
A Appendix

A.1 Technical Details

A.1.1 Neural Network Architectures and Policy Approximation

We used deep neural networks to implement πi and Qi for each agent i. The neural networks are
updated every 10 episodes (Appendix A.1.2) using ADAM with a learning rate of 0.001.

Since Warehouse[N] and Battle[N] are gridworlds, states and observations are encoded as multi-
channel image as proposed in [1, 3]. In GaussianSqueeze[N], the state is a zero vector, and the
observations are one-hot vectors of dimension N with the number one being at the ith position.

We implemented all neural networks as multilayer perceptron (MLP) and flattened the inputs before
feeding them into the networks. πi and Qi have two hidden layers of 64 units with ELU activation.
The output of πi has |Ai| units with softmax activation. The output of Qi has |Ai| linear units. The
centralized Ψ-networks for learning Qtot have two hidden layers of 128 units with ELU activation
and one linear output unit. The neural network for XMetaGrad has two hidden layers of 128 units with
ELU activation and K = dηNe output units with softmax activation.

The architectures of πi and Qi are based on architectures of previous MARL work [2, 5] to avoid
exhaustive tuning. The architecture of the centralized networks for Qtot and XMetaGrad is based on [6].
The layers are wider because of the larger input dimension with state st and joint action at.

We approximated πi using local actor-critic learning on Qi as proposed in [4, 6, 7] w.r.t. the estimated
gradient g = A(τt,i, at,i)∇θlogπi(at,i|τt,i), whereA(τt,i, at,i) = Rt−V (τt,i) is the advantage with
return Rt as defined in Section 2 and baseline V (τt,i) =

∑
at,i∈Ai

πi(at,i|τt,i)Qi(τt,i, at,i).

A.1.2 Hyperparameters

All common hyperparameters used by all MARL approaches in the experiments as reported in Section
5 and 6 in the paper as well as in Appendix A.3 are listed in Table 2. The final values were chosen
based on a coarse grid search on Warehouse[4] and Battle[20] for QMIX, QTRAN, and VAST (with
default parameters according to Section 5.2) with 5 runs each. We directly adopted the final values
in Table 2 for all other MARL approaches without further tuning. For XSpatial, we used the k-means
implementation of sklearn 0.24.2 with the default settings without further tuning. All penalty
weights of QTRAN-base in ΨQTRAN were set to 1 as proposed in [5] without further tuning.

Table 2: Common hyperparameters and their respective final values used by all algorithms evaluated
in the paper. We also list the numbers that have been tried during development of the paper.

Hyperparameter Final
Value Numbers/Range Description

Learning rate 0.001 {0.001} We used the default value of ADAM in
torch 1.7.0 without further tuning.

Clip norm parameter 1 {1,∞}
Gradient clipping parameter. Using a
clip norm of 1 leads to better
performance than disabling it with∞.

Discount factor γ 0.95 {0.9, 0.95, 0.99}
Discount factor for the return Rt. Any
value ≥ 0.95 would have been
sufficient.

Trace decay λ 1 {0, 1}
Used for TD(λ) learning of Ψ. λ was
set to λ = 1 to simplify training and to
reduce computation time.

Local history length 1 {1, 5, 10}

The history length was set to 1 to
reduce computation time because the
other values did not significantly
improve performance.

A training run consists of T = 3000 episodes in Warehouse[N], T = 2000 episodes in Battle[N], and
T = 10, 000 episodes in GaussianSqueeze[N]. The run length T was determined by the convergence

1

of VAST in the small MAS instances, i.e., Warehouse[4], Battle[20], and GaussianSqueeze[200].
After every 10th episode, we performed a gradient update on the neural networks according to the
final hyperparameter values in Table 2 and ran 10 test episodes whose average results are shown in
all plots in Section 6 and Appendix A.3.

A.1.3 Computing Infrastructure, Resources, and Total Amount of Compute

All training runs in the experiments and for hyperparameter tuning were performed in parallel on
a computing cluster of fifteen x86_64 GNU/Linux (Ubuntu 18.04.5 LTS) machines with i7-8700
@ 3.2GHz CPU (8 cores) and 64 GB RAM using Slurm-WLM 19.05.5. The amount of compute
depends on the MARL algorithm and on the domain. Table 3 gives an overview of the estimated
average runtimes per training run of VAST with Ψ = ΨQTRAN and X = XMetaGrad, QMIX, QTRAN,
and IL for each domain in Fig. 4 and 8. Note that the average runtimes are only rough measurements
to estimate the total amount of compute as provided below.

Table 3: Estimated average runtimes of VAST, QMIX, QTRAN, and IL for each domain.

Domain Algorithm Average Runtime per Run

Warehouse[4]
VAST(η = 1

4) ∼2.5 hours
VAST(η = 1

2) ∼2.5 hours
QMIX, QTRAN, IL ∼2.5 hours

Warehouse[8]
VAST(η = 1

4) ∼5 hours
VAST(η = 1

2) ∼5 hours
QMIX, QTRAN, IL ∼5 hours

Warehouse[16]
VAST(η = 1

4) ∼14 hours
VAST(η = 1

2) ∼14 hours
QMIX, QTRAN, IL ∼14 hours

Battle[20]
VAST(η = 1

4) ∼6.5 hours
VAST(η = 1

2) ∼6.5 hours
QMIX, QTRAN, IL ∼4.9 hours

Battle[40]
VAST(η = 1

4) ∼22.5 hours
VAST(η = 1

2) ∼23.2 hours
QMIX, QTRAN, IL ∼15 hours

Battle[80]
VAST(η = 1

4) ∼2 days
VAST(η = 1

2) ∼2.5 days
QMIX, QTRAN, IL ∼1.5 days

GaussianSqueeze[200]
VAST(η = 1

4) ∼7.5 hours
VAST(η = 1

2) ∼9 hours
QMIX, QTRAN, IL ∼3 hours

GaussianSqueeze[400]
VAST(η = 1

4) ∼0.8 days
VAST(η = 1

2) ∼1.3 days
QMIX, QTRAN, IL ∼0.3 days

GaussianSqueeze[800]
VAST(η = 1

4) ∼2.7 days
VAST(η = 1

2) ∼4.7 days
QMIX, QTRAN, IL ∼0.6 days

The runtime was not significantly different for other VFF operators Ψ that are evaluated in Fig. 3
in Section 6.1. The runtime of using XRandom or XFixed instead of XMetaGrad as sub-team assignment
strategy X as evaluated in Fig. 5 in Section 6.3 was similar to the runtime of VAST(η = 1

4). However,
the runtime was roughly doubled compared to VAST(η = 1

4) when using XSpatial instead of XMetaGrad.

Our initial experiments (implementation, debugging, hyperparameter tuning, etc.) required about
5000 CPU hours of compute. The experiments presented in Section 6 and Appendix A.3 required
about 40,000 CPU hours of compute. Thus, our work required about 45,000 CPU hours of total
compute.

2

4 2
1

3

(a) Warehouse[4]

4 43
1

1

22

2

(b) Warehouse[8]

1

1

1

1

1

1

3 3

33

3 3
2

2 2

24

4 4

4 4

4

(c) Warehouse[16]

Figure 7: Layouts used in the experiments in Section 6 and Appendix A.3.1 for Warehouse[N] with
work stations (orange cells), drop off locations (cyan cells), and obstacles (black cells).

A.2 Domain Details

A.2.1 Warehouse[N]

We experimented with different instances of Warehouse[N] withN ∈ {4, 8, 16}. The layouts used for
the respective instances are shown in Fig. 7. The goal is to complete as many orders with +6 reward
(due to 5 randomly assigned items and a completion bonus) as possible while avoiding collisions with
other agents which are penalized with -0.5 per "attempt" to occupy the same position as another agent.
With an increasing number of agents, the chance of agent collisions significantly increases, thus we
scaled the layout sizes accordingly to keep the domain instances solvable for MARL algorithms.

A.2.2 Battle[N]

We experimented with different instances of Battle[N] withN ∈ {20, 40, 80} with a grid world shape
of 10 × 10, 14 × 14, and 18 × 18 respectively. All agents are theoretically able to share the same
positions and are only able to attack opponent agents, when sharing the same position with them. If
multiple opponent agents occupy the same position, then a random opponent is picked for the attack.
Due to these rules, it is recommended to group together in order to attack simultaneously. E.g., 3
simultaneously attacking agents can kill a single opponent within just one turn without loosing any
health points. However a single agent requires at least 4 turns for a kill, due to the recovery of 0.01
health point per turn, while getting hit itself by the opponent agent.

A.3 Additional Results

A.3.1 Full State-of-the-Art Comparison

We ran VAST with different sub-team ratios η ∈ { 14 ,
1
2}, Ψ = ΨQTRAN, and X = XMetaGrad in the

small MAS instances Warehouse[4], Battle[20], and GaussianSqueeze[200]. We also experimented
with medium instances, i.e., Warehouse[8], Battle[40], and GaussianSqueeze[400] as well as larger
instances, i.e., Warehouse[16], Battle[80], and GaussianSqueeze[800] to compare the performance
with QMIX, QTRAN, and IL as shown in Fig. 8.

In Warehouse[4], QTRAN makes slightly faster progress than VAST(η = 1
2). In Warehouse[8],

VAST(η = 1
2) performs best and VAST(η = 1

4) is only outperformed by QTRAN. In Warehouse[16],
both VAST variants outperform all baselines, which perform poorly. In Battle[20] and Battle[40], both
VAST variants slightly outperform QMIX and QTRAN, but they perform significantly better in Bat-
tle[80]. In GaussianSqueeze[200], all CTDE approaches perform equally well, but both VAST vari-
ants outperform all baselines in GaussianSqueeze[400] and GaussianSqueeze[800]. VAST(η = 1

2)
initially improves faster than VAST(η = 1

4) in most domains but in Warehouse[16] and Gaussian-
Squeeze[800], VAST(η = 1

4) surpasses VAST(η = 1
2) over time.

Both VAST variants seem to perform especially well in the medium and large MAS instances, where
VAST(η = 1

2) tends to perform better in the medium instances, while VAST(η = 1
4) performs best in

Warehouse[16] and GaussianSqueeze[800].

3

(a) Warehouse[4] (b) Battle[20] (c) GaussianSqueeze[200]

(d) Warehouse[8] (e) Battle[40] (f) GaussianSqueeze[400]

(g) Warehouse[16] (h) Battle[80] (i) GaussianSqueeze[800]

Figure 8: Average training progress of VAST with η ∈ { 14 ,
1
2}, ΨQTRAN, and XMetaGrad as well as

QMIX, QTRAN, and IL. Shaded areas show the 95% confidence interval. Legend in (a) applies to all
plots.

(a) Warehouse[16] (b) Battle[80] (c) GaussianSqueeze[800]

Figure 9: Average progress of the division diversity per episode using ΨQTRAN and XMetaGrad during
training. The division diversity in GaussianSqueeze[800] is determined by 10 single-step episodes.
Shaded areas show the 95% confidence interval. Legend in (a) applies to all plots.

A.3.2 Sub-Team Division Diversity

We evaluated the diversity of sub-team divisions Gt to examine exploration and the number of active
outputs (i.e., non-empty sub-teams) in XMetaGrad over time for η ∈ { 14 ,

1
2}. We define the division

diversity by the number of non-empty sub-team assignments for all time steps per episode:

dGt = |{Kt|∀episode time step t}| (1)

where Kt = {k|Gt,k ∈ Gt ∧ Gt,k 6= ∅}. The results for Warehouse[16], Battle[80], and Gaus-
sianSqueeze[800] are shown in Fig. 9. In Warehouse[16], both variants converge to an average
division diversity of dGt

= 1, where VAST(η = 1
2) converges slower and occasionally peaks out. In

Battle[80], VAST(η = 1
4) reaches an average diversity of dGt ≈ 10, while VAST(η = 1

2) reaches an
average diversity of dGt

≈ 17. The division diversity in GaussianSqueeze[800] is determined by 10
single-step episodes, where both variants progress similarly to an average diversity of dGt

≈ 3.

4

(a) early, XMetaGrad (b) middle, XMetaGrad (c) late, XMetaGrad

(d) early, XSpatial (e) middle, XSpatial (f) late, XSpatial

Figure 10: Visualizations of the generated sub-teams of XMetaGrad with η = 1
4 and XSpatial with

k-means clustering using 10 centroids at different stages (early, middle, late) in Battle[80] after
training. All agents of the same sub-team have the same color.

XMetaGrad automatically learns to adapt in all domains and shrink its number of active or non-empty
sub-teams on demand with any sub-team ratio η. Larger values of η can enable more initial exploration
as indicated by the higher division diversity of XMetaGrad with η = 1

2 in the early training stages
in Warehouse[16] and in Battle[80]. The exploration effect is also indicated in Fig. 8, where
VAST(η = 1

2) initially improves faster than VAST(η = 1
4) in Warehouse[16] and Battle[80].

A.3.3 "Splitting" Strategy in Battle[80]

In Fig. 10, we visualize the generated sub-teams of the "splitting" strategy described in Section 6.3 by
using XMetaGrad and XSpatial at different stages in Battle[80]. All learning agents of the same sub-team
are circles with the same color. The gray triangles represent opponent agents.

In the early stage (Fig. 10a), XMetaGrad generates a red sub-team for agents that are rather far away
from the opponent army and a cyan/white sub-team which is rather close to it (with some prediction
noise). In the middle stage (Fig. 10b), the learning agent army splits into a fleeing part as red
sub-team and an offensive part with an orange sub-team that directly clashes with the opponent
army and the cyan/white sub-team backing up the orange one. The offensive part and the opponent
army decimate each other, while the red sub-team flees and hides in the bottom left corner (Fig.
10c). XSpatial simply groups agents according to their spatial distances to each other with no obvious
relation to the danger of the current situation or the splitted parts of the learning agent army as shown
in Fig. 10d-f.

References

[1] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative Multi-Agent Control
using Deep Reinforcement Learning. In Autonomous Agents and Multiagent Systems, pages
66–83. Springer, 2017.

5

[2] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-Agent
Actor-Critic for Mixed Cooperative-Competitive Environments. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[3] Thomy Phan, Lenz Belzner, Thomas Gabor, and Kyrill Schmid. Leveraging Statistical Multi-
Agent Online Planning with Emergent Value Function Approximation. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18, page
730–738, Richland, SC, 2018. International Foundation for Autonomous Agents and Multiagent
Systems.

[4] Thomy Phan, Lenz Belzner, Thomas Gabor, Andreas Sedlmeier, Fabian Ritz, and Claudia
Linnhoff-Popien. Resilient Multi-Agent Reinforcement Learning with Adversarial Value Decom-
position. Proceedings of the AAAI Conference on Artificial Intelligence, 35(13):11308–11316,
May 2021.

[5] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN:
Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5887–5896. PMLR, 09–15 Jun 2019.

[6] Jianyu Su, Stephen Adams, and Peter Beling. Value-Decomposition Multi-Agent Actor-Critics.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(13):11352–11360, May 2021.

[7] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. DOP: Off-
Policy Multi-Agent Decomposed Policy Gradients. In International Conference on Learning
Representations, 2020.

6

	Appendix
	Technical Details
	Neural Network Architectures and Policy Approximation
	Hyperparameters
	Computing Infrastructure, Resources, and Total Amount of Compute

	Domain Details
	Warehouse[N]
	Battle[N]

	Additional Results
	Full State-of-the-Art Comparison
	Sub-Team Division Diversity
	"Splitting" Strategy in Battle[80]

