
A Appendix A531

A.1 Detailed explanation of continuous nature of similarity532

In this section, we expand on our observation that similarity between training samples is not binary.533

Consider the images shown in Figure 6. Let the anchor image and the four images at the bottom be534

part of a batch of training data (possibly along with many other samples). Note that the similarity of535

the anchor image ranges from ‘very similar’ to ‘highly dissimilar’ and that it is not simply binary.536

However, Existing methods for contrastive training only use a binary notion for similarity, and537

categorize the samples in a batch into “positive" and “negative" sets. As a consequence, the models538

fail to correctly learn associations between different data samples.539

Figure 6: An illustration of the continuous nature of similarity in training data. In this example, the
anchor image is similar (or dissimilar) to the other images to various degrees. Existing methods
choose a subset of images and consider them to be ‘positive examples’, and consider the rest of the
examples as ‘negative’ examples. Once these subsets are chosen, the embedding of the anchor image
is aligned (to an equal degree) to those of the positive examples and contrasted with those of the
negative examples. As a consequence, any similarity between the anchor image and the so-called
‘negative’ examples is completely ignored. Further, all ‘positive’ examples are considered to be
equally similar, although this might not be the case.

A.2 Experimental details for aligning image and text modalities540

A.2.1 Model training details541

We build upon the code repository in [50]. We train our models for a total of 70 epochs, where each542

epoch uses a subset of 6 million images,. The batch size is set to 16000. Note the number of training543

steps in this case is equal to 26,250. We train on 4 A100 GPUs. Note that we experimented with544

different sizes for the subset used in each epoch (ranging from 6 million to the full dataset) and we545

obtained the best performance when the size was 6 million (for our method and the baseline methods546

that we train). We use a learning rate of 0.001, AdamW optimizer with �1 = 0.9,�2 = 0.999 and a547

weight decay of 0.0001 [51].548

A.2.2 Simple templates to test model robustness549

One of the advantages of cross-modal 0-shot transfer is the ability of the trained models to be used550

on downstream tasks without any further training. However, the downstream task still needs to551

be adapted to the task of modality alignment. We discuss this adaptation in the context of image552

classification and provide details about our experiments reported in Section 4.1.2.553
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Table 3: Simple template sentences that we use to generate classifier embeddings.

a photo of a { }
an image of a { }
a picture of a { }

this is a { }
a snap of { }
a shot of { }

an illustration of { }
an example of { }

a { } is pictured here
In this picture, we can see a { }

Table 4: CWCL improves upon the CL-based alignment method for image-text retrieval.

Method I !T retrieval T!I retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CL 30.42 54.32 65.82 24.17 49.04 61.05

CWCL (Ours) 35.10 61.52 73 25.69 50.04 61.59

In [1, 2], the downstream task of image classification task is solved by first changing the class labels554

to sentences. The sentences are then converted to embeddings using the text encoder. Given a test555

image, the text embedding that it aligns the most with determines its class. In particular, both works556

use a set of 80 “template sentences" to convert each label to 80 sentences. The text embedding557

representing a given label is then computed as the average of the embeddings of these 80 sentences.558

We observe that the classification accuracy depends on the choice of these template sentences, as also559

seen in [5]. To illustrate this, we formulate k = 1, 5, 10 simple template sentences and use them to560

generate the classifier embeddings. We list these sentence in Table 3. Note that for k = 1, we use the561

first sentence only and for k = 5, we use the first 5 sentences. Our motivation in choosing simple562

sentences is to mimic the process of an end user who may not have the resources to carefully design563

the template sentences. Our goal is to test our model’s robustenss under such a scenario. As shown in564

Figure 5, a model trained using standard contrastive tuning shows poor performance as the number of565

template sentences is reduced. This shows that to achieve high accuracy, an end user must design566

template sentences that are complex enough. However, a model trained using CWCL maintains its567

performance across varying number of template sentences, even when only simple templates are568

used. Our hypothesis is that owing to the continuous nature of the similarity used during training, the569

model has learnt better cross-modal associations.570

A.2.3 Cross-modal retrieval571

We also examine the 0-shot image-text retrieval capabilities of our proposed method. Note that our572

experiments are only towards comparing standard contrastive loss with CWCL. We leave the task573

of training with larger datasets [1, 2, 3] and using multi-objective training (which maybe used in574

conjuntion with contrastive tuning to obtain better retrieval performance) [30, 25, 18] for future575

exploration.576

In our experiment, we simply compare the performance of models trained with contrastive loss (as577

done in [2]) to that of models trained using CWCL. We use the MS-COCO validation dataset [52]578

to study zero-shot retrieval performance of these models. We report our results in Table 4. Models579

trained with CWCL outperform those trained using the standard contrastive loss function.580

A.3 Speech-Text Appendix581

In this section, we provide additional details about training the speech-text alignemnt models.582
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A.3.1 Model training details583

We train each model for a total of 20 epochs, where one epoch consumes the whole training data584

equal to 1,013,630 samples. We use a batch size of 20 with the 12,500 warmup steps and train on585

1 A100 GPU. We use a learning rate of 0.00003, AdamW optimizer with �1 = 0.9,�2 = 0.999, a586

weight decay of 0.0001, and gradient clipping norm of 10.587

A.3.2 Effects of using pre-trained model weights, locking location, and batch size588

Each reported number in this section is Top-1 accuracy (%) on SLURP data for speech intent589

classification.590

Start the speech model from scratch VS pre-trained weights: In Table 5, we compared starting591

multi-modal training from scratch and from pre-trained weights. The performance is significantly592

boosted by initializing the speech encoder using weights from the encoder part of the Whisper ASR593

model [42]. However, regardless of using random weights and pre-trained model weights, training594

with CWCL results in a much better downstream performance.

Table 5: Comparison between using randomly initialized weights and pre-trained weights for speech
encoders during training: Top-1 accuracy (%) on SLURP data

Method Random initialization Pre-trained weights

CL 13.80 22.73

CWCL 26.17 53.12
595

Locking location: We have 4 ways to lock our model during multi-modal training since we have596

pre-trained speech and text models. We compared all the locking options and the result is shown in597

Table 6. In both baseline and CWCL losses, locking the text model works best. This can be seen as598

transferring the knowledge of semantic relationships in text models to speech models.

Table 6: Locking location vs. performance: Top-1 accuracy (%) on SLURP data

Locking location none speech text both

CL 18.77 7.89 24.03 9.82

CWCL 17.50 27.39 53.12 16.70
599

Batch size vs. performance: Since the large batch size was shown to improve performance with600

contrastive loss in computer vision, we also did a similar experiment to see how the batch size affects601

the performance as it gets larger. As the batch size increases, we also increased the learning rate602

proportionally, e.g., if bs=20 has lr=1, bs=40 has lr=2. The results are in Table 7.603

Table 7: Effective batch size vs. performance: Top-1 accuracy (%) on SLURP data

batch size 20 40 80

CL 24.03 25.20 24.51

CWCL 53.12 53.94 51.80

A.3.3 Further evidence of modality alignment due to CWCL604

In Figure 3, we showed the alignment (measured as inner product) between speech features and text605

features obtained from models trained using just CL and those trained using CWCL. We use the606

speech and text data from the SLURP test dataset. We illustrated that speech and text embeddings607

that belong to the same intent class were much more aligned compared to speech and text from608

mismatched classes. In this section, we provide more examples that support this observation.609
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In Figures 7, 8, we show the alignment between the speech and text embeddings where the speech610

and text samples belong to classes other than those used in Figure 3. We again see that the alignment611

between samples in the same class is much higher than that between samples in different classes. In612

general, we observe the same pattern to hold across all the classes in the dataset, thus confirming that613

our results are not due to sampling bias.614

Figure 7: Cosine-similarity between speech and text embeddings obtained by sampling 6 classes
randomly from the SLURP test dataset. The block diagonal structure of the matrix on the right shows
that using CWCL results in a strong alignment between speech (and text) samples that share a similar
intent. In this case, the sampled classes are different from those used in Figures 3 and 8.

Figure 8: Another example of alignment between speech and text embeddings. The sampled classes
are different from those used in Figures 3 and 7.

A.3.4 Additional tables for reference615

Table 8 additionally shows the Top-5 accuracy over speech-text experiments. Since most of the616

previous works did not report this metric, we only include our own experimental results. Table 9617

shows the existing supervised model performances where the models are either trained or fine-tuned618

on the labeled Google Speech Command Dataset V2 for performing the keyword spotting (KWS)619

task, while our methods did not require any labeled KWS data for performing the task.620

A.3.5 General template as a python list621

To test the speech-text alignment models, we use a “general" set of templates in addition to the one622

obtained by using the text from the training data itself. This general set of templates aims to mimic a623

scenario where the no example texts maybe available. We list the set of template sentences used in624

the general set here.625
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Table 8: Top-5 accuracy for zero-shot speech-to-intent classification (SLURP and STOP) and KWS
on Google Speech Command Dataset V2. Superscript # is used to indicate use of general templates.

Method Text model SLURP SLURP# STOP STOP# KWS KWS#

CL RoBERTa+S 69.57 49.86 98.19 94.03 82.22 82.53
CL BART+Y 52.97 24.87 95.27 81.63 84.02 78.14

CWCL (Ours) RoBERTa+S 84.53 68.58 99.38 96.52 91.20 92.42
CWCL (Ours) BART+Y 79.48 57.34 99.48 97.71 93.79 94.30

Text-intent RoBERTa+S 95.66 83.36 98.93 95.20 100 98.20
(upper bound) BART+Y 99.58 73.82 99.45 98.40 100 100

Table 9: Keyword spotting Top-1 accuracies on Google Speech Command Dataset V2 from existing
supervised models.

Method KWS

Attention RNN [47] 93.9
KWT-2 [41] 97.74

Wav2Vec2 [48] 96.6
M2D [49] 95.4

M2D - Fine tuned [49] 98.5

General template sentences: [ it is about { }, it was about { }, it will be about626

{ }, this is about { }, this was about { }, this will be about { }, it is627

related to { }, it was related to { }, it will be related to { }, this is628

related to { }, this was related to { }, this will be related to { }, it629

is talking about { }, it was talking about { }, it will be talking about630

{ }, this is talking about { } this was talking about { }, this will be631

talking about { }, I am talking about { }, I was talking about { }, I will632

be talking about { }, You are talking about { }, You were talking about633

{ }, You will be talking about { }, They are talking about { }, They were634

talking about { }, They will be talking about { }, We are talking about {635

}, We were talking about { }, We will be talking about { }, it talks about636

{ }, it talked about { }, it will talk about { }, this talks about { },637

this talked about { }, this will talk about { }, I talk about { }, I talked638

about { }, I will talk about { }, You talk about { }, You talked about { },639

You will talk about { }, They talk about { }, They talked about { }, They640

will talk about { }, We talk about { }, We talked about { }, We will talk641

about { } ]642
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