
APPENDIX

A. Supplementary Proofs

1) Refresher on Euclidean Optimization: Suppose
that we wish to solve

min
x∈C

f(x), (A.1)

where C is a subset of Rd. Two popular methods to solve
this problem in practice are the Frank-Wolfe method and
the mirror descent method. In both cases, one relies on
an efficiently implementable update.

2) Frank-Wolfe Method: The Frank-Wolfe, or condi-
tional gradient descent method, over a Euclidean space,
maintains feasibility by solving a linear program at each
iteration. In particular, Frank-Wolfe iterates by solving

xk+1 = (1− ηk)xk + ηkgk, (A.2)
gk = argmin

g∈C

〈g,∇f(xk)〉. (A.3)

Here, if gk = ∇f(xk). then we refer to the method as
the Frank-Wolfe (FW) algorithm. On the other hand, if
one uses a stochastic approximation to the gradient for
gk, as is common in modern optimization, we refer to the
method as the Stochastic Frank-Wolfe (SFW) algorithm.

We have the following standard rate of convergence.
For a proof, see Guélat and Marcotte [1986].

Theorem 4. Suppose that f is convex and has β-

Lipschitz gradient and ηk = 2
2+k . Then,

f(xk)− f(x∗) ≤
L

k + ξ
, (A.4)

for some constant ξ. If it is further assumed that f is

α-strongly convex and x∗ is the in the relative interior

of C, then xk converges linearly to x∗.

Notice that even in the strongly convex case, if the
optimal point lies on the boundary, then convergence is
slow. To address this, Wolfe [1970] introduced the away
step variant of Frank-Wolfe, which uses an active set
of vertices to help the method move in directions that
are less parallel to the boundary (i.e., it deals with the
zig-zagging phenomenon). In Lacoste-Julien and Jaggi
[2015], the authors study this and some other variants
of Franke-Wolfe and prove linear convergence in the
strongly convex setting.

In the stochastic setting, one must use other strategies
to ensure convergence. Another popular idea involves

average the gradient at each iteration before solving the
linear program Zhang et al. [2020]:

gt = (1− ηt)(gt−1 + ∆̃t) + ηt∇f̃(xt), (A.5)

where ∇f̃(xt) is the stochastic approximation to the
gradient of f and ∆̃t is an unbiased estimator of
∇f(xt)−∇f(xt−1). These methods typically converge
at a 1/

√
t sublinear rate in the convex setting and a 1/t

sublinear rate in the strongly convex setting.
3) Mirror Descent: Over Euclidean space, given a

strictly convex function Φ, the Bregman divergence is
given by

DΦ(x, y) = Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉. (A.6)

By convexity, DΦ ≥ 0.
The mirror descent (MD) iteration [Beck and

Teboulle, 2003] for a function f is

xk+1 = argmin
x∈C

〈η∇f(xk), x−xk〉+DΦ(x, xk). (A.7)

Solving the minimization yields the other familiar MD
iteration

∇Φ(xk+1) = ∇Φ(xk)− η∇f(xk). (A.8)

One popular choice of mirror map is the entropy Φ(x) =#
i xi log xi. In this case, the optimization algorithm

over the simplex is the exponential weights algorithm
[Cesa-Bianchi and Lugosi, 2006]. Indeed, it is not hard
to see that

∇Φ(x) = (log xi+1)ni=1, ∇Φ∗(y) = (eyi−1)ni=1 (A.9)

yields the update

xk+1 = exp(log xk − η∇f(xk)) = xk exp(−η∇f(xk))
(A.10)

If the optimization is constrained over the simplex, where
the elements of xk must sum to one, an additional
normalization is considered as xk+1 = xk+1/&xk+1&1.

B. Laplacian Linear Programs

We begin by consider linear programs over graph
Laplacians. This is used as a subroutine in the Frank-
Wolfe algorithm. In its most general form, a linear
program over graph Laplacians would take the form

min
L∈Ln

〈L,C〉. (A.11)

Notice that this can be written as a linear program in the
variable A by

min
diag(A1)−A∈Ln

〈diag(A1)−A,C〉 (A.12)
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TABLE I
SOLUTIONS TO REGULARIZED AND UNREGULARIZED LAPLACIAN

LINEAR PROGRAMS.

≡ min
A∈Hn

A≥0, diag(A)=0

〈diag(A1)−A,C〉

However, this problem may be ill-posed in general
without additional constraints. Therefore, we consider
optimization over fixed trace and fixed degree Laplacian
matrices

min
L∈Ln(T )

〈L,C〉 ≡ min
A∈Hn

A≥0, diag(A)=0!
ij Aij=T

〈diag(A1)−A,C〉.

(A.13)
min

L∈Ln(d)
〈L,C〉 ≡ min

A∈Hn

A≥0, diag(A)=0
A1=d

〈diag(A1)−A,C〉.

(A.14)
We also define some regularized surrogate convex pro-
grams using an entropic regularizer. The use of an
entropic regularizer has become popular in linear pro-
graming to find solutions to problems such as optimal
transport Cuturi [2013]. We define the off-diagonal en-
tropy as

Hod(P ) =
"

i ∕=j

P ij(logP ij − 1). (A.15)

and consider the surrogate convex programs which add
−λH to the objectives (A.13) and (A.14).

We collect all of the solutions for the Laplacian
linear programs in Table I. We see that the fixed trace
linear programs have closed form solutions while the
fixed degree linear programs must be solved using other
algorithms. These solutions are derived in the appendix.

1) Results in Table I: We first discuss solutions to
(A.13) and its regularized variant.

Lemma 5. The entropically regularized variant of

(A.13) has solution TA/&A&1, where

Aij =
"

ij

exp
' 1

2&
(Cii +Cjj −Cij)

(
(A.16)

Furthermore, define the set

I = argmax
ij

Cii +Cjj −Cij −Cji. (A.17)

The solution to the linear program (A.11) is any matrix

B = TA/&A&1, where

Aij =

!
aij , ij ∈ I

0, else.
(A.18)

where aij ≥ 0, with at least one ij ∈ I such that aij > 0.

For the degree constrained case as well as its entrop-
ically regularized variants, we can follow the literature
on optimal transport and derive a Sinkhorn style algo-
rithm to solve an entropically regularized version of this
problem.

In other words, we instead propose to solve the
surrogate problem

min
A1=d
A=AT

〈A,−C〉− &Hod(A)+ (diag(A) = 0). (A.19)

Examining the KKT conditions are

Aij = exp

$
1

&
(Cij) + f i + gj

%
, i ∕= j, (A.20)

A1 = d.

which is what one would get if one considered an
entropic regularization of the second version of the linear
program. In any case, we can solve the entropically reg-
ularized Laplacian linear program with fixed degree by
appealing to the Sinkhorn algorithm [Cuturi, 2013]. We
refer to the resulting method as Fixed Degree Laplacian
Sinkhorn.

2) Connection Between Laplacian Linear Programs

and Optimal Transport: In this case, the linear program
is equivalent to

min
A∈Hn

A≥0, diag(A)=0
A1=d

〈diag(A1)−A,C〉

= 〈diag(d),C〉+ min
A∈Hn

A≥0, diag(A)=0
A1=d

〈A,−C〉. (A.21)



While we could employ various linear programming
techniques to solve this problem.

min
A∈Hn

A≥0, diag(A)=0
A1=d

〈A,−C〉. (A.22)

We recognize this as an optimal transportation problem
with cost matrix −C, symmetric marginals d, with the
additional constraint that the diagonal of the coupling
must be zero.

3) Proof of Lemmas 5:

Proof. The constrained convex optimization program
(??) is equivalent to

min
diag(A)=0

1TA1=T
A=AT

〈diag(A1),C〉+〈A,−C〉−&Ho(A). (A.23)

To find the solution subject to the trace T constraint, we
will find the KKT conditions. The Lagrangian is

L(A,λ) =〈diag(A1),C〉+ 〈A,−C〉 − &Ho(A)

(A.24)

+ λ(
"

ij

Aij − 1).

Using the symmetry of A, the first-order KKT condition
is

∂

∂Aij
L(A) = Cii +Cjj −Cij −Cji (A.25)

+ & log(Aij) + & log(Aji)− 2λ

= 0.

The KKT conditions are therefore

Aij = exp
'
− 1

2&
(Cii +Cjj − 2Cij) + λ

(
, (A.26)

"

ij

Aij = T. (A.27)

Therefore, λ is the unique real number number such that#
ij Aij = T , or
"

ij

exp
'
− 1

2&
(Cii +Cjj − 2Cij) + λ

(
= T. (A.28)

Equivalently, the solution is TA/&A&1.
We now proceed with the solution to the linear

program (A.13). Examining the linear program, we see
that we can rewrite the problem as

min!
i ∕=j Aij=T

Aij≥0

"

ij

Aij(Cii +Cjj − 2Cij). (A.29)

This linear program has a well-known solution (see, for
example, Exercise 4.8 in Boyd et al. [2004a]).

We note that taking & → 0 in the solution to the
entropically regularized LP, we see that A becomes a
matrix supported on the entries ij ∈ I, where I is defined
by (A.17) and all of the aij are equal.

4) Proof of Lemma 1: Therefore, the path between
these parametrizations is really just the Euclidean path
in Sn

+. In particular, this means that if F is convex as a
function of L, F is convex as a function of diag(A1)−
A, or F ◦ π is convex. Indeed, letting L(t) = (1 −
t)L+ tL′ be a path over Laplacians, we see that L(t) =
π(A(t)), where A(t) = (1− t)A+ tA′. The derivatives
also match

∂tF (L(t)) = 〈∇F (L(t)),L′(t)〉 (A.30)
= 〈∇F (π(A(t))),L′ −L〉
= 〈∇F (π(A(t))), diag((A′ −A)1)− (A′ −A)〉
= 〈∇F (π(A(t))), ∂tπ(A(t))〉
= ∂tF (π(A(t))).

C. Other Properties of Graph Laplacians

In practice, nodes with large degree may have undue
influence on the spectral properties of the graph Lapla-
cian. Therefore, it is useful to also consider normalized
versions of the graph Laplacian. In particular, the sym-
metric normalized graph Laplacian is given by

L = D−1/2(D −A)D−1/2 = I −D−1/2AD−1/2.
(A.31)

Alternative normalizations include the left and right nor-
malized graph Laplacians, which are D−1L and LD−1,
respectively.

D. Less Constraints: Variable Trace Linear Programs

In this section, we discuss in more detail what hap-
pens to linear programs when we do not constrain the
trace or the degree. Suppose we now want to solve the
generalization of (A.11) where the trace T is not fixed.
In this case, the linear program becomes

min
diag(A)=0, Aij≥0

〈diag(A1),C〉+ 〈A,−C〉. (A.32)

In general, this problem is not well posed. Indeed, writing
this linear program in the equivalent form

min
Aij≥0, i ∕=j

"

ij

Aij(Cii +Cjj − 2Cij), (A.33)



the solution is either 0 or −∞ depending on the signs of
the adjoint operator A(C). Furthermore, the entropically
regularized program becomes

min
diag(A)=0

〈diag(A1),C〉+ 〈A,−C〉− &Ho(A) (A.34)

Notice that this is now an unconstrained minimization
problem. The solution is given by

Aij = exp
'
− 1

2&
(Gii +Gjj − 2Gij)

(
, (A.35)

Again taking & → 0, we see that all elements ij such
that Gii+Gjj − 2Gij < 0 blow up, and so the solution
to the original LP is again 0 or −∞. We note that the
original LP is equivalent to

min
T,L∈Ln(T )

〈L,C〉. (A.36)

We could consider adding a Laplacian trace regular-
ization term, which would yield the augmented linear
program

min
diag(A)=0, Aij≥0

〈diag(A1),C〉+〈A,−C〉−λ
"

ij

Aij .

(A.37)
and the entropically regularized program

min
diag(A)=0

〈diag(A1),C〉+〈A,−C〉−&Ho(A)−λ
"

ij

Aij .

(A.38)
The entropically regularized program has solution

Aij = exp
'
− 1

2&
(Cii +Cjj − 2Cij) + λ

(
, (A.39)


