
Under review as a conference paper at ICLR 2024

6 APPENDIX

7 MOBILE DEEP LEARNING ARCHITECTURE

Figure 6: DRL architecture for mobile devices: We build our neural network deployable to mobile
devices.To achieve this, we designed a neural network that utilizes an embedding layer to reduce the
dimension of the inputs, and uses Conv1D instead of a Dense layer to reduce the compute load. The
input to output is separated into four modules.

1. Basic Module is used for game environment statistics and characters-specific information.

2. Buff Module is used for buff and debuff information during gameplay.

3. The Element Module is used for characters’ equipment, weapon IDs, scroll IDs, etc.

4. The Action Masking Module provides the model with information on whether each action
is currently available.

The separation of modules in Figure 5 allows for sparse connectivity within the model, reducing
compute load when compared to fully connected layers. This efficient structure allows us to perform
inferences locally on mobile devices with limited computational resources.

MDP: The model receives input states, st, from the Basic, Buff, and Element Modules to identify
characters, equipped Summons and Scrolls, characters’ positions, movements, and skills’ buff and
element information. The model then predicts an action output, at, to control the 2D movement of
the agent and the available attack and skills. The reward can be customized, but in our standard
mechanics it is based on the (weighting) of an agent’s own HP(10), opponent’s HP(10), the result of
the battle(10), combo(5), and mana(5). With the transition of the action, new state st+1 are given to
the model for the next iteration of MDP.

7.1 HYPERPARAMETERS AND HARDWARE USED

2 Hyperparameters

• PPO: 0.1

• n-step: 100 frames

• Reward discount factor: 0.995

• Learning rate: 1e-4

Hardware Used

• CPUS: 5,300

• GPUS: 0

12

Under review as a conference paper at ICLR 2024

• Batch size: 300
• Compute Time:

– ≈ 180 Hrs

13

Under review as a conference paper at ICLR 2024

8 JEM POLICY GRADIENT DERIVATION

We first define a standardized Policy Gradient for a Specialist k with Q and Value functions as:

MaximizeJ(ψk) =
1

N

N∑
g=i

E
ak,s,ag

[[Q(s, ak, idk)

∗ πψk(ak|s, idk)]− [V (s, idk) ∗ πψk(ak|s, idk)]] (11)

To optimize each Specialist πψk , in each step of disjoint Policy update we take the derivative of the
gradient w.r.t. ψk to isolate each policy’s gradients:

∇ψk J(ψk) =
1

N

N∑
g=i

E
aks,ag

[Q(s, ak, idk)

∗ πψk(ak|s, idk)∇ψk log(πψk(ak|s, idk))
− V (s, idk) ∗ πψk(ak|s, idk)∇ψk log(πψk(ak|s, idk))] (12)

Turning the equation in to practice, we first train and define Generalist as a population of agents
trained under conditional net. The training is done through the process of self-play where the current
Generalist population learn to compete against all agents’ past policies in competing games. The
aim is to learn a set of common skills that are competitive amongst the agents. The converged
competitive behaviors is also known as Nash Equilibrium (NE). It is only ϵ in approximation since
DRL policies does not converge to an exact behavior. This is characterized by the floating point
parameters of a neural network.

After the training of Generalist population has converged, we fixed the ϵ− NE behavior of the
Generalist population as part of the stationary environment. By optimizing each Specialist in relation
to the Generalist population, the interaction of the agents (ag, ak) can measure the joint probability
of the action output. We assume that through repeated self-play, each Specialist can approximate the
action probability ag (ϵ-NE Mixed strategy) as part of the environment interaction.

Given the joint probability, we rewrite the policies interaction as
πψk(ak, idk|ag, s) ∇ψk log(πψk(ak|ag, s, idk)), to approximate the Joint Entropy ≈ H(ag, ak).
The Joint Entropy here measures the joint probability of (ag, ak) that the Specialist uses the same
skills and behaviors as the Generalists.

∇ψk J(ψk) =
1

N

N∑
g=i

E
ak,s,ag

[Q(s, ak, idk)

∗ πψk(ak|ag, s, idk)log(πψk(ak|ag, s, idk))
− V (s, idk) ∗ πψk(ak|ag, s, idk)∇ψk log(πψk(ak|ag, s, idk)) (13)

Below we examine the accumulated behavior change gradient T over the course of optimization:

MaximizeJ(ψk) =
1

N

N∑
g=i

E
ak,s,ag

[Q(s, ak, idk)

∗ πψk(ak|ag, s, idk)
∫ T

0

∇ψk log(πψk(ak|ag, s, idk))

− V (s, idk) ∗ πψk(ak|ag, s, idk)
∫ T

0

∇ψk log(πψk(ak|ag, s, idk))] (14)

14

Under review as a conference paper at ICLR 2024

MaximizeJ(ψk) =
1

N

N∑
g=i

E
ak,s,ag

[Q(s, ak, idk)

∗ πψk(ak|ag, s, idk) log(πψk(ak|ag, s, idk))

− V (s, idk) ∗ πψk(ak)|ag, s, idk)log(πψk(ak|ag, s, idk))] (15)

The behavior of a Specialist k is initialized with high Joint Entropy with the Generalist policy due
to the replication of the conditional policy. As the optimization of πψk(ak|s, idk) begins to ac-
cumulate the updates of gradients over T, the objective of maximizing J(ψk) converges towards
minimization of the Joint Entropy, H(ag, ak), for the leading Q(s, ak, idk). In contrast, V (s, idk)
becomes the baseline policy behavior that maintains the Joint Entropy agent behavior. This mini-
mization is achieved through the difference in the value of Q(s, ak, idk) − V (s, idk) on the joint
action probability of (ag, ak).

Our formulation of gradient integral allows us to analyze the resulting behavior of the individual
agent’s policy. Specifically, the minimization of the Joint Entropy, weighted by the Q, Value, Ad-
vantage function formulation specializes the individual agent in relation to the baseline behavior of
transferable skills.

Based on the minimization effect of JEM between every Specialist and the N Generalists, JEM
optimizes the Specialists population according to each agent’s heterogeneity. We refer to this tran-
sition of population behavior as Self Specialization. The benefit of specialization over generalized
transferable skills is that each Specialist learns a unique policy that best aligns with its own charac-
teristics. This enhances the population interactions towards diversity and boosts the performance of
irregular agents by lifting the InteractInfo maximization optimization constraint.

15

Under review as a conference paper at ICLR 2024

9 ALGORITHM PSEUDOCODE

In this section, we present the pseudocode for our Joint Entropy Minimization (JEM) population
learning approach.

For a given heterogeneous population i, ii, ...N and an ϵ−NE Generalists population ΠNθ∗ , JEM
optimizes {πψk

0
}Nk=i to minimize the Joint Entropy of the individual agent policy against the Gener-

alists population ΠNθ∗ . Each one-vs-all matchmaking is sampled based on the priority given by the
graph solver F . After a batch of episodes of NPL, each agent’s policy is optimized with PPO.

Algorithm 1: JEM Multi-Agent Specialization Pseudocode
1 Input:
2 Population = {i,ii,...N} ; // Heterogeneous population of N distinct

agents
3 {πψk

0
}Nk=i ; // N disjoint policies

4 ΠNθ∗ ; // ϵ−NE Generalists

5 {Σk := (πψk , {Πgθ∗)}Ng=i}Nk=i ; // Agent k’s Interaction Graph

6 F : R1×N → R1×N ; // Graph solver - NeuPL (Chen et al. 2022)
7 Parameter:
8 ΠNθ∗ , {πψk

0
}Nk=i

9 Output:
10 {πψk

T
}Nk=i, ΠN , {Σk}Nk=i

11 Algorithm Start:
12 for n ∈ Population do
13 πψn

0
← Πnθ∗ ; // initialize N disjoint policies

14 end
15 while (true do) do
16 for k ∈ Population do
17 ΠΣk ← {Π(ag|s, idg)}Ng=i ; // Specialist k’s Interaction Graph

with the Generalists

18 NPL(πψk
τ
, σk,Π

Σk

) ; // One-vs-all population learning with πψk
τ

19 πψk
τ

= PPOclip(gradientStep(πψk
τ
)) ; // Optimize policy with PPO

optimization
20 Uk ← Eval(πψk

τ
, {Πg}Ng=i) ; // Eval() computes the aggregate

values of
21 vertex k’s game outcomes. Σk ← F (Uk) ; // Define k’s Interaction

Graph
22 end
23 ΠN = ΠN U {πψk

τ∗
}Nk=i ; // Adding Specialists to opponent pool

; // Iteratively specialize Specialists {πψk
τ
}Nk=i.

24 end

We use an Interaction Graph, represented by Uk, to denote the probabilistic outcome distribution
of all pairwise game matches with Specialist k. We use F (Uk) to update k’s Interaction Graph
weighted edges, which prioritizes sampling of adversarial opponents. The process is repeated until
the population performance converges.

16

Under review as a conference paper at ICLR 2024

10 GENERALISTS SELF-PLAY ALGORITHM CONSTRUCTION

Our neural population learning for conditional population net is performed under the multi-agent
Interaction Graph of NeuPL (Liu et al., 2022b). The nodes represent different generations of agents,
and are connected by weighted edges Σ(x,y)NxN . NeuPL provides a population self-play framework
that not only competes the current population ΠNθτ with combinations of distinct agents, but also
prioritizes the weighted edges for different generations of ϵ−NE population ΠNθ0 : τ − 1. Each
population is represented as a conditional population net that learns a set of best-response (BR)
strategies against all previous generations of multi-agent mixed-strategies. Each BR learns a policy
that receives a return that is epsilon away from NE.

Figure 7: The heatmap shows the evaluation matches across the different Generalists iterations
ΠNθt. The ablation evaluation shows that Generalist’s learning diminishes as the training ap-
proaches the 11th to 13th iteration. In particular, the 13th iteration has a win rate of only 57.6%
against the 12th iteration of Generalists, which is close to the Nash equilibrium of 50%.
We evaluate all rounds of the Generalists policies against each other. In Figure 6, the heatmap
shows monotonic convergence of the Generalists population. At the 13th iteration, the Generalists
population has converged to an ε− Nash Equilibrium, where ε ≈ 7.6%. Further training may only
minimally increase the performance, but at the cost of reducing strategy diversity.

17

Under review as a conference paper at ICLR 2024

11 JEM LEARNING CURVE

This section we illustrate how the learning curves of Agents [O, H, T, M, I, K] differ during the
learning process of JEM. At the start of the learning, each agent is equipped with a ϵ - NE Generalist
conditional network. Each agent’s learning process is characterized as a BR self-play against the
whole agent population of ϵ - NE Generalist. The goal of each agent is to maximize the JEM
objective by finding individual comparative advantage that result in higher return than the common
skill of the Generalist population.

Figure 8: Wall Time: In the experiment we found that agents’ wall time to learn to specialize can
greatly vary. One of the most extreme case is Agent H., where its wall time is roughly 22 % longer
than the other agents despite not showing the largest improvement. This learning curve characterizes
Agent H. as a difficult agent with long time to master. At the same time, Agent T. shows little to no
improvement. This special case indicate that the Generalist policy is perfectly suitable to Agent T.,
where learning the common skill on this agent already is the agent’s preferred play style.
In Figure 5, the JEM learning curves of agents each tell a different story. There are agents with
fast learning that in a short time the win rate rapidly increases as well as agents that does not in-
crease much. The different cases indicate that some of the agents truly require special play styles
to realize their potential, and the others agents their optimal strategies may lay within the common
skill learned by the Generalist population. The experiment illustrates that while learning general
skills that are transferrable amongst the agents may elevate the expected competitiveness of the pop-
ulation, learning to specialize is what make the heterogeneous population truly maximize its full
potential.

11.1 SOFTWARE AND LICENSING

The models are implemented via Tensorflow, TensorflowLite (Abadi et al., 2015), IM-
PALA(Espeholt et al., 2018), and Horovod(Sergeev & Balso, 2018). These softwares are all
licensed under Apache License 2.0.

18

	Appendix
	Appendix
	Mobile Deep Learning architecture
	JEM Policy Gradient Derivation
	Algorithm Pseudocode
	Generalists Self-play Algorithm Construction

