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ABSTRACT

Camouflaged object detection (COD) is the challenging task of identifying cam-
ouflaged objects visually blended into surroundings. Albeit achieving remarkable
success, existing COD detectors still struggle to obtain precise results in some
challenging cases. To handle this problem, we draw inspiration from the prey-
vs-predator game that leads preys to develop better camouflage and predators to
acquire more acute vision systems and develop algorithms from both the prey
side and the predator side. On the prey side, we propose an adversarial training
framework, Camouflageator, which introduces an auxiliary generator to generate
more camouflaged objects that are harder for a COD method to detect. Cam-
ouflageator trains the generator and detector in an adversarial way such that the
enhanced auxiliary generator helps produce a stronger detector. On the preda-
tor side, we introduce a novel COD method, called Internal Coherence and Edge
Guidance (ICEG), which introduces a camouflaged feature coherence module to
excavate the internal coherence of camouflaged objects, striving to obtain more
complete segmentation results. Additionally, ICEG proposes a novel edge-guided
separated calibration module to remove false predictions to avoid obtaining am-
biguous boundaries. Extensive experiments show that ICEG outperforms existing
COD detectors and Camouflageator is flexible to improve various COD detectors,
including ICEG, which brings state-of-the-art COD performance. The code will
be available at ht tps://github.com/ChunmingHe/Camouflageator.

1 INTRODUCTION

The never-ending prey-vs-predator game drives preys to develop various escaping strategies. One
of the most effective and ubiquitous strategies is camouflage. Preys use camouflage to blend into
the surrounding environment, striving to escape hunting from predators. For survival, predators,
on the other hand, must develop acute vision systems to decipher camouflage tricks. Camouflaged
object detection (COD) is the task that aims to mimic predators’ vision systems and localize fore-
ground objects that have subtle differences from the background. The intrinsic similarity between
camouflaged objects and the backgrounds renders COD a more challenging task than traditional

object detection ( , ), and has attracted increasing research attention for its potential
applications in medical image analysis ( , ) and species discovery ( , ).
Traditional COD solutions ( , ; , ) mainly rely on manually designed

strategies with fixed extractors and thus are constralned by limited d1scr1m1nab1hty Benefiting from
the powerful feature extraction capacity of convolutional neural network, a series of deep learning-
based methods have been proposed and have achieved remarkable success on the COD task (

, ). However, when facing some extreme camouflage scenarios, those
methods st111 struggle to excavate sufficient discriminative cues crucial to precisely localize objects
of interest. For example, as shown in the top row of Fig. 1, the state-of-the-art COD method, FEDER
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Figure 1: Results of FEDER ( s ), ICEG, and ICEG+. ICEG+ indicates to optimize
ICEG under the Camouflageator framework. Both ICEG and ICEG+ generate more complete results
with clearer edges. ICEG+ also exhibits better localization capacity.

( , ), cannot even roughly localize the object and thus produce a completely wrong
result. Sometimes, even though a rough position can be obtained, FEDER still fails to precisely
segment the objects, as shown in the two remaining rows of Fig. 1. While FEDER manages to find
the rough regions for the objects, the results are either incomplete (middle row: some key parts of
the dog are missing) or ambiguous (bottom row: the boundaries of the frog are not segmented out).

This paper aims to address these limitations. We are inspired by the prey-vs-predator game, where
preys develop more deceptive camouflage skills to escape predators, which, in turn, pushes the
predators to develop more acute vision systems to discern the camouflage tricks. This game leads to
ever-strategic preys and ever-acute predators. With this inspiration, we propose to address COD by
developing algorithms on both the prey side that generates more deceptive camouflage objects and
the predator side that produces complete and precise detection results.

On the prey side, we propose a novel adversarial training framework, Camouflageator, which gen-
erates more camouflaged objects that make it even harder for existing detectors to detect and thus
enhance the generalizability of the detectors. Specifically, as shown in Fig. 2, Camouflageator com-
prises an auxiliary generator and a detector, which could be any existing detector. We adopt an
alternative two-phase training mechanism to train the generator and the detector. In Phase I, we
freeze the detector and train the generator to synthesize camouflaged objects aiming to deceive the
detector. In Phase II, we freeze the generator and train the detector to accurately segment the syn-
thesized camouflaged objects. By iteratively alternating Phases I and II, the generator and detector
both evolve, helping to obtain better COD results.

On the predator side, we present a novel COD detector, termed Internal Coherence and Edge Guid-
ance (ICEG), which particularly aims to address the issues of incomplete segmentation and ambigu-
ous boundaries of existing COD detectors. For incomplete segmentation, we introduce a camou-
flaged feature coherence (CFC) module to excavate the internal coherence of camouflaged objects.
We first explore the feature correlations using two feature aggregation components, i.e., the intra-
layer feature aggregation and the contextual feature aggregation. Then, we propose a camouflaged
consistency loss to constrain the internal consistency of camouflaged objects. To eliminate ambigu-
ous boundaries, we propose an edge-guided separated calibration (ESC) module. ESC separates
foreground and background features using attentive masks to decrease uncertainty boundaries and
remove false predictions. Besides, ESC leverages edge features to adaptively guide segmentation
and reinforce the feature-level edge information to achieve the sharp edge for segmentation results.
We integrate the Camouflageator framework with ICEG to get ICEG+, which can exhibit better
localization capacity (see Fig. 1). Our contributions are summarized as follows:

e We design an adversarial training framework, Camouflageator, for the COD task. Camou-
flageator employs an auxiliary generator that generates more camouflaged objects that are
harder for COD detectors to detect and hence enhances the generalizability of those detec-
tors. Camouflageator is flexible and can be integrated with various existing COD detectors.

e We propose a new COD detector, ICEG, to address the issues of incomplete segmentation
and ambiguous boundaries that existing detectors face. ICEG introduces a novel CFC mod-
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ule to excavate the internal coherence of camouflaged objects to obtain complete segmen-
tation results, and an ESC module to leverage edge information to get precise boundaries.

e Experiments on four datasets verify that Camouflageator can promote the performance of
various existing COD detectors, ICEG significantly outperforms existing COD detectors,
and integrating Camouflageator with ICEG reaches even better results.

2 RELATED WORK

2.1 CAMOUFLAGED OBJECT DETECTION

Traditional methods rely on hand-crafted operators with limited feature discriminability ( ,

), failing to handle complex scenarios. A Bayesian-based method ( , ) was pro-
posed to separate the foreground and background regions through camouflage modeling. Learning-
based approaches have become mainstream in COD with three main categories: (i) Multi-stage
framework: SegMaR ( , ) was the first plug-and-play method to integrate segment,
magnify, and reiterate under a multi-stage framework. However, SegMaR has limitations in flexi-
bility due to not being end-to-end trainable. (ii) Multi-scale feature aggregation: PreyNet (

, ) proposed a bidirectional bridging interaction module to aggregate cross-layer features
with attentive guidance. UGTR ( , ) proposed a probabilistic representational model
combined with transformers to explicitly address uncertainties. DTAF ( , ) devel-
oped multiple texture-aware refinement modules to learn the texture-aware features. Similarly,
FGANet ( , ) designed a collaborative local information interaction module to ag-
gregate structure context features. (iii) Joint training strategy: MGL ( , ) designed the
mutual graph reasoning to model the correlations between the segmentation map and the edge map.
BGNet ( , ) presented a joint framework for COD to detect the camouflaged candidate
and its edge using a cooperative strategy. Analogously, FEDER ( , ) jointly trained the
edge reconstruction task with the COD task and guided the segmentation with the predicted edge.

We improve existing methods in three aspects: (i) Camouflageator is the first end-to-end trainable
plug-and-play framework for COD, thus ensuring flexibility. (ii) ICEG is the first COD detector
to alleviate incomplete segmentation by excavating the 1nternal coherence of camouﬂaged objects.
(iii) Unlike existing edge-based detectors ( ),
ICEG employs edge information to guide segmentatlon adaptlvely under the separated attentlve
framework.

2.2 ADVERSARIAL TRAINING

Adversarial training is a widely-used solution with many applications, including adversarlal at-

tack ( s ) and generative adversarial network (GAN) (

). Recently, several GAN-based methods have been proposed for the COD task
JCOD ( , ) introduced a GAN-based framework to measure the prediction uncertainty.
ADENet ( , ) employed GAN to weigh the contribution of depth for COD. Distinct

from those GAN-based methods, our Camouflageator enhances the generalizability of existing COD
detectors by generating more camouflaged objects that are harder to detect.

3 METHODOLOGY

When preys develop more deceptive camouflaged skills to escape predators, the predators respond by
evolving more acute vision systems to discern the camouflage tricks. Drawing inspiration from this
prey-vs-predator game, we propose to address COD by developing the Camouflageator and ICEG
techniques that mimic preys and predators, respectively, to generate more camouflaged objects and
to more accurately detect the camouflaged objects, improving the generalizability of the detector.

3.1 CAMOUFLAGEATOR

Camouflageator is an adversarial training framework that employs an auxiliary generator G, to
synthesize more camouflaged objects that make it even harder for existing detectors D to detect
and thus enhance the generalizability of the detectors. We train G and D; alternatively in a two-
phase adversarial training scheme. Fig. 2 shows the framework.
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Figure 2: Architecture of Camouflageator. In Phase I, we fix detector D and update generator G
to synthesize more camouflaged objects to deceive D,. In Phase II, we fix G and train the detector
D, to segment the synthesized image.

Training the generator. We fix the detector D, and train the generator GG, to generate more decep-
tive objects that fail the detector. Given a camouflaged image x, we generate

xg = G.(x), (D
and expect that x, is more deceptive to D, than x. To achieve this, x4 should be visually consistent
(similar in global appearance) with x but simultaneously have those discriminative features crucial
for detection hidden or reduced.

To encourage visual consistency, we propose to optimize the fidelity loss represented as follows:
Ly = (1-y)@x, — (1-y)@x|?, 2)
where y is the ground truth binary mask and ® denotes element-wise multiplication. Since (1 —
y) denotes the background mask, this term in essence encourage x, to be similar with x for the
background region. We encourage fidelity by preserving only the background rather than the whole
image because otherwise, it hinders the generation of camouflaged objects in the foreground.

To hide discriminative features, we optimize the following concealment loss to imitate the bio-

camouflage strategies, i.e., internal similarity and edge disruption ( , ), as
Lo = ly @xg = Py ||* +]lye ®x5 — P/, (3)
where y. is the weighted edge mask dilated by Gaussian function ( , ) to capture richer

edge information. P! is the image-level object prototype which is an average of foreground pixels.
P! is the image-level edge prototype which is an average of edge pixels specified by y.. Note that
Ve, P!, and P! are all derived from the provided ground truth y and help to train the model. This
term encourages individual pixels of the foreground region and the edge region of x, to be similar
to the average values, which has a smooth effect and thus hides discriminative features.

Apart from the above concealment loss, we further employ the detector D, to reinforce the con-
cealment effect. The idea is that if x4 is perfectly deceptive, D tends to detect nothing as the
foreground. To this end, we optimize

Li=Lgcp (Ds (%g),¥2)+Li,u (Ds (%g),¥2) s 4)
where y, =0 is an all-zero mask. L'}~ (+) and LY, ;;(+) denote the weighted binary cross-entropy
loss ( , ) and the weighted intersection-over-union loss ( ,

By introducing a trade-off parameter A, our overall learning objective to train G. is as follows,
LJ*™ = L+ Ly + ALq. (5)
Training the detector. In Phase II, we fix the generator G, and train the detector D, to accurately

segment the synthesized camouflaged objects. This is the standard COD task and various existing
COD detectors can be employed, for example, the simple one we used above,

Lscam:L%CE (Ds (Xg) ,¥)+ Ly, (Ds (Xg) \Y) - (6)

3.2 ICEG

We further propose ICEG to alleviate incomplete segmentation and eliminate ambiguous boundaries.
Given x of size W x H, we start by using a basic encoder F' to extract a set of deep features { f }1_,

with the resolution of % X Qk% and employ ResNet50 ( , ) as the default architecture.
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(a) The framework of the proposed ICEG. (b) Details of Dy in ESD.

Figure 3: Framework of our ICEG. CRB is the Conv-ReLU-BN structure. We omit the Sigmoid operator in
(b) for clarity.

As shown in Fig. 3, we then feed these features, i.e., { fk}ﬁzl, to the camouflaged feature coherence
(CFC) module and the edge-guided segmentation decoder (ESD) for further processing. Moreover,
the last feature map f4, which has rich semantic cues, is fed into an atrous spatial pyramid pooling
(ASPP) module A; ( R ) and a 3 x 3 convolution conv3 to generate a coarse result pz:
pi = conv3(As(f4)), where pg shares the same spatial resolution with fy.

3.2.1 CAMOUFLAGED FEATURE COHERENCE MODULE

To alleviate incomplete segmentation, we propose the camouflaged feature coherence (CFC) module

to excavate the internal coherence of camouflaged IEA 1x1 Convolution
objects. CFC consists of two feature aggregation / o N Baf? || 33 Convoluion
components, i.e., the intra-layer feature aggregation | l‘!‘ [} 5+ convotution
(IFA) and the contextual feature aggregation (CFA), gConcatenation
to explore feature correlations. Besides, CFC intro- (= D
duces a camouflaged consistency loss to constrain fi {CA P SA T @ sunmanon
f|<+1 CFA (D Up-sampling

the internal consistency of camouflaged objects. ) :
Figure 4: Details of IFA and CFA.

Intra-layer feature aggregation. In Fig. 4, IFA seeks the feature correlations by integrating the
multi-scale features with different reception fields in a single layer, assuring that the aggregated
features can capture scale-invariant information. Given fj, a 1 x 1 convolution conv1 is first applied
for channel reduction, followed by two parallel convolutions with different kernel sizes. This process
produces the features f7 and f{ with varying receptive fields:

f2 = conv3(convl(fy)), fo = convb(convl(fy)), (7
where conv5 is 5 x 5 convolution. Then we combine f7 and f?, process them with two parallel
convolutions, and multiply the outputs to excavate the scale-invariant information:

35— conv3 (conca(f,f, f,f)) ® convb (conca(f,g’, f,f)) , (8)
where conca(+) denote concatenation. We then integrate the three features and process them with a
CRB block CRB(+), i.e., 3 x 3 convolution, ReL.U, and batch normalization. By summing with the
channel-wise down-sampled feature, the aggregated features { f,‘j}i:l are formulated as follows:

fi = convl(fy) + CRB (conca (fi, 2, f2°)) - 9

Contextual feature aggregation. CFA explores the inter-layer feature correlations by selectively

interacting cross-level information with channel attention and spatial attention ( , ),
which ensures the retention of significant coherence. The aggregated feature { f¢}3_, is

fe =54 (CA (com)S (conca (up (f,SH) ,f,‘j)))) , (10)

where up(+) is up-sampling operation. C'A (+) and S A (+) are channel attention and spatial attention.
f§ = f{. Given {f{};_,, the integrated features { f/}3_, conveyed to the decoder are

fi = convl (concate (f2, f£)) - (11)
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We employ conv1 for channel integration and f} = f§.

Camouflaged consistency loss. To enforce the internal consistency of the camouflaged object, we
propose a camouflaged consistency loss to enable more compact internal features. To achieve this,
one intuitive idea is to decrease the variance of the camouflaged internal features. However, such a
constraint can lead to feature collapse, i.e., all extracted features are too clustered to be separated,
thus diminishing the segmentation capacity. Therefore, apart from the above constraint, we propose
an extra requirement to keep the internal and external features as far away as possible. We apply the
feature-level consistency loss to the deepest feature f} for its abundant semantic information:

Lee=|lya®fi — P{|*~llya® fi — P]I, (12)

where y, is the down-sampled ground truth mask. P/ and be denote the feature-level prototypes
of the camouflaged object and the background, respectively.

Dlscusswns Apart from focusing on feature correlations as in existing detectors ( ,
, ), we design a novel camouflaged consistency loss to enhance the internal
con51stency of camouflaged objects, facilitating complete segmentation.

3.2.2 EDGE-GUIDED SEGMENTATION DECODER

As depicted in Fig. 3, edge-guided segmentation decoder (ESD) { Dy, }+_, comprises an edge recon-
struction (ER) module and an edge-guided separated calibration (ESC) module to generate the edge
predictions {p¢}4_, and the segmentation results {p; }>_,, respectively.

Edge reconstruction module. We introduce an ER module to reconstruct the object boundary.
Assisted by the edge map pj, , and the segmentation feature fii 1 from the former decoder, the
edge feature fy is presented as follows:

fi = CRB(conca(fi, ® pfsq + fios fis1))- (13)
where f = As(f1) and p, = conv3(fg). fS and p§ are set as zero for initialization. We repeat
D1 as a 64-dimension tensor to ensure channel consistency with f,i in Eq. (13).

Edge-guided separated calibration module. Ambiguous boundary, a common problem in COD,
manifests as two phenomena: (1) a high degree of uncertainty in the fringes, and (2) the unclear
edge of the segmented object. We have observed that the high degree of uncertainty is mainly due to
the intrinsic similarity between the camouflaged object and the background. To address this issue,
we separate the features from the foreground and the background by introducing the corresponding
attentive masks, and design a two-branch network to process the attentive features. This approach
helps decrease uncertainty fringes and remove false predictions, including false-positive and false-
negative errors. Given the prediction map py, ,, the network is defined as follows:

i = conca(fi?, i), pi. = conv3(f7), (14)
where f,jf and f;? are the foreground and the background attentive features, which are formulated
— RCAB (1 S (i) + 11). (152

" =RCAB (f; © S (R (pis1)) + fi) (15b)
where S(+) and R(:) are Sigmoid and reverse operators, i.e., element-wise subtraction with 1.
RCAB(+) is the residual channel attention block ( , ), which is used to emphasize
those informative channels and high-frequency information.

The second phenomenon, unclear edge, is due to the extracted features giving insufficient impor-
tance to edge information. In this case, we explicitly incorporate edge features to guide the seg-
mentation process and promote edge prominence. Instead of simply superimposing, we design an
adaptive normalization (AN) strategy with edge features to guide the segmentation in a variational
manner, which reinforces the feature-level edge information and thus ensures the sharp edge of the
segmented object. Given the edge feature fi, |, the attentive features can be acquired by:

fif =ol @(RCAB(fi@S(pis1)+ 1)) +ui (162)
=02 (RCAB(fr @S (R(pis1)) +11) + b, (16b)

where {o_]{ , uﬁ} and {ob, u}} are variational parameters. In AN, {o%, i} can be calculated by:
o =conv3,(CRBo(fi 1)), e =conv3, (CRB,(fii1))- (17
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Figure 5: Qualitative analysis of ICEG and other four cutting-edge methods. ICEG generates more complete
results with clearer edges. We also provide the results of ICEG+, which is optimized under Camouflageator.

Discussions. Unlike existing edge-guided methods ( , ; , ) that focus only
on edge guidance, we combine edge guidance with foreground/background splitting using attentive
masks. This integration enables us to decrease uncertainty fringes and remove false predictions
along edges, thus achieving the sharp edge for segmentation results.

3.2.3 LOSS FUNCTIONS OF ICEG

Apart from the camouflaged consistency loss L., our ICEG is also constraint with the segmentation
loss L and the edge loss L. to supervise the segmentation results {p }?_, and the reconstructed

edge results {p }7_,. Following ( , ), we define L as
1 w S w S
LSZZF(LBCE Pk, y)+Liow (0%y)) - (18)
k=1
For edge supervision, we employ dice 1oss Lg;ce(*) ( , ) to overcome the extreme

imbalance in edge maps:

Ldlce pk7Ye) . (19)

e

Therefore, with the assistance of a trade-off parameter 3, the total loss is presented as follows:
Ly=L,+ L.+ 5Lcc~ (20)

3.2.4 ICEG+

To promote the adoption of our Camouflageator, we provide a use case and utilize ICEG+ to denote
the algorithm that integrates our Camouflageator framework with ICEG. The integration is straight-
forward; we only need to replace the detector supervision from Eq. (6) with Eq. (20). In addition,
we pre-train ICEG with L; (Eq. (20)) to ensure the training stability. See Sec. 4.1 for more details.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details. All experiments are implemented on PyTroch on two RTX3090 GPUs.
For Camouflageator, the generator adopts ResUNet as its backbone. As for ICEG, a pre-trained

ResNet50 ( , ) on ImageNet ( , ) is employed as the default encoder.
We also report the COD results with other encoders, including Res2Net50 ( , ) and
Swin Transformer ( R ). Following ( ), we resize the input image as

352 x 352 and pre-train ICEG by Adam with momentum terms (0.9,0.999) for 100 epochs. The
batch size is set as 36 and the learning rate is initialized as 0.0001, decreased by 0.1 every 50 epochs.
Then we use the same batch size to further optimize ICEG under the Camouflageator framework for
30 epochs and get ICEG+, where the optimizer is Adam with parameters (0.5,0.99) and the initial
learning rate is 0.0001, dividing by 10 every 15 epochs. A and f3 are set as 0.1.
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CHAMELEON | CAMO CODI0K | NC4K
M| Fpt Est Sat MY Fst Byt Sat | MY Fst Est Sat ML Fpt Ept Sat
Common Setting: Single Input Scale and Single Stage

SegMaR-1 (Jiaetal, 2022) | ResNet50 | 0.028 0.828 0.944 0.892]0.072 0.772 0.861 0.805|0.035 0.699 0.890 0.813 |0.052 0.767 0.885 0.835
PreyNet (Zhang et a 2 ResNet50 | 0.027 0.844 0.948 0.895 | 0.077 0.763 0.854 0.790 | 0.034 0.715 0.894 0.813|0.047 0.798 0.887 0.838

Methods ‘ Backbones

FGANet (Zhai et al,, ResNet50 |0.030 0.838 0.944 0.896 | 0.070 0.769 0.865 0.800 | 0.032 0.708 0.894 0.803 | 0.047 0.800 0.891 0.837
FEDER (He et al., 2023¢) ResNet50 | 0.028 0.850 0.944 0.892]0.070 0.775 0.870 0.802|0.032 0.715 0.892 0.810 | 0.046 0.808 0.900 0.842
ICEG (Ours) ResNet50 | 0.027 0.858 0.950 0.899 | 0.068 0.789 0.879 0.810 | 0.030 0.747 0.906 0.826 | 0.044 0.814 0.908 0.849
PreyNet+ (Ours) ResNet50 | 0.027 0.856 0.954 0.901 0.074 0.778 0.869 0.808 | 0.031 0.744 0.908 0.833 0.044 0.821 0.912 0.859
FGANet+ (Ours) ResNet50 | 0.029 0.847 0.948 0.899 0.069 0.781 0.877 0.814|0.030 0.735 0.911 0.823 0.045 0.814 0.905 0.854
FEDER+ (Ours) ResNet50 | 0.027 0.855 0.947 0.895 0.068 0.793 0.883 0.820|0.030 0.739 0.905 0.831 0.043 0.820 0.910 0.845
ICEG+ (Ours) ResNet50 | 0.026 0.863 0.952 0.903 0.066 0.805 0.891 0.829|0.028 0.763 0.920 0.843 0.041 0.835 0.922 0.869

SINet V2 (Fanetal, 2021) | Res2Net50 | 0.030 0.816 0.942 0.888 | 0.070 0.779 0.882 0.822|0.037 0.682 0.887 0.815]0.048 0.792 0.903 0.847
BGNet (Sun et al., 2022) Res2Net50 | 0.029 0.835 0.944 0.895|0.073 0.744 0.870 0.812|0.033 0.714 0.901 0.831 |0.044 0.786 0.907 0.851

ICEG (Ours) Res2Net50 | 0.025 0.869 0.958 0.908 | 0.066 0.808 0.903 0.838 | 0.028 0.752 0.914 0.845|0.042 0.828 0.917 0.867
ICEG+ (Ours) Res2Net50 | 0.023 0.873 0.960 0.910 0.064 0.826 0.912 0.845|0.026 0.770 0.925 0.853 0.040 0.844 0.928 0.878
ICON (Zhuge et al,, 2022) Swin 0.029 0.848 0.940 0.898]0.058 0.794 0.907 0.840|0.033 0.720 0.888 0.818|0.041 0.817 0.916 0.858
ICEG (Ours) Swin 0.023 0.860 0.959 0.905 | 0.044 0.855 0.926 0.867 | 0.024 0.782 0.930 0.857 | 0.034 0.855 0.932 0.879
ICEG+ (Ours) Swin 0.022 0.867 0.961 0.908 0.042 0.861 0.931 0.871]0.023 0.788 0.934 0.862 0.033 0.861 0.937 0.883

Other Setting: Multiple Input Scales (MIS)

ResNet50 | 0.024 0.858 0.943 0.902 | 0.066 0.792 0.877 0.820|0.029 0.740 0.888 0.838 |0.043 0.814 0.896 0.853
ResNet50 | 0.023 0.864 0.957 0.905 | 0.063 0.802 0.889 0.833|0.028 0.751 0.913 0.840 | 0.042 0.827 0.911 0.873

Other Setting: Multiple Stages (MS)
SegMaR-4 (Jiz ¢t al., 2022) ‘ResNetSO ‘0.025 0.855 0.955 04906‘04071 0.779 0.865 0.815‘0.033 0.737 0.896 04833‘04047 0.793 0.892 0.845
ICEG-4 (Ours) ResNet50 | 0.024 0.870 0.961 0.907 | 0.067 0.802 0.884 0.823|0.028 0.755 0.920 0.843 | 0.043 0.824 0.915 0.860
Table 1: Quantitative comparisons of ICEG and other 13 SOTAs on four benchmarks. SegMaR-1 and
SegMaR-4 are SegMaR at one stage and four stages. “+” indicates optimizing the detector under our Cam-
ouflageator framework. Swin and PVT denote Swin Transformer and PVT V2. The best results are marked in
bold. For ResNet50 backbone in the common setting, the best two results are in red and blue fonts.

ZoomNet (Pang et al.,, 2022)
ICEG (Ours)

5 4 S i Effect of Ly and L Effect of AT strategy

Metrics | wio Lo wiLy wi'LS| BOwW/o Ly BOW Le AT w/ L
M| [ 0032 0030 0028] 0030 0032 0028
Fst | 0721 0750 0763| 0752 0722 0763
Eo1 | 0899 0907 0920| 0910 0895 0.920
Sat | 0816 0834 0843] 0832 0812 0.843

Table 2: Ablation study of Camouflageator on COD10K.
L; = Ly + AL¢. BO and AT are bi-level optimization
and adversarial training.

(a) Origin ~ (b)w/o Ly (c) w/ Ly (d) w/ L¢
Figure 6: Synthesized images of the generator
trained by different losses.

Datasets. We use four COD datasets for evaluation, including CHAMELEON (Skurowski et al.,
2018), CAMO (Le et al,, 2019), CODIOK (Fan et al., 2021), and NC4K (Lv et al., 2021).
CHAMELEON comprises 76 camouflaged images. CAMO contains 1,250 images with 8 categories.
CODIOK has 5,066 images with 10 super-classes. NC4K is the largest test set with 4,121 images.
Following the common setting (Fan et al., 2020; 202 1), our training set involves 1,000 images from
CAMO and 3,040 images from CODI0K, and our test set integrates the rest from the four datasets.

Metrics. Following previous methods (Fan et al., 2020; 2021), we employ four commonly-used
metrics, including mean absolute error (M), adaptive F-measure (F}3), mean E-measure (Ey), and
structure measure (S, ). Note that smaller M or larger Fg, Eg, S, signify better performance.

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

Quantitative analysis. We compare our ICEG with 13 state-of-the-art (SOTA) solutions in three
different settings. Apart from the common setting, two other settings (multiple input scales and mul-
tiple stages) are also included, where ICEG follows the corresponding practices of ZoomNet (Pang
et al., 2022) and SegMaR (Jia et al., 2022). As shown in Table 1, ICEG outperforms the SOTAs
by a large margin in all settings and backbones. In the common setting, ICEG overall surpasses
the second-best methods in 2.1%, 5.2%, 8.3% with the backbone of ResNet50 (FEDER (He et al.,
2023c)), Res2Net50 (BGNet (Sun et al., 2022)), Swin Transformer (ICON (Zhuge et al., 2022)).
Moreover, we also present the results of detectors optimized under Camouflageator. In Table 1, Cam-
ouflageator generally improves other detectors by 2.8% (PreyNet), 2.2% (FGANet), 2.3% (FEDER),
and increases our ICEG by 2.5% (ResNet50), 2.3% (Res2Net50), 1.4% (Swin Transformer), which
verifies that our Camouflageator is a plug-and-play framework. Results of the compared methods
are generated by their provided models with the image size of 352 x 352 for fairness.

Qualitative analysis. Fig. 5 shows that ICEG gets more complete results than existing methods,
especially for large objects whose intrinsic correlations are more dispersed (the last row). This
substantiates the effectiveness of the our CFC module that excavates the internal coherence of cam-
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Metrics

Ablation study of CFC component Ablation study of ESD component Ours
w/o CFC w/o IFA w/o CFA w/o FA w/o L. LCC—>LiC w/o ESD w/o ESC SC->FC SC—>BC w/o AN w/o ER|ICEG

M| 0.035 0.032 0.031 0.033  0.032 0.032 0.035 0.034 0.032 0.031 0.033  0.034 ]0.030
Fg1 0.685 0.728 0.731 0.720  0.722 0.704 0.678 0.688 0.737 0.741 0.715  0.693 |0.747
Ey 1 0.866 0.885 0.893  0.883  0.887 0.890 0.864  0.871 0.896 0.902  0.890 0.872 |0.906
Sa T 0.808 0.814 0.822  0.812 0.816 0.813 0.802  0.806 0.820 0.822  0.815 0.804 |0.826

Table 3: Ablation study of ICEG on CODIOK. “~>" is substitution. (a) FA includes both IFA and CFA. L.,
is the first term of L.. in Eq. (12). (b) SC, FC, BC are short for separated (Eq. (16)), foreground (Eq. (16a)),
background (Eq. (16b)) calibration. Note that “w/o ER” removes edge predictions, thus including “w/o AN”.

ouflaged objects for generating more complete prediction maps. Moreover, ICEG gets clearer edges
for the predictions than the existing methods, thanks to our ESD module that decreases uncertainty
fringes and eliminates unclear edges of the segmented object. Moreover, we can see that ICEG+ ob-
tains even better results than ICEG, further verifying the effect of our Camouflageator framework.

4.3 ABLATION STUDY AND ANALYSIS

Validity of Camouflageator. We conduct validity analyses for Camouflageator, including our ob-
jective function in Eq. (5) and the adversarial training manner. As shown in Fig. 6, the generator
trained without Lj produces the images with severe artifacts, while the one trained with fidelity loss
Ly only synthesizes visual-appealing images but fails to hide discriminative features. In contrast,
the generator trained with our L¢ generates high-quality images with more camouflaged objects,
ensuring the generalizability of the detector (see Table 2 ). We also compare Camouflageator with
the bi-level optimization (BO) framework ( , ) to verify the advancement of our adver-
sarial manner. BO involves the auxiliary generator and the detector in both the training and testing
phases without adversarial losses, i.e., Egs. (4) and (6). As the concealment loss L.; may limit the
performance in such an end-to-end manner, we also report the results optimized without L.;, namely
with only L and segmentation loss (Eq. (20)). Table 2 verifies the effect of our adversarial manner.

Effect of CFC and ESD. The efficacy of CFC modules is verified in Table 3. In Table 3, we examine
the impact of the CFC module (in (a)) and investigate the effect of individual components in CFC,
including feature aggregation components (in (b), (c), and (d)), and L. (in (e) and (f)). As shown
in Table 3 (e), our camouflaged consistency loss L. generally improves our detector by 3.4%, which
its positive effect. Furthermore, we demonstrate the superiority of L.. by incorporating L. into
existing cutting-edge detectors, as detailed in the supplementary materials. Additionally, we present
detailed ablation results for ESD in Table 3, where we highlight the benefits of ESD, ESC, separated
calibration, adaptive normalization, and the joint strategy to integrate the ER task into the COD task.
Moreover, as observed in Table 3, the combination of edge guidance with foreground/background
splitting using attentive masks is shown to further boost detection performance. Such discovery can
bring insights for the design of edge guidance modules.

5 CONCLUSION

In this paper, we propose to address COD on both the prey and predator sides. On the prey side,
we introduce a novel adversarial training strategy, Camouflageator, to enhance the generalizability
of the detector by generating more camouflaged objects harder for a COD detector to detect. On
the predator side, we design a novel detector, dubbed ICEG, to address the issues of incomplete
segmentation and ambiguous boundaries. In specific, ICEG employs the CFC module to excavate
the internal coherence of camouflaged objects and applies the ESD module for edge prominence,
thus producing complete and precise detection results. Extensive experiments verify our superiority.
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STRATEGIC PREYS MAKE ACUTE PREDATORS:
ENHANCING CAMOUFLAGED OBJECT DETECTORS
BY GENERATING CAMOUFLAGED OBJECTS
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A Comparison with the state-of-the-arts 1
B Ablation study and analysis 1
C Limitations and future work 4
CHAMELEON (76 images)‘ CAMO (250 images) CODI0K (2,026 images) ‘ NC4K (4,121 images)
Methods Backbones | 31y Fg1 Est Sat MY Fpt Eot Sat|MI Foi Est Sat ML Fpt Bt Sat
Common Setting: Single Input Scale and Single Stage
HitNet L2023)| PVT | 0.024 0.861 0944 0.9070.060 0791 0.892 0.834 |0.027 0.790 0.922 0.847|0.042 0.825 0911 0.858
ICEG (Ours) PVT | 0.022 0.879 0.957 0.913|0.043 0.863 0.933 0.876 | 0.022 0.805 0.938 0.871|0.030 0.869 0.941 0.890
ICEG+ (Ours) PVT | 0022 0881 0958 0915 0.041 0.867 0935 0.8770.021 0811 0939 0873 0029 0.875 0944 0.893
Table S1: Quantitative comparisons of ICEG and HitNet ( , ) on four benchmarks. “+” indicates

optimizing the detector under our Camouflageator framework. PVT denotes PVT V2 (
best results are marked in bold.

,2022). The

A  COMPARISON WITH THE STATE-OF-THE-ARTS

Quantitative analysis. We provide the results of ICEG using the PVT V2 backbone ( ,

) and compare it with HitNet (AAAI2023) ( , ). As illustrated in Table S1, ICEG
outperforms HitNet by 9.6%, demonstrating the superiority of our ICEG. Furthermore, we also
present the results of ICEG+ and discover that the Camouflageator framework generally improves
ICEG performance by 1.0% on average in PVT V2, thus further validating the efficacy of our Cam-
ouflageator framework.

B ABLATION STUDY AND ANALYSIS

We conduct the ablation study on the COD 10k dataset.

Ablation study of fidelity loss and concealment loss. In the manuscript, we apply the fidelity
loss Ly only to the background rather than the whole image. This is because imposing the fidelity
loss on the entire image may hinder the generation of more concealed objects in the foreground. In
order to verify the effect of our fidelity loss, we conduct an experiment, and the results are shown
in Table S2. In this experiment, the fidelity loss in Lfll is imposed on the whole image and the rest

components in Lgl are the same as those in Lg, where Lg =Ls+ ALg. Lgl is defined as:
Lt = |lxg — x| + ALg. (1)

*Corresponding Author, T The work was mainly done when Yulun Zhang was at ETH Ziirich.
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Methods | M |

Fg1t Egt Sa?

w/ L;
L§—>Lgl
c c2
L g—>L o
w/o Cam

0.028
0.029
0.029
0.030

0.763
0.754

0.920 0.843
0.917 0.838
0.758 0.915 0.836
0.747 0.906 0.826

Table S2: Effect of our fidelity loss and concealment loss, where Lg = Ly + AL, “—>" means substitution,
“w/” and “w/0” denote with and without. Cam is short for Camouflageator.

Methods | M |

352 x 352 | 0.030
384 x 384 | 0.030
512 x 512 | 0.028 0.755 0.915 0.843
702 x 702 | 0.027 0.762 0.919 0.848

Table S3: Ablation study of ICEG at different spatial resolutions.

Fg 1

0.747
0.749

Eg 1

0.906
0.911

Sa T

0.826
0.826

Methods | M| Fgt Ezt Sat

w/ ASPP | 0.030 0.747 0.906 0.826
w/o ASPP | 0.030 0.745 0.903 0.824

Table S4: Effect of ASPP.

Methods | M| Fgt Ezt Sat
SegMaR-1 ( , ) 0.035 0.699 0.890 0.813
SegMaR-1+L.. 0.034 0.716 0.895 0.816
PreyNet ( , ) 10.034 0.715 0.894 0.813
PreyNet+L.. 0.032 0.734 0.898 0.819
FGANet ( , ) 0.032 0.708 0.894 0.803
FGANet+L,. 0.032 0.721 0.896 0.808
FEDER ( , ) 0.032 0.715 0.892 0.810
FEDER+L,.. 0.031 0.728 0.899 0.817
ICEG-R50 (Ours) ‘ 0.030 0.747 0.906 0.826

Table S5: Effect of our camouflaged consistency loss L. with the backbone of ResNet50, where R50 denotes
ResNet50 ( R ).

Methods | M| Fgt Egt Sa?
MGL ( , ) 0.035 0.680 0.851 0.814
MGL+ESD 0.034 0.687 0.854 0.816
FEDER ( , )10.032 0.715 0.892 0.810
FEDER+ESD 0.031 0.722 0.896 0.814
ICEG-R50 (Ours) 0.030 0.747 0906 0.826
BG-Net ( , ) 10.033 0.714 0.901 0.831
BG-Net+ESD 0.032 0.725 0.904 0.835
ICEG-R2N (Ours) 0.028 0.752 0.914 0.845

Table S6: Comparison with other edge-based methods with the same backbone, where R50 and R2N denote
ResNet50 ( ) and Res2Net50 ( ), respectively.
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Methods | M| Fgt Egt Sat

(0,0,0,0) | 0.034 0.688 0.871 0.806
(1,0,0,0) | 0.032 0.710 0.884 0.814
(1,1,0,0) | 0.031 0.723 0.892 0.817
(1,1,1,0) | 0.030 0.734 0.902 0.822
(1,1,1,1) | 0.030 0.747 0.906 0.826

Table S7: Effect of the ESC module.

Methods ‘ M| F/B T E¢ T Sat Methods ‘ M| Fgt E¢ T Sat

R50 w/o Cam 0.030 0.747 0.906 0.826 PVT w/o Cam 0.022 0.805 0.938 0.871
R50 w/o pretrain | 0.029 0.755 0913 0.835  PVT w/o pretrain | 0.022 0.807 0.940 0.870
R50 w/ pretrain | 0.028 0.763 0.920 0.843 PVT w/pretrain | 0.021 0.811 0.939 0.873

(a) Effect of the pre-trained model with ResNet50. (b) Effect of the pre-trained model with PVT.
Table S8: Explorations of the Camouflageator framework, where “Cam” is short for Camouflageator. (a) R50
means ResNet50 ( R ). The best epoch of “R50 w/o pretrain” is 67 (COD10K). (b) PVT denotes
PVT V2 ( R ). The best epoch of “PVT w/o pretrain” is 33 (COD10K). The pre-trained models
help Camouflageator to better improve segmentation performance.

Methods | M|l Fgt Eyt Sat

w/o discriminator | 0.028 0.763 0.920 0.843
w/ discriminator | 0.029 0.758 0.915 0.840

Table S9: Effect of the discriminator.

Additionally, we also illustrate the feasibility of corrupting the edge information in a weighted man-
ner. Specifically, we substitute the unweighted edge mask y! for the weighted edge mask y. utilized
in L;. and reformulate the concealment loss, termed Lc2

L =Ly + Ay @ xy — P, ||?
+Allye @ xg = P,
where P! is the image-level edge prototype which is an average of edge pixels specified by y.

)

As shown in Table S2, the detector trained with Lgl or LSZ also achieves performance gains, but
the improvements are not as significant as those obtained when trained with LS. These results
comprehensively verify the advancement of our fidelity loss Ly and concealment loss L ;.

Performance at different resolutions. To investigate the impact of the image resolution on ICEG,
we evaluate the segmentation results of our ICEG with various image resolutions. As illustrated
in Table S3, we observe that performance improves as the image resolution increases. This discovery
motivates us to incorporate image super-resolution techniques into the COD task in future research.

Effect of ASPP. We employ ASPP to enlarge the receptive field, fuse the multi-context information,
and generate a coarse segmentation result to guide the subsequent segmentation, whose effectiveness
is demonstrated in Table S4.

Effect of camouflaged consistency loss. Apart from focusing on feature correlations as in existing
multi-scale frameworks, we design a novel camouflaged consistency loss L. to address incomplete
segmentation by enhancing the internal consistency of camouflaged objects. As shown in Table S5,
we incorporate L. to existing multi-scale frameworks ( , ; , ;

, ) and find improved performance, thereby confirming the superiority of L...

Comparisons with other edge-based methods. As mentioned in the Related work, ICEG stands

apart from existing edge-based detectors ( , ; , ) by utilizing edge guid-

ance that is updated with the segmentation module from coarse to fine to adaptively guide segmen-

tation under the separated attentive framework. The superiority of our edge-based ICEG is verified

in Table S6, where we replace the edge modules in MGL ( , ) and BG-Net ( s
) with ESD and observe an evident improvement in segmentation results.

Effect of ESC. ESC is employed to explicitly guide the segmentation with edge information. In Ta-
ble S7, we conduct an experiment to verify the superiority of ESC, where (*,*,* *) means whether
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(a) Origin (b) GT () ICEG
Figure S1: Failure cases of ICEG.

ESC is retained in Dy, e.g., (1,0,0,0) indicates ESC is retained in D, but not in the other three de-
coders. As shown in Table S7, ESC can promote better segmentation results, and the current version
in ICEG, namely (1,1,1,1), achieves the optimal performance.

Discussions of Camouflageator. In this discussion, we explore two problems related to Camou-
flageator, namely “How to effectively employ the Camouflageator framework?” and “How to deal
with the domain shift problem caused by synthesized images?”. To address the first problem, we
conduct ablations for detectors (see Tables S8a and S8b), and find that using a pre-trained detector
can improve the segmentation performance. In Tables S8a and S8b, we train the detector with no
pre-trained model by 130 epochs and report the best results within the 130 epochs. As reported
in Tables S8a and S8b, ICEG with the pretrain model achieves better results in the backbones of
ResNet50 and PVT V2 and thus indicates the value of the pre-trained model. This lies in the fact
that a naive detector cannot effectively learn from the synthesized challenging images and fails to
give valuable feedback to the generator, thereby affecting training stability and segmentation results.

Regarding to the second problem, the purpose of the Camouflageator framework is to strengthen
the generalizability of the detector, not to ensure that the distribution of the synthesized images is
completely unbiased from the original camouflaged data. Focusing too much on the latter may even
cause a degradation of segmentation performance, which is verified by Table S9, where we introduce
a classification-based discriminator ( R ) for the generator to enforce the “realism” of
the synthesized images. However, this degrades performance because the generator needs to balance
the requirements of the discriminator while also accommodating the detector. Additionally, we have
already ensured the quality of the generated camouflaged images by employing the fidelity loss L
to constrain the visually consistent between the generated image and the original image, and we
only fine-tune the pre-trained detector by 30 epochs to enhance the generalizability of the detector
without overfitting to the synthesized concealed images.

C LIMITATIONS AND FUTURE WORK

Camouflageator. As shown in Table S8b, owing to the strong feature extraction capacity of the
transformer, Camouflageator can only bring limited improvements for ICEG with the backbone of
PVT. In future work, we plan to propose more powerful generators to cater to those transformer-
based backbones by further reinforcing their generalizability. Additionally, we also consider ex-
tending our framework to other tasks such as saliency object detection, industrial defect detection,
medical image segmentation, etc.

ICEG. As depicted in Fig. S1, ICEG may fail to accurately identify those concealed objects that
share very similar structural information to the background. To handle this, we consider extending
our method in the following aspects to cope with this problem: (1) We intend to employ a coarse-
to-fine framework, wherein we can first detect those candidates and then finetune the coarse maps
to ensure accurate segmentation. (2) we aim to enhance the feature extraction capacity to make sure
that we can better filter out those valuable objects. Furthermore, we will consider utilizing our seg-
mentor to extract more semantic-level information ( , ; s ; s
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; , ) and improve the generalizability to empower more fields ( ,

; s ; s ). Addmonally, we plan to employ self-excavation strategies
to mine the valuable information ( , ; , ) or incorporating more pow-
erful architectures, e.g., dynamic networks ( R ; s ), transformer (

s ; ; s ), and diffusion model ( s ; s ;

, ), W1th more strateglc pretrain networks ( , ; ;

, ). (3) We consider ensuring the generalizability of our segmentor even under extremely
degraded scenarios. First, we think it would be desirable to employ image quality assessment tech-
niques ( , ;b) to distinguish hard samples, which helps us to focus more on those
valuable samples. Furthermore, fusing multi-modality data, e.g., infrared and visible image fusion,
can greatly improve the accuracy of downstream tasks ( ; , ). Therefore,
multi-modality image fusion can be a good solution to address camouﬁaged ob_]ect detection. More-
over, how to train a segmentor to directly cope with those degraded scenarios, including low-light
scenarios and hazy environments, is a valuable direction that is worth exploring. In this case, the
future design of our segmentor should also refer to low-quality image restoration techniques (

s ; s ; ) to improve the global illumination and texture details.
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