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A LIMITATIONS AND FUTURE WORKS

Advanced object manipulation and real-world datasets. In this research, we leverage image
augmentation techniques to create pseudo labels for object manipulation at the image level, effectively
addressing the absence of object-level ground truths. Consequently, we gain control over objects
within the scope of augmentation-related properties, including attributes such as color, position,
and size. Nonetheless, relying solely on image augmentation to generate supervision signals has
its inherent limitations. These limitations encompass factors like the diversity of target properties
and the extent of manipulation that can be effectively covered. Exploring avenues for incorporating
more informative open-source datasets, such as those used for image captions, holds promise for
manipulating object representations more broadly. We will elaborate this potential in Section E.1.

Position insensitive representation. In our research, it is observed that the Slot Attention algorithm
generates slots exhibiting sensitivity to the positioning of objects. Notably, this phenomenon persists
even when we exclude the soft positional encoding in the visual encoder. To achieve a more
interpretable object representation, exploring the generation of well-balanced slots across various
properties, rather than solely focusing on position, shows potential for future work.

State-aware slot manipulation. In our slot manipulation process, the Property Encoder encodes
each property without taking into account the current state of the manipulated slot. For instance,
when modifying the size of an object, the PropertyEncoder produces a property vector, inst_vec,
irrespective of the color or position of the target object. By incorporating the current state of the
target slot into the slot manipulation process, the precision and complexity of the algorithm could be
potentially enhanced.

B PRELIMINARY: SPATIAL BINDING IN SLOT ATTENTION

Algorithm A Spatial binding in slot attention algorithm in pseudo-code format. The input image
is encoded into a set of N vectors of dimension Dinput which is mapped to a set of K vectors
with dimension Dslot. Slots are initialized from a Gaussian distribution with learned parameters
µ, σ ∈ RDslot . The number of iterations is set to T = 3.

1: function SPATIALBINDING(img ∈ RH×W×3)
2: inputs = Encoder(img)
3: inputs = LayerNorm(inputs)
4: for t = 0 . . . T do
5: slots_prev = slots
6: slots = LayerNorm(slots)
7: attn = Softmax( 1√

Dslot
k(inputs) · q(slots)T ,axis=‘slots’)

8: updates = WeightedMean(weights=attn+ϵ, values=v(inputs))
9: slots = GRU(state=slots_prev, inputs=updates)

10: slots = slots+ MLP(LayerNorm(slots))
11: end for
12: return slots
13: end function
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The core mechanism of the slot attention, the spatial binding, is described in Alg. A. Given an input
image img ∈ RH×W×3, convolutional neural networks (CNNs) encoder generates a visual feature
map input ∈ RN×Denc , where H , W , N , and Denc are the height and width of the input image,
the number of pixels in the input image (= HW ), and the channel of the visual feature map. The slot
attention module takes slots and inputs, and projects them to dimension Dslot through linear
transformations k, q, and v. Dot-product attention is applied to generate an attention map, attn,
with query-wise normalized coefficients, enabling slots to compete for the most relevant pixels of the
visual feature map. The attention map coefficients weight the projected visual feature map to produce
updated slots, updates. With the iterative mechanism of the slot attention module, the slots can
gradually refine their representations.

C IMPLEMENTATION AND EXPERIMENTAL DETAILS

C.1 TRAINING

We use a single V100 GPU with 16GB of RAM with 1000 epochs and a batch size of 64. The training
takes approximately 65 hours (wall-clock time) using 12GB of RAM for the CLEVR6 dataset, and
22 hours using 9GB of RAM for the Tetrominoes dataset, both with 16-bit precision.

C.2 IMAGE AUGMENTATION

Upon receiving an input image imginput, we produce four outputs: a reference image, denoted as
imgref , an augmented image, represented as imgaug, and the transformation instructions between
them, indicated as instsref2aug and instsaug2ref .

In the data augmentation process, three pivotal variables are defined. The first is the template size
T , employed for the initial cropping of imginput prior to the application of transformation (240 for
CLEVR6 and 80 for Tetrominoes). Next, the crop size C is used to crop the transformed image before
resizing it to M (192 for CLEVR6 and 64 for Tetrominoes). This two-stage cropping procedure
mitigates the zero-padding that results from transformations. Lastly, the image size M denotes the
final image size post data augmentation (128 for CLEVR6 and 64 for Tetrominoes).

In the training phase, imgref is obtained by applying a center-crop operation on imginput using
C and then resizing it to M. The generation of imgaug is more complex, entailing the application
of a random transformation from a set of three potential transformations. Initially, imginput is
cropped using T , and the transformation process is implemented. Following this, the transformed
image is cropped by C and then resized to M, yielding imgaug. The detailed description for each
transformation is as follows:

Translating. We set a maximum translation value dmax = T −C
2 . A value is randomly chosen within

the range of (−dmax, dmax) for translation along the x-axis (dx) and the y-axis (dy) respectively.

Scaling. The maximum and minimum scaling factors, smax and smin, are computed by T
C and C

T ,
respectively. A float value s, serving as a scaling factor, is then randomly sampled from within
the range of (smax, smin). One thing to note is that calculating the transformation instructions is
not straightforward due to the potential translation of objects during scaling. Thus, to calibrate the
instructions, we infer translation values from the predicted object positions before scaling. The
position prediction is calculated as the weighted mean on the attention maps between the visual
encodings and slots. With this position prediction, we add the translation term into the scaling process
so that the model should perform both object-level scaling and translating: d⃗ = (s− 1)(p⃗− c⃗), where
d⃗ represents the vector of the translation value, p⃗ refers to the vector of the predicted object position,
and c⃗ is the vector corresponding to the position of image center.

Color shifting. In this study, we employ the HSL (hue, saturation, and lightness) color space for
effective object color manipulation. The input image, initially in RGB space, is converted to HSL
space. We adjust the hue by rotating it using randomly sampled angles that span the entire hue space.
For saturation, we apply a scaling factor, determined by the exponential of a value randomly drawn
from (-1, 1), a hyper parameter. Our primary focus lies on the internal color of objects, leaving
lightness untouched. Nonetheless, adjustments to lightness can be made if necessary.
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Instruction. Each transformation instruction is a list of 6 values: one scaling factor
(Λscale), two translation parameters (∆x,∆y), and three color shifting parameters in HSL
(∆hue,Λsaturation,Λlightness) where Λ and ∆ means the multiplicative and additive factor for
the corresponding values, respectively. The identity instruction, instsidentity, contains the base
values for each transformation. Thus, instsidentity has 1 for scaling, (0, 0) for translation, and
(0, 1, 1) for color shifting. For the inverse instruction , instsaug2ref has the values of −instsref2aug
for additive factors, and 1

instsref2aug
for multiplicative factors.

C.3 MODEL

Basically, our model framework is built on Slot Attention (Locatello et al., 2020), thereby the encoder,
decoder, and slot attention module are the same as that of Slot Attention except for the inclusion of
the Attention Refining Kernel (ARK) from SLASH (Kim et al., 2023). For Tetorminoes and CLEVR,
we employ a 4-layer CNN encoder and a 6-layer Spatial Broadcast (SB) decoder (Watters et al., 2019)
with a hidden dimension of 64. Within the slot attention module, we set the slot dimension to 64,
perform the binding process for 3 iterations, and use a kernel size of 5 for the ARK. Please refer to
the original papers (Kim et al., 2023; Locatello et al., 2020) for additional details for Slot Attention.

For CLEVRTEX6 and PTR datasets which include more complicated objects, we adopt larger models
with a slot dimension, Dslot, of 256. As encoders, we use 1) Resnet34 (He et al., 2016) following
(Elsayed et al., 2022; Biza et al., 2023) and 2) ViT-base (Dosovitskiy et al., 2020), with the patch
size of 8, pretrained via MAE (He et al., 2022) As decoders, we use an increased size of SB decoder
consisting of 8-layer CNNs with a hidden dimension of 128, and a Transformer-based decoder
proposed in SRT (Sajjadi et al., 2022b). The original SRT decoder is designed to operate at the image
level, and the following research OSRT (Sajjadi et al., 2022a) introduce a modification to decode slots
simultaneously. In this paper, we slightly modified it to decode each slot independently following
the spatial broadcast decoder. This selection is made to demonstrate that our proposed method is
not limited to CNN-based spatial broadcast decoders used in Slot Attention but can robustly operate
within transformer-based decoders as well, given the appropriate conditions for independence. The
results of using large models are described in Sec. E.

In Alg. 2 of the main paper, the Property Encoder (PropertyEncoder) takes as input the values
that correspond to specific properties. Accordingly, the input size for the property encoder is 1 for
scaling, 2 for translation, and 3 for color shifting. Each property is encoded via Property Encoder, a
3-layer MLP with ReLU activation functions, resulting in a inst_vec, a vector of dimension Dslot.

D FROM THE IMAGE-LEVEL TRAINING TO OBJECT-LEVEL INFERENCE

To begin with, we would like to highlight our unique approach to the training procedure. While our
training incorporates manipulations at the image-level, it can be perceived as training the model at
the individual object-level. In this section, we discuss on how this transition is achieved without the
need for an additional tuning process, and present empirical results that support our claim.

As we discussed shortly in Sec. 3.1. in the main paper, the success of transitioning from image-level
augmentation during training to object-level manipulation during inference can be attributed primarily
to the fact that the entire process for each slot, including object discovery and decoding, exclusively
influences the reconstruction of its respective object. To substantiate our claim, a mathematical
proof is provided below to show how an image-level reconstruction loss can be disentangled into
object-level reconstruction losses.

Lrecon = ∥Î − I∥22 (1)

= ∥
K∑

k=1

(Îrgb
k ⊙ Îα

k )− I∥22 (2)

= ∥
K∑

k=1

(Îrgb
k ⊙ Îα

k )−
K∑

k=1

(I ⊙ Îα
k )∥22 (3)
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= ∥
K∑

k=1

(Îrgb
k ⊙ Îα

k − I ⊙ Îα
k )∥22 (4)

≈ ∥
K∑

k=1

(Ôk −Ok)∥22, (5)

=

K∑
k=1

∥(Ôk −Ok)∥22 +
K∑

i,j=1
i ̸=j

(Ôi · Ôj − 2 Ôi · Oj +Oi · Oj) (6)

≈
K∑

k=1

∥(Ôk −Ok)∥22, (7)

where K is the number of slots, Î ∈ RH×W×3 represents the reconstructed image, and I ∈ RH×W×3

represents the input image. Îrgb
k ∈ RH×W×3 and Îα

k ∈ RH×W×1 are the reconstruction results
generated by the decoder using the k-th slot as input: an RGB and an alpha map (or an attention
mask), respectively. Ôk ∈ RH×W×3 is the predicted image for the specific object that is bounded
with the k-th slot, while Ok ∈ RH×W×3 is the corresponding ground-truth object image.

From Eq. (1) to Eq. (2), we follow the decoding process of Slot Attention (Locatello et al., 2020). In
particular, each k-th slot is decoded independently, resulting in the reconstructed RGB image Îrgb

k

and the reconstructed alpha map Îα
k . The final reconstruction image Î is generated by aggregating

Îrgb
k using a pixel-level weighted average, where the weights are determined by Îα

k . It is crucial to
recognize that Îα

k serves as an attention mask, as elaborated below:

K∑
k=1

Îα
k (x, y) = 1 for all x, y, (8)

where Îα
k (x, y) is a value for the position (x, y). This characteristic plays a pivotal role in our

approach, facilitating the transition from Eq. (2) to Eq. (3). In this transformation, the input image I
is effectively weighted by the set of K alpha maps, denoted as Îα

k , where k spans from 1 to K. Then,
as both the first and second terms in Eq. (3) involve the same sigma operations, we can simplify the
expression by combining the individual subtraction operations into a single sigma operation (Eq. (4)).

Subsequently, we approximate Eq. (4) as Eq. (5) to get an object-level disentangled version of
the reconstruction loss. Here we assume that both Ôk and Ok only consist of a specific region of
interest within the input image. This region corresponds to the target object which is bound to the
k-th slot, while the remaining areas are masked out and assigned a value of zero. We can make
this assumption based on the successful performance of the previous object-centric learning model,
SLASH (Kim et al., 2023). SLASH has demonstrated effective capabilities in focusing on and
capturing specific objects of interest within an image, by introducing the Attention Refining Kernel
(ARK). By incorporating ARK into our model, we confidently assume that Ôk and Ok primarily
represent the target object while masking out other irrelevant parts as zero as shown in Fig. A.

Here, we would like to note that ARK is an optional component in our method, not a necessity. The
use of ARK is not intended to enhance object discovery performance in a single training session;
rather, it is employed to ensure consistent results across multiple experiments. If our proposed training
scenario arises where bleeding issues do not occur in the original SA, it can be achieved without the
need for ARK. To substantiate this claim, we present qualitative results in Fig. C, where we train
SlotAug with the original SA (without ARK). One can easily catch that the object manipulation fails
in the case of bleeding problem. Specifically, the analysis for the failure case in bleeding problem
is as follows: 1) Obviously, if the attention map corresponding to the target object encompasses
other objects, it becomes impossible to exclusively manipulate solely the target object, leading to
unexpected artifacts in other objects. 2) Whenever tinting instructions are applied, objects become
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gray and we attribute this to the backgrounds – having a gray color – intervening with the target
objects during training.

Eq. (5) can be broken down into two separate summations. The first one is our target term that is the
sum of object-level MSE losses, and the second term is the residual term. Lastly, the transition from
Eq. (6) to Eq. (7) constitutes a significant simplification in the representation of the loss function.
This is a valid transformation under the assumption follows:

Ôi · Ôj = Ôi · Oj = Oi · Oj = 0 if i ̸= j. (9)

This assumption postulates that the inner product of different object images, whether they are
predicted or ground-truth, is always zero. We assert that this assumption is justifiable, much like the
previous one, given the promising results obtained in our object discovery experiments. The loss
computation is thus decomposed into individual components for each slot, which lends itself to an
interpretation of object-level loss.

The conversion from image-level MSE loss to a sum of individual object-level MSE losses provides a
new perspective on our training method. Despite the use of image-level manipulations, the underlying
core of the training process inherently engages with object-level representations. This demonstrates
how a simple methodological addition, incorporating image augmentation into the training process,
can lead to considerable gains in the model’s capacity for user-intention-based object manipulation.

Fig. A empirically demonstrates the effectiveness of our model, leveraging Slot Attention for
controllability over slots. Conversely, it was noted that the well-known alternative framework for
object-centric learning, SLATE (Singh et al., 2021), employing image tokenization from Discrete
VAE (dVAE) (Im Im et al., 2017) and Transformer-based auto-regressive decoding (Vaswani et al.,
2017), struggled with the manipulation of slots, as illustrated in Fig. B. The same slot manipulation
strategy via Property Encoder was used for comparison. Other training environments are just the
same as the official paper (Singh et al., 2021) except for the addition of the training loss for the
reconstruction of the augmented images.

E FURTHER EXPERIMENTAL RESULTS

In this section, we present more qualitative results including failure cases (Fig. D), and object-
level manipulation using various backbone encoders and decoders (Fig. E and F). Furthermore, we
showcase several additional experimental results below.

E.1 FULLY SUPERVISED TRAINING ON MATERIALS AND SHAPES

To explore the capabilities of our method when provided with human-annotated labels, we demonstrate
object manipulation examples related to materials and shapes. We utilize the CLEVR render 1 to
generate datasets having ground truth in terms of property modification. Using datasets containing
precise annotations for the target properties (materials and shapes), we can explicitly train a model
through object-level supervision.

As shown in Fig. G, the model can effectively acquire knowledge of extrinsic properties, such as
material and shape, when provided with appropriate supervision signals. In future work, one can aim
to enhance the proposed training scheme by leveraging more informative datasets, such as those for
image captioning (Chen et al., 2015; Wang et al., 2023), to train a more human-interactive framework.
This process may entail elaborate data processing since the datasets were not originally designed for
the purposes of object manipulation. However, we firmly believe that pursuing this path holds great
promise.

E.2 QUANTITATIVE EVALUATION ON OBJECT MANIPULATION

The supplementary quantitative results on object manipulation are shown in Tab. A. Given the absence
of an evaluation benchmark dataset, we opt to employ the same CLEVR render as described in Sec.

1https://github.com/facebookresearch/clevr-dataset-gen
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Table A: Results of object-level manipulation on the rendered dataset. We evaluate the object-
level manipulation by assessing metric scores over three sorts of images: reference images (ref.);
manipulated images (manip.); and reversion or restored images (rev.). We use mIoU and ARI for the
object discovery task, and MSE for the image generation task.

mIoU ARI MSE
ref. manip. rev. ref. manip. rev. ref. manip. rev.

v1 89.4 69.9 68.9 97.9 79.3 80.1 7.3e-4 4.6e-3 6.3e-3
v2 87.9 71.4 80.0 96.1 79.4 90.2 7.5e-4 4.2e-3 3.1e-3
v3 85.4 70.5 79.8 95.3 78.8 89.8 7.8e-4 3.5e-3 2.1e-3

Table B: Results of ablation studies on weights for the training loss. The leftmost column shows
the values of the weight for SC-Loss (wcycle), while the weight for the reconstruction loss (wrecon)is
set to 1.0. The other columns show the training losses when training is finished and the scores of the
validation metrics for the object discovery task. Each row shows the results of using the weight for
SC-Loss with 1.0, 0.1, and 0.01, respectively.

wcycle
Train Val

loss_recon_ref loss_recon_aug loss_cycle mIoU ARI
1.0* 3.5e-4 4.9e-4 2.2e-6 66.5 94.1
0.1 3.2e-4 3.8e-4 1.8e-5 68.5 95.2
0.01 3.1e-4 4.4e-4 6.2e-5 68.7 95.4

E.1, to generate a set of 1500 triplets. These triplets consist of a reference image, instructions for
object manipulation, and the resulting manipulated image. Additionally, it is worth noting that there
exists no prior research specifically addressing slot manipulation through direct human-interpretable
instructions. Consequently, our performance comparisons are restricted to different versions of our
model: v1 (the base model with image augmentation only), v2 (image augmentation + AIM), and v3
(image augmentation + AIM + SCLoss).

One can observe that all three models successfully execute object discovery and object manipulation
tasks with minimal differences in their performance scores, highlighting the effectiveness of our
training approach leveraging image augmentation. However, in the context of the reversion task,
wherein the models are instructed to revert the manipulated objects to their original state, both v2 and
v3 outperform v1, demonstrating the effectiveness of the proposed AIM. Furthermore, in terms of
image editing, v3 surpasses both v1 and v2 by a significant margin, underscoring the effectiveness of
the proposed SCLoss.

E.3 ABLATION STUDY ON LOSS WEIHGTS

We conduct an ablation study on training losses using the v3 model (image augmentation + AIM
+ SCLoss). Tab. B shows the results of training models with three different loss weights for the
SCLoss (wcycle) while maintaining the wrecon as 1.0. For the balanced training result, considering
both image reconstruction and object discovery, we opted for 0.1 due to its balanced performance.

E.4 EXTREME DURABILITY TEST

We evaluate our v3 model with two stringent versions of the durability test. Fig. H displays the
first extreme durability test, wherein we manipulate all objects within a given scene across a total of
24 manipulation steps. The complete manipulation process encompasses four cycles of round-trip
manipulations, each cycle comprising three sequential forward manipulations followed by three
recovery manipulations. Despite the fact that the appearance of each object tends to deviate from
its initial state as manipulations accumulate, it is notable that our model demonstrates substantial
robustness against multiple rounds of manipulations.

In the second durability test, we manipulate a target object through 50 steps of manipulation, which
consists of 25 cycles of a single forward manipulation (translation, scaling, or color shifting) and its
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corresponding recovery manipulation. Fig. I demonstrates our model’s significant endurance against
numerous manipulation steps. We observe that our model exhibits greater robustness in translating
objects compared to scaling and color shifting. However, it is noteworthy that the resilience of
our model against both scaling and color shifting is impressive, as it withstands around 20 steps
of manipulations without significant distortion in object appearance. The figure further includes
qualitative results that gauge slot divergence. It becomes clear that our model’s durability improves
gradually as it evolves from version v1 to v2 and finally to v3.

E.5 TOY APPLICATION: OBJECT-CENTRIC IMAGE RETRIEVAL

With the acquisition of object-level controllability, we can extend object-centric learning to a newly
introduced downstream task, called object-centric image retrieval. Object-centric image retrieval
aims to retrieve an image having an object that is most relevant to a target object that is given by the
user’s intention.

The retrieval process is as follows. First, we acquire slots for a target object and candidate objects
from the corresponding images by conducting object discovery. Then, to reduce the effect of spatial
properties such as object position or size, we neutralize the slots by performing slot manipulation
with the instructions for moving the objects to the central position and for scaling the objects to the
unified size. After neutralization, we generate a object image by decoding a neutralized slot. The
relevance scores between the target object image and candidate object images are computed along
the given metric, specifically the MSE. Finally, object-centric image retrieval can be accomplished by
finding the image containing the top-k objects as shown in Fig. J.

E.6 ADDITIONAL T-SNE RESULTS

Additional t-SNE results from the property prediction are shown in Fig. ??. Similar to the result
on the color property in the main paper, we can observe that the proposed SlotAug produces more
well-clustered slots in the earlier layer in the property predictors.
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Figure A: Training results of our method. The leftmost column is the reference images, imgref .
The second leftmost column is the reconstruction of the reference images, reconref . The middle
columns show the object discovery results where each column corresponds to a single slot in slotsref .
The second rightmost column is the augmented images, imgaug. The rightmost column is the
reconstruction of the augmented images, reconaug .
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Figure B: Training results of SLATE (Singh et al., 2021) for slot manipulation. The leftmost
column is the reference images, imgref ; The second leftmost column is the reconstruction of the
reference images, reconref . The middle columns show the object discovery results where each
column corresponds to a single slot in slotsref . The second rightmost column is the augmented
images, imgaug . The rightmost column is the reconstruction of the augmented images, reconaug .
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Figure C: Visualization of object manipulation results affected by the bleeding problem with
the original Slot Attention. The first row demonstrates the cases where bleeding problem emerges,
while the second row shows the cases where the object discovery is done successfully.

Within the range Out of the range

Recon. Image Manip. Image 1 Manip. Image 2 Recon. Image Manip. Image

Obscuring objects 
of similar depths

Figure D: Visualization of failure cases. On the left, the target object loses its original color when
translated beyond the range defined in the training settings. On the right, unnatural overlapping
between objects occurs when objects have similar depths.
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Figure E: Visualization of object manipulation in CLEVR6 and Tetrominoes dataset. The
leftmost column features the initial images, serving as the starting point for the manipulation process.
The subsequent columns depict the results of object-level manipulation, following the instructions
represented as text above the images.
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(b) Results of the model with ViT encoder and larger SB decoder

(c) Results of the model with ViT encoder and SRT decoder

(d) Results of the model with ViT encoder and SRT decoder
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(a) Results of the model with Resnet34 encoder on CLEVRTEX
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Figure F: Visualization of object manipulation in CLEVRTEX and PTR with larger encoder
and decoder. The first three rows are for CLEVRTEX and the last is for PTR dataset. Regarding
the encoder, we initialize ResNet34 randomly, while ViT is pre-trained using MAE (He et al., 2022)
on the target datasets. For the decoder, we employ both the Spatial Broadcast (SB) decoder and the
SRT decoder (Sajjadi et al., 2022b). In case (b), we enhance the size of the SB decoder with a hidden
dimension of 128 and a depth of 8. Additionally, for SRT, we adopt a slot-wise decoding strategy
akin to the SB decoder.

Before After Before After Before After Before After

(a) Materials (b) Shapes
CylinderCube

Sphere

Cylinder

Sphere

Sphere

Figure G: Results of manipulating materials and shapes of objects. For this experiment, the
training datasets are crafted using the CLEVR renderer, wherein we modify target properties such as
materials and shapes while keeping other properties unchanged.
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Figure H: The results of the durability test are depicted in the figure, wherein all objects in the
scene are manipulated in accordance with the instructions, provided as text at the top of the figure.
The leftmost column presents the initial state of the image. The subsequent three columns comprise
three distinct manipulations: translation, scaling, and color shifting. The right three columns feature
three recovery manipulations intended to restore the image to its original state. We perform 4 cycles
of these round trip processes, leading to a total of 24 manipulations.
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Initial
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#30

#40
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Scaling Color shiftingTranslation

Figure I: The results of the single-step durability test. The top image represents the initial state
prior to any manipulation. Each column depicts the results of the single-step durability test with
translation, scaling, and color shifting, respectively. The left images in each column illustrate the
outcome of the manipulation corresponding to the column name, while the right images in each
column display the results of the recovery, or inverse, manipulation. Each row represents the results
after a series of manipulations, with the number of manipulations corresponding to the row number.
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(a) Object-centric Retrieval (b) Scale-invariant Object-centric Retrieval

Target object

Target object

Target object

Target object

Figure J: Visualization of object-centric image retrieval. The top row displays query images,
indicating the target objects to be retrieved. Below each query image, you can find the top 5 retrieval
results. Each retrieval result consists of the original image on the left and an attention map on the
right. The attention map, associated with the slot corresponding to the target object, emphasizes the
specific region within the image.
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