± 0.002 0.072 ± 0.007
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Table 4: The mean test results on the 141-bus network with 10 randomly selected episodes for MARL
and 100 random selected episodes for the traditional control methods. The results are recorded with
mean (±std.).

METHOD % V. OUT OF CONTROL % V. BELOW % V. ABOVE % CR V. DEV. MAX V. DROP DEV. MAX V. RISE DEV. PL

NO CONTROL 32.3 23.8 8.6 37.9 0.042 ± 0.008 0.046 ± 0.021 0.016 ± 0.022 0.956 ± 0.610

DROOP CONTROL 0.0 0.0 0.0 100.0 0.009 ± 0.002 0.014 ± 0.003 0.003 ± 0.004 1.519 ± 1.335

OPF 0.0 0.0 0.0 100.0 0.021 ± 0.006 0.020 ± 0.008 0.011 ± 0.012 0.819 ± 0.922

IDDPG-L1 9.7 7.7 2.0 71.9 0.026 ± 0.002 0.003 ± 0.002 0.001 ± 0.000 1.167 ± 0.137

MADDPG-L1 2.4 1.1 1.3 92.3 0.016 ± 0.002 0.000 ± 0.000 0.001 ± 0.000 1.525 ± 0.137

COMA-L1 8.9 7.2 1.6 73.9 0.023 ± 0.007 0.004 ± 0.004 0.001 ± 0.001 1.639 ± 0.216

IPPO-L1 13.8 0.0 13.8 77.3 0.026 ± 0.002 0.000 ± 0.000 0.011 ± 0.002 1.380 ± 0.061

MAPPO-L1 16.0 0.1 15.9 74.6 0.028 ± 0.002 0.000 ± 0.000 0.013 ± 0.002 1.465 ± 0.069

MATD3-L1 2.3 0.4 1.9 94.1 0.015 ± 0.001 0.000 ± 0.000 0.001 ± 0.001 1.608 ± 0.107

SQDDPG-L1 1.8 0.7 1.0 96.0 0.015 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 1.757 ± 0.064

IDDPG-L2 26.0 20.1 5.9 49.3 0.038 ± 0.003 0.008 ± 0.002 0.004 ± 0.001 0.966 ± 0.085

MADDPG-L2 12.6 9.3 3.3 68.9 0.028 ± 0.002 0.003 ± 0.001 0.002 ± 0.000 1.007 ± 0.098

COMA-L2 26.6 16.1 10.5 41.4 0.038 ± 0.005 0.016 ± 0.011 0.012 ± 0.005 1.989 ± 0.369

IPPO-L2 16.7 0.2 16.5 72.9 0.028 ± 0.003 0.000 ± 0.000 0.013 ± 0.003 1.418 ± 0.129

MAPPO-L2 17.1 0.1 17.0 72.6 0.029 ± 0.002 0.000 ± 0.000 0.014 ± 0.002 1.472 ± 0.043

MATD3-L2 14.6 11.3 3.3 63.9 0.030 ± 0.003 0.004 ± 0.001 0.002 ± 0.001 0.954 ± 0.063

SQDDPG-L2 14.3 10.2 4.2 67.1 0.029 ± 0.007 0.006 ± 0.006 0.003 ± 0.002 1.350 ± 0.257

IDDPG-BL 8.8 7.2 1.6 74.3 0.025 ± 0.003 0.003 ± 0.001 0.001 ± 0.000 1.136 ± 0.110

MADDPG-BL 2.5 1.6 0.9 91.6 0.020 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 1.350 ± 0.088

COMA-BL 9.3 6.8 2.5 72.0 0.024 ± 0.005 0.004 ± 0.004 0.002 ± 0.002 1.954 ± 0.413

IPPO-BL 17.5 0.1 17.4 72.2 0.029 ± 0.002 0.000 ± 0.000 0.014 ± 0.003 1.450 ± 0.052

MAPPO-BL 15.8 0.1 15.7 75.0 0.028 ± 0.003 0.000 ± 0.000 0.013 ± 0.003 1.500 ± 0.133

MATD3-BL 5.8 4.3 1.4 81.3 0.021 ± 0.005 0.002 ± 0.003 0.001 ± 0.000 1.313 ± 0.086

SQDDPG-BL 2.9 1.5 1.5 92.1 0.016 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 1.720 ± 0.235

Table 5: The mean test results on the 322-bus network with 10 randomly selected episodes for MARL
and 100 random selected episodes for the traditional control methods. The results are recorded with
mean (±std.).

METHOD % V. OUT OF CONTROL % V. BELOW % V. ABOVE % CR V. DEV. MAX V. DROP DEV. MAX V. RISE DEV. PL

NO CONTROL 18.2 15.6 2.5 32.1 0.032 ± 0.006 0.052 ± 0.013 0.028 ± 0.035 0.038 ± 0.017

DROOP CONTROL 0.0 0.0 0.0 99.4 0.011 ± 0.002 0.027 ± 0.005 0.008 ± 0.008 0.061 ± 0.043

OPF 5.0 4.6 0.3 86.8 0.015 ± 0.008 0.026 ± 0.010 0.018 ± 0.014 0.057 ± 0.036

IDDPG-L1 6.1 1.5 4.6 36.7 0.018 ± 0.002 0.007 ± 0.004 0.015 ± 0.006 0.109 ± 0.013

MADDPG-L1 2.3 0.1 2.2 77.7 0.013 ± 0.001 0.000 ± 0.000 0.009 ± 0.002 0.070 ± 0.007

COMA-L1 4.7 0.2 4.5 56.6 0.017 ± 0.002 0.000 ± 0.000 0.016 ± 0.004 0.091 ± 0.008

IPPO-L1 9.3 0.1 9.2 39.1 0.024 ± 0.001 0.000 ± 0.000 0.037 ± 0.005 0.103 ± 0.003

MAPPO-L1 9.8 0.1 9.7 40.0 0.024 ± 0.001 0.000 ± 0.000 0.039 ± 0.004 0.102 ± 0.004

MATD3-L1 3.2 1.3 1.9 64.8 0.015 ± 0.001 0.004 ± 0.003 0.008 ± 0.002 0.078 ± 0.007

SQDDPG-L1 11.7 0.3 11.4 29.6 0.026 ± 0.001 0.001 ± 0.001 0.042 ± 0.006 0.117 ± 0.013

IDDPG-L2 3.6 0.9 2.7 65.9 0.016 ± 0.001 0.001 ± 0.001 0.011 ± 0.004 0.070 ± 0.010

MADDPG-L2 3.8 0.6 3.2 67.3 0.016 ± 0.001 0.001 ± 0.000 0.015 ± 0.003 0.053 ± 0.004

COMA-L2 4.9 0.2 4.7 51.1 0.017 ± 0.002 0.000 ± 0.000 0.016 ± 0.006 0.081 ± 0.007

IPPO-L2 9.1 0.1 9.0 39.7 0.024 ± 0.001 0.000 ± 0.000 0.036 ± 0.004 0.103 ± 0.004

MAPPO-L2 10.0 0.1 9.9 40.5 0.024 ± 0.002 0.000 ± 0.000 0.040 ± 0.006 0.100 ± 0.007

MATD3-L2 3.1 0.5 2.6 71.1 0.015 ± 0.001 0.001 ± 0.000 0.012 ± 0.003 0.058 ± 0.007

SQDDPG-L2 9.1 0.3 8.8 44.0 0.023 ± 0.001 0.000 ± 0.000 0.036 ± 0.004 0.097 ± 0.007

IDDPG-BL 4.7 1.1 3.6 40.9 0.017 ± 0.003 0.005 ± 0.005 0.012 ± 0.004 0.128 ± 0.024

MADDPG-BL 3.2 0.9 2.3 67.7 0.016 ± 0.001 0.001 ± 0.001 0.011 ± 0.005 0.065 ± 0.008

COMA-BL 5.7 0.2 5.5 43.2 0.017 ± 0.001 0.001 ± 0.001 0.018 ± 0.004 0.098 ± 0.010

IPPO-BL 9.3 0.1 9.2 41.0 0.024 ± 0.001 0.000 ± 0.000 0.037 ± 0.005 0.101 ± 0.003

MAPPO-BL 8.2 0.1 8.1 44.6 0.022 ± 0.001 0.000 ± 0.000 0.032 ± 0.004 0.097 ± 0.003

MATD3-BL 2.8 0.8 2.0 68.1 0.016 ± 0.001 0.001 ± 0.001 0.010 ± 0.003 0.074 ± 0.006

SQDDPG-BL 9.7 0.2 9.5 40.6 0.024 ± 0.001 0.000 ± 0.000 0.039 ± 0.003 0.100 ± 0.012
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