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S1 Additional Implementation and Experimental Details

We use 5 continuous control benchmarks on Mujoco [9] (Ant-v2, HalfCheetah-v2, Hopper-v2,
Swimmer-v2, and Walker2d-v2), and 2 discrete control benchmarks on Atari RAM (BeamRider-ram-
v0, and SpaceInvaders-ram-v0) of OpenAI Gym [2].

Overall, we reported the mean and standard error of the performance over 3 trials. For experimental
settings, we used GTX 1080 Ti for GPUs, Intel i7-6850K for CPUs, and Ubuntu 18.04 for OS.
The usage of GPU memory is approximately 3000MB for training, and training time for tested
benchmarks was approximately 20 hours. Our code is based on Pytorch [4] and python libraries.

We make use of the same neural net architecture and hyperparameters for all benchmarks. For the
policy network, value network, discriminator, and state encoder, we use 3 hidden layers with size
100 and Tanh as activation functions. For the action encoder, we use 6 1D convolutional layers with
sizes (64, 64, 64, 128, 256, and 256), 1 hidden layer with size 8 as the output, and LeakyReLU as
activation functions. For the forward dynamics model, we use 1 hidden layer with size 114 and ReLU
as activation functions.

For hyperparameters in all runs, the total epoch for Swimmer, and Hopper is 3,000, for BeamRider,
SpaceInvaders, HalfCheetah, and Walker2d is 5,000, and for Ant is 8,000. Please refer to Table S1
for other hyperparameters. We set λF = 1, λS = 100, and λA = 1 for matching loss scale.

Table S1: Base hyperparameters used for all benchmarks.

Hyperparameters Value

γ 0.995
Generalized advantage estimation 0.97

N 5,000
Learning rate (all networks except for value network) 1e-3

Learning rate (value network) 3e-4
Batch size (RERP) 256
Batch size (TRPO) 128
Batch size (GAIL) 5,000

Optimizer (all networks) Adam
τ 0.1
λF 1
λS 100
λA 1
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For the random corruption method [12], we sampled an imputing value from N (0, 1) by considering
the range of state values. The mean value used for imputation [1] is the mean vector of each Dk

where k is the training iteration. We imputed with a mean value of the corresponding dimension of
the calculated mean vector.

S1.1 Optimality of 100% (Expert Demonstrations)

To train experts, we used a reinforcement learning algorithm, proximal policy optimization [7],
uploaded in the official Github by the authors of CAIL [13]. We selected the converged policy as the
expert policy. The performance of the utilized expert policy and other specifications related to the
experiments of Tabs. 1, 2, 3 and 5 on the main manuscript are given in Table S2.

Table S2: Specification and the number of used demonstrations of each continuous control benchmark
in the scenario of perfect expert demonstrations.

Benchmarks dim(S) dim(A) NE Expert’s Performance

HalfCheetah-v2 R17 R6 100 5455.49 ± 74.26
Walker-v2 R17 R6 100 3685.27 ± 57.99

Ant-v2 R111 R8 100 4787.23 ± 115.72

S1.2 Optimality of 25%, 50%, or 75% (A Mixture of Optimal and Non-optimal
Demonstrations)

We also tested the effectiveness of the proposed method with imperfect demonstrations. We combined
the proposed method with the existing method for imperfect demonstrations and checked improve-
ment in performance. We compared our combined method against the following baselines: BC [5],
GAIL [3], IC-GAIL [11], 2IWIL [11], RIL-CO [8], and CAIL [13].

IL methods, especially variants of BC, require a large volume of expert demonstration data for
training [6]. These methods struggle with a generalization problem when using a small number
of demonstrations. Empirically, we observed that BC almost fails to converge on Ant, Walker2d,
and Hopper with a small number of demonstrations. For RIL-CO, they measure and optimize a
classification risk with the symmetric loss. Basically, they only assumed a scenario that the majority
of demonstrations are obtained using an optimal policy. IC-GAIL and 2IWIL were proposed in the
same paper. Both methods are confidence-based. In the case of 2IWIL, the confidence of each state-
action pair is estimated using the classification risk before training, and in the case of IC-GAIL, they
implicitly utilize the confidence score in a way of matching the occupancy measure of the imitator
with the expert. CAIL is the state-of-the-art work in IL algorithms for imperfect demonstrations. They
jointly learn the confidence score and policy using an outer loss. Because they update two factors
jointly, the training is unstable. Experimentally, there was no benchmark that CAIL, which is most
recently suggested, is superior to 2IWIL or RIL-CO with a small number of imperfect demonstrations.
We surmise that this is because CAIL is the method using a full trajectory rather than each state-action
pair when estimating the confidence score of each pair. Consequently, we decided to combine our
method with 2IWIL instead of CAIL.

Table S3: Specification and the number of used demonstrations of each continuous control benchmark
in the scenario of imperfect expert demonstrations.

Benchmarks dim(S) dim(A) NE Suboptimal 1 Suboptimal 2 Suboptimal 3 Suboptimal 4 Expert’s Performance

HalfCheetah-v2 R17 R6 100 1051.91 ± 50.17 2280.87 ± 651.92 3533.07 ± 79.47 4682.89 ± 54.33 5455.49 ± 74.26
Walker-v2 R17 R6 100 691.14 ± 96.12 1617.02 ± 721.00 2579.41 ± 512.19 2819.63 ± 609.49 3685.27 ± 57.99

Ant-v2 R111 R8 100 789.13 ± 170.45 2115.17 ± 328.20 2947.49 ± 191.72 3739.91 ± 96.56 4787.23 ± 115.72
Swimmer-v2 R8 R2 20 65.56 ± 18.93 148.20 ± 8.09 181.27 ± 4.23 228.29 ± 5.95 280.5 ± 1.24
Hopper-v2 R11 R3 20 1262.34 ± 296.32 1774.65 ± 462.52 2185.33 ± 996.92 2802.18 ± 489.85 3531.03 ± 23.51

For the Fig. 2 and Tabs. 4, 6, 7, and 8 on the main manuscript, we collected a mixture of optimal and
non-optimal demonstrations with different optimalities. For collecting the imperfect demonstrations,
we used the official Github by the authors of CAIL. Following CAIL, We selected four intermediate
policies as sub-optimal policies and the converged policy as the optimal policy. The performance of
sub-optimal and optimal policies and other specifications for the benchmarks are given in Table S3.
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Empirically, as shown in Table S3, because the dimension of the action space of Swimmer-v2 and
Hopper-v2 is very small almost like discrete control, we did not apply LAC .

The pseudo-code of the combined methods is given in Algorithms 2 and 3. To run the combined
methods, we need additional hyperparameters and their values are summarized in Table S4.

Table S4: Additional hyperparameters for the combined methods.

Hyperparameters Value

α for Mixup 4.0
Threshold for GMM 0.5

The number of non-experts 4
Ratio of labeled demonstrations 0.4

S2 Main Pseudo-code

Algorithm 1 Sample-efficient Adversarial Imitation Learning

1: input: Expert demonstrations DE ≜ {xi}NE

i=1, # of batches B, Training epochs T.
2: for k ← 1 to T do
3: Obtain trajectories Dk = {xk,i}Ni=1 using πθ

4: πθ ← TRPO(πθ, V,Dω,Dk)
5: SE,AE ← REPR(SE,AE,F,Dk)
6: Dω ← GAIL(Dω, SE,AE,Dk,DE)
7: end for
8: function REPR(SE,AE,F,Dk)
9: for b← 1 to B do

10: Generate X ′
b by Equation 6

11: Obtain Zb from Dk,b using (SE,AE)
12: Obtain Z ′

b from X ′
b using (SE,AE)

13: Update SE,AE, and F by Equation 9
14: end for
15: return SE,AE
16: end function
17: function GAIL(Dω, SE,AE,Dk,DE)
18: for b← 1 to B do
19: Obtain Zb from Dk,b using (SE,AE)
20: Update SE,AE, and Dω by Equation 3
21: end for
22: return Dω

23: end function

S3 Pseudo-code of Combined Method

S3.1 Combined Case #1: Ours + 2IWIL

Because labeling all state-action pairs from ρO or ρN can be expensive, following previous IL
works for imperfect demonstrations, we assumed that only a few demonstrations are labeled. Then,
the imperfect demonstrations are split into two demonstrations: a set of labeled demonstrations
DL = {(xl,i, yl,i)}NL

i=1 and a set of unlabeled demonstrations DU = {xu,i}NU

i=1, where NL and NU

are the number of labeled demonstrations and unlabeled demonstrations, respectively.

As shown in Algorithm 2, before training, 2IWIL [11] estimates pseudo labels ŷu,i of DU to utilize
the set of unlabeled demonstrations DU with DL using the classification risk proposed in their work
as follows:

Rℓ(g) = Ex, y ∼ Dl
[y(ℓ(g(x))− ℓ(−g(x))) + (1− β)ℓ(−g(x))] + Ex ∼ Du

[βℓ(−g(x))] , (S1)
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Algorithm 2 Pseudo-code of Ours + 2IWIL [11]

1: input: Imperfect expert demonstrations DI = {DL ∪ DU}, Labeled demonstrations DL ≜
{(xl,i, yl,i)}NL

i=1, Unlabeled demonstrations DU ≜ {xu,i}NU

i=1, # of batches B, Training epochs
T.

2: Train a probabilistic classifier by minimizing Equation S1
3: Predict confidence scores {ŷu,i}Nu

i=1 for {xu,i}Nu

i=1
4: for k ← 1 to T do
5: Obtain trajectories Dk = {xk,i}Ni=1 using πθ

6: πθ ← TRPO(πθ, V,Dω,Dk)
7: SE,AE ← REPR(SE,AE,F,Dk)
8: Dω ← GAIL(Dω, SE,AE,Dk,DI )
9: end for

10: function REPR(SE,AE,F,Dk)
11: for b← 1 to B do
12: Generate X ′

b by Equation 6
13: Obtain Zb from Dk,b using (SE,AE)
14: Obtain Z ′

b from X ′
b using (SE,AE)

15: Update SE,AE, and F by Equation 9
16: end for
17: return SE,AE
18: end function
19: function GAIL(Dω, SE,AE,Dk,DI )
20: for b← 1 to B do
21: Obtain Zb from Dk,b using (SE,AE)
22: Update SE,AE, and Dω by Equation S2
23: end for
24: return Dω

25: end function

where β = NU

NL+NU
, g(·) is a neural network classifier, and ℓ is a strictly proper composite loss. Then,

the predicted confidence score ŷu represents the probability that a given state-action pair is optimal.
The estimated confidence of each state-action pair is utilized as a sample weight in their discriminator
loss. As a result, the combined discriminator loss with our state and action encoders is defined as
follows:

max
ω

E
x∼Dπ

[log Dω(z)] + E
(x,y) ∼ (D̃O∪D̃N )

[y
ϵ

log(1−Dω(z))
]
, (S2)

where ϵ = 1
NL

∑NL

i=1 yi, z = zs ⊕ za. zs is a state representation embedded by SE(s), and za is an
action representation embedded by AE(a).

S3.2 Combined Case #2: Ours + 2IWIL + Manifold Mixup

For utilizing Manifold mixup (MM), we modeled the per-sample confidence score distribution of
(yl, ŷu) with a two-component Gaussian mixture model to divide the imperfect demonstrations DI

into optimal demonstrations and non-optimal demonstrations, D̃O and D̃N . The feature representation
zo ∼ D̃O is interpolated with the feature representation zn ∼ D̃N . More formally, for a batch of
features (zo, zn) and corresponding confidence scores (yo, yn), the mixed (z̄, ȳ) can be computed by:

λ ∼ Beta(α, α), λ′ = max(λ, 1− λ),

z̄ = λ′ · zo + (1− λ′) · zn,
ȳ = λ′ · yo + (1− λ′) · yn,

(S3)

where z = zs ⊕ za. zs is a state representation embedded by SE(s), za is an action representation
embedded by AE(a). Equation S3 can ensure that z̄ are closer to optimal demonstrations than
non-optimal demonstrations.
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Algorithm 3 Pseudo-code of Ours + 2IWIL + Manifold Mixup [10]

1: input: Imperfect expert demonstrations DI = {DL ∪ DU}, Labeled demonstrations DL ≜
{(xl,i, yl,i)}NL

i=1, Unlabeled demonstrations DU ≜ {xu,i}NU

i=1, # of batches B, Training epochs
T.

2: Train a probabilistic classifier by minimizing Equation S1
3: Predict confidence scores {ŷu,i}NU

i=1 for {xu,i}NU

i=1

4: D̃O, D̃N ← GMM (DL, (DU , {ŷu,i}NU

i=1))
5: for k ← 1 to T do
6: Obtain trajectories Dk = {xk,i}Ni=1 using πθ

7: πθ ← TRPO(πθ, V,Dω,Dk)
8: SE,AE ← REPR(SE,AE,F,Dk)
9: Dω ← GAIL(Dω, SE,AE,Dk, D̃O, D̃N )

10: end for
11: function REPR(SE,AE,F,Dk)
12: for b← 1 to B do
13: Generate X ′

b by Equation 6
14: Obtain Zb from Dk,b using (SE,AE)
15: Obtain Z ′

b from X ′
b using (SE,AE)

16: Update SE,AE, and F by Equation 9
17: end for
18: return SE,AE
19: end function
20: function GAIL(Dω, SE,AE,Dk, D̃O, D̃N )
21: for b← 1 to B do
22: Obtain Zb from Dk,b using (SE,AE)
23: Obtain (Zo, Zn) from (D̃O, D̃N ) using (SE,AE)
24: Compute (Z̄, Ȳ ) by Equation S3
25: Update SE,AE, and Dω by Equation S4
26: end for
27: return Dω

28: end function

As shown in Algorithm 3, by additionally including synthetic data through MM, the discriminator
loss is expressed as follows:

max
ω

E
x∼Dπ

[log Dω(z)] + E
(x,y) ∼ (D̃O∪D̃N )

[y
ϵ

log(1−Dω(z))
]
+

E
(z̄,ȳ) ∼ (D̃O∪D̃N )

[log((1− ȳ) ·Dω(z̄) + ȳ · (1−Dω(z̄)))].
(S4)

S4 Expert Data Size

We assessed our method with varying expert data sizes. As shown in the table, there is a relatively
small or no decrease in the performance up to NE = 20. When NE is reduced to 20 for Ant and
Walker2d and 10 for HalfCheetah, the performance is comparable to the baseline AIL.

Table S5: Ablation studies using 10, 20, or 50 expert state-action pairs on Ant-v2, HalfCheetah-v2,
and Walker2d-v2 of MuJoCo.

GAIL Ours

NE = 100 NE = 10 NE = 20 NE = 50 NE = 100

Ant 4198.2±72.6 2855.9±1139.7 4286.4±125.6 4432.4±41.1 4554.8±162.6
HalfCheetah 2034.6±2384.6 2787.6±3454.4 5381.6±81.3 5410.6±44.2 5416.0±203.8

Walker2d 3513.4±172.9 3023.1±439.6 3412.6±195.6 3520.9±108.5 3527.6±131.4
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S5 Role of Gaussian Noise

Appending noise dimensions increases the performance on all three tasks as shown in Table S6.
-71.09, -81.29, and –87.90 represent the decrease without appending the noise dimensions.

Table S6: Ablation studies on appending Gaussian noise using 100 expert state-action pairs on Ant-v2,
HalfCheetah-v2, and Walker2d-v2 of MuJoCo.

Ours Ant HalfCheetah Walker2d

w/o noise 4483.7±159.6 (-71.09) 5334.7±43.0 (-81.29) 3439.7±122.2 (-87.90)
w noise 4554.8±162.6 5416.0±203.8 3527.6±131.4

S6 Loss function of LSC and LAC

As shown in Table S7, we assessed varying SSL loss functions for both LSC and LAC . Notably,
for LSC , the MSE loss that is exposed to the collapsing problem shows the highest performance on
average. This is because LF cannot be minimized if the state representation is only the same constant.
Rather, the MSE loss that can flow the gradients to both the input pair shows a higher performance
than the loss functions using a stop-gradient or different discrepancy measures. For LAC , the Barlow
twins and SimSiam losses showed the first- and second-best performance on average, respectively.
Because the role of the state is greater than that of the action when predicting the next state, the action
representation za is not completely free from the collapsing problem. Therefore, unlike the trend of
LSC , clearly, the loss functions that have a certain technique to prevent it showed stable performance.

Table S7: Ablation studies using 50 optimal and 50 non-optimal state-action pairs on Ant-v2 to test
the role of a loss function of LSC and LAC . BT = Barlow twins.

LSC

MSE BYOL SimSiam BT VICReg Avg.

5*LAC MSE 3658.9 -627.0 1516.0 2891.0 701.5 1628.1
BYOL 2668.3 1240.8 1315.7 265.1 902.0 1278.4

SimSiam 2717.8 4017.7 3854.5 3656.7 2943.9 3438.1
BT 4384.7 2871.3 2590.4 3474.2 4269.2 3517.9

VICReg 1927.1 2363.0 4027.8 3768.1 3458.1 3108.8

Avg. 3071.4 1973.1 2660.9 2811.0 2454.9

S7 Sensitivity to Corruption Rate

We tested the sensitivity of state and action to corruption rate and report the results in Table. S8.
The results showed that the action is very vulnerable to a high corruption rate. For the state, the
performance is maintained to some extent below 0.4. Additionally, we confirmed that fixing the
corruption rate is better than providing a range.

Table S8: Ablation studies using 50 optimal and 50 non-optimal state-action pairs to test sensitivity
to corruption rate of state and action.

ca 0.2 0.5 <= 0.5

cs 0.1 0.2 0.3 0.4 <= 0.5 <= 0.5 <= 0.5

Ant 4384.7±49.2 4282.8±170.5 4206.7±502.7 4127.3±451.8 3546.2±487.7 2425.9±65.6 560.6±326.9

S8 Discrete control Benchmarks

To test the scalability of the proposed method, we evaluated the performance of the proposed method
on 2 discrete control benchmarks: BeamRider-ram-v0, and SpaceInvaders-ram-v0 of OpenAI Gym.
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Table S9: Final performance using 20 expert state-action pairs on BeamRider-ram-v0, and
SpaceInvaders-ram-v0 of OpenAI Gym. Best results are in bold.

BeamRider SpaceInvaders

GAIL Ours GAIL Ours

399.43 ± 55.63 433.04± 76.15 166.39 ± 107.88 289.87± 5.37

For comparison, we chose GAIL, which showed the second-best performance in the experiments of
continuous control benchmarks. To apply the proposed method on discrete control benchmarks, we
ignored the action encoder AE and its corresponding loss LAC of the proposed model. Nevertheless,
as shown in Table S9, the proposed method still showed better performance compared to GAIL on
discrete control benchmarks.
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