
Appendix

This appendix is structured as follows:

• In Section A, we provide an overview of the notation we use throughout the paper.
• In Section B, we provide derivations for influence functions, proximal response function,

proximal Bregman response function, and linearized proximal response function.
• In Section C, we provide experimental details.
• In Section D, we provide additional experiment results.
• In Section E, we present the numerical results shown in Figure 4.
• In Section G, we provide an overview of CG and LiSSA algorithms.

A Table of Notation

Table 3 summarizes notations used in this paper.

Notation Description

Dtrain Finite training dataset
N Number of training examples, N = |Dtrain|
x Input of a data point
t Target a data point

z = (x, t) Data point composed of an input x and a target t
y = f(θ,x) Prediction of the network f parameterized by the parameters θ

θ Model parameters
θ⋆ Optimal model parameters on the full training dataset Dtrain

θ⋆
−z Optimal model parameters on the dataset with a data point z removed Dtrain − {z}

L(y, t) Loss function (e.g., squared error or cross-entropy)
J (θ) Cost function on the full dataset Dtrain

d Number of model parameters
ϵ Downweighting factor

Q−z(θ, ϵ) Downweighted cost defined as Q−z(θ, ϵ) = J (θ)− L(f(θ,x), t)ϵ
θ⋆
−z,ϵ Optimal model parameters of the downweighted cost Q−z(θ, ϵ), where ϵ is fixed

r⋆−z(ϵ) Response function
Jyθ⋆ Parameter-output Jacobian at θ⋆

Hy Hessian of the cost with respect to the network outputs
λ Damping strength

r⋆−z,damp(ϵ) Proximal response function
θs (Possibly non-converged) learned parameters

DL(i)(y,ys) The Bregman divergence L(y, t(i))− L(ys, t(i))−∇yL(ys, t(i))⊤(y − ys)

rb−z,damp(ϵ) Proximal Bregman response function
rb−z,damp,lin(ϵ) Linearized proximal Bregman response function
flin(θ,x) Linearized network outputs with respect to the parameters

flin(θ,x) = f(θs,x) + Jyθs(θ − θs)

ys = f(θs,x) Prediction of the network f parameterized by the parameters θs

Lquad(y, t) Second-order Taylor expansion of the loss around ys

Table 3: A summary of the notation used in this paper.

16

B Derivations

B.1 Influence Function Derivation

We provide a derivation of influence functions using the response function. We refer readers to Van der
Vaart [2000] and Koh and Liang [2017] for a more general derivation of influence functions.

Let z = (x, t) ∈ Dtrain be a training example we are interested in downweighting. Recall that the
downweighted objective is defined as:

Q−z(θ, ϵ) = J (θ)− L(f(θ,x), t)ϵ. (11)

We further let ϵ0 = 0 and θ⋆ be the optimal parameters such that ∇θQ−z(θ
⋆, ϵ0) = 0. Here, the

optimal parameters θ⋆ is the solution that minimizes the cost function J (·). We assume that the
downweighted objective is twice continuously differentiable and strongly convex in the parameters θ
at ϵ0. Note that if we assume the strong convexity of the loss function, the downweighted objective is
only guaranteed to be strongly convex when ϵ ≤ 1/N .

By the Implicit Function Theorem, these exists a unique continuously differentiable response function
r⋆−z : U0 → Rd defined on a neighborhood U0 of ϵ0 such that r⋆−z(ϵ0) = θ⋆ and:

∇θQ−z(r
⋆
−z(ϵ), ϵ) = 0 (12)

for all ϵ ∈ U0. By taking the derivative with respect to the downweighting factor ϵ, we get:

0 =
d

dϵ

(
∇θQ−z(r

⋆
−z(ϵ), ϵ)

)
= ∇2

θQ−z(r
⋆
−z(ϵ), ϵ)

dr⋆−z

dϵ
(ϵ) +∇2

θ,ϵQ−z(r
⋆
−z(ϵ), ϵ) (13)

for all ϵ ∈ U0. The Jacobian of the response function at ϵ0 can further be expressed as:

0 =
(
∇2

θJ (θ⋆)
)(dr⋆−z

dϵ

∣∣∣∣
ϵ=ϵ0

)
−∇θL(f(θ⋆,x), t), (14)

where we used these two equalities:

∇2
θQ−z(r

⋆
−z(ϵ0), ϵ0) = ∇2

θJ (θ⋆) (15)

∇2
θ,ϵQ−z(r

⋆
−z(ϵ0), ϵ0) = −∇θL(f(θ⋆,x), t) (16)

Rearranging Eqn. 14, we have:

dr⋆−z

dϵ

∣∣∣∣
ϵ=ϵ0

=
(
∇2

θJ (θ⋆)
)−1 ∇θL(f(θ⋆,x), t), (17)

where the Hessian ∇2
θJ (θ⋆) is invertible by strong convexity of our downweighted objective at ϵ0.

Influence functions approximate the response function with a first-order Taylor expansion at ϵ0:

r⋆−z,lin(ϵ) = r⋆−z(ϵ0) +
dr⋆−z

dϵ

∣∣∣∣
ϵ=ϵ0

(ϵ− ϵ0) = θ⋆ + (∇2
θJ (θ⋆))−1∇θL(f(θ⋆,x), t)ϵ. (18)

To approximate the optimal parameters trained without a data point z, we can substitute ϵ = 1/N as
follows:

r⋆−z,lin(1/N) = θ⋆ +
1

N
(∇2

θJ (θ⋆))−1∇θL(f(θ⋆,x), t). (19)

Influence functions can further approximate the loss at a particular test point ztest = (xtest, ttest) (or
test loss) when a training example z is eliminated from the training set using the chain rule [Koh and
Liang, 2017]:

L(f(r⋆−z,lin (1/N) ,xtest), ttest)

≈ L(f(θ⋆,xtest), ttest) +
1

N
∇θL(f(θ⋆,xtest), ttest)

⊤ dr⋆−z

dϵ

∣∣∣∣
ϵ=ϵ0

≈ L(f(θ⋆,xtest), ttest) +
1

N
∇θL(f(θ⋆,xtest), ttest)

⊤(∇2
θJ (θ⋆))−1∇θL(f(θ⋆,x), t).

(20)

17

B.2 Proximal Response Function Derivation

Let z = (x, t) ∈ Dtrain be a training example we are interested in downweighting. Recall that the
proximal response function (in Eqn. 7) is defined as:

r⋆−z,damp(ϵ) = argmin
θ∈Rd

Q−z(θ, ϵ) +
λ

2
∥θ − θ⋆∥2, (21)

where θ⋆ is the optimal parameters that minimize the cost function and λ > 0 is a damping term.
Here, we show that influence estimations with a damping term correspond to a first-order Taylor
approximation of the proximal response function. Let λ > 0 be some damping term and θ⋆ be the
solution that minimizes the cost function. Let ϵ0 = 0 and assume that the downweighted objective is
convex in the parameters θ at ϵ0. By the Implicit Function Theorem, we can guarantee the existence
of the proximal response function r⋆−z,damp : U0 → Rd defined on a neighborhood U0 of ϵ0 which
satisfies r⋆−z,damp(ϵ0) = θ⋆ and:

∇θQ−z(r
⋆
−z,damp(ϵ), ϵ) + λ (r−z,damp(ϵ)

⋆ − θ⋆) = 0 (22)

for all ϵ in some neighborhood U0 of ϵ0. Then, differentiating Eqn. 22 with respect to the down-
weighting factor ϵ equates:

0 =
d

dϵ

(
∇θQ−z(r

⋆
−z,damp(ϵ), ϵ) + λ

(
r⋆−z,damp(ϵ)− θ⋆

))
(23)

= ∇2
θQ−z(r

⋆
−z,damp(ϵ), ϵ)

dr⋆−z,damp

dϵ
(ϵ) +∇2

θ,ϵQ−z(r
⋆
−z,damp(ϵ), ϵ) + λ

dr⋆−z,damp

dϵ
(ϵ) (24)

for all ϵ ∈ U0. Evaluating the response Jacobian at ϵ0 and rearranging the terms in Eqn. 24:

dr⋆−z,damp

dϵ

∣∣∣∣
ϵ=ϵ0

=
(
∇2

θJ (θ⋆) + λI
)−1 ∇θL(f(θ⋆,x), t). (25)

Hence, a first-order Taylor approximation of the proximal response function is equivalent to influence
functions with a damping term λI added:

r⋆−z,damp,lin(ϵ) = r⋆−z,damp(ϵ0) +
dr⋆−z,damp

dϵ

∣∣∣∣
ϵ=ϵ0

(ϵ− ϵ0) (26)

= θ⋆ + (∇2
θJ (θ⋆) + λI)−1∇θL(f(θ⋆,x), t)ϵ. (27)

When a damping term is used in influence functions, they approximate LOO retraining scheme with
the proximity term added to the downweighted objective.

B.3 Proximal Bregman Response Function Derivation

As opposed to the derivation from Appendix B.1, we consider computing influence functions on
parameters θs that have not necessarily converged. When the parameters have not fully converged, a
warm-start retraining with the downweighted objective defined in Eqn. 11 would simply minimize
the cost function in the first term and reflect the effect of training longer, rather than the effect of
removing a training example.

Let z = (x, t) ∈ Dtrain be a training example we are interested in downweighting. We assume that
the loss function is convex as a function of the network outputs which hold for commonly used loss
functions. We replace the cost function in the downweighted objective with a term that penalizes
mismatch to the predictions made by the current parameters θs and define the proximal Bregman
downweighted objective as:

Qb
−z(θ, ϵ) =

1

N

N∑
i=1

DL(i)(f(θ,x(i)), f(θs,x(i)))− L(f(θ,x), t)ϵ+ λ

2
∥θ − θs∥, (28)

where DL(i)(·, ·) is the Bregman divergence defined as:

DL(i)(y,ys) = L(y, t(i))− L(ys, t(i))−∇yL(ys, t(i))⊤(y − ys). (29)

18

Because of our convexity assumption, the Bregman divergence term in Eqn. 28 is non-negative
and is 0 when θ = θs. Hence, the parameters θs is optimal at ϵ = 0 on the proximal Bregman
downweighted objective although it is not optimal on the cost function. Accordingly, we define the
proximal Bregman response function (PBRF) as follows:

rb−z,damp(ϵ) = argmin
θ∈Rd

1

N

N∑
i=1

DL(i)(f(θ,x(i)), f(θs,x(i)))− L(f(θ,x), t)ϵ+ λ

2
∥θ − θs∥,

(30)

where we assume that the proximal Bregman downweighted objective is strongly convex at ϵ0 and the
solution to the Bregman downweighted objective is unique. Letting ϵ0 = 0, the Bregman response
function satisfies rb−z,damp(ϵ0) = θs and:

∇θQb
−z(r

b
−z,damp(ϵ), ϵ) = 0. (31)

for all downweighting factor ϵ in some neighborhood of ϵ0. By taking the derivative with respect to
the downweighting factor ϵ, we get:

0 =
d

dϵ

(
∇θQb

−z(r
b
−z,damp(ϵ), ϵ)

)
(32)

= ∇2
θQb

−z(r
b
−z,damp(ϵ), ϵ)

drb−z,damp

dϵ
(ϵ) +∇2

θ,ϵQb
−z(r

b
−z,damp(ϵ), ϵ). (33)

For linear models, where the parameter-output Jacobian is constant, the Jacobian of the response
function at ϵ0 can further be expressed as:

0 =
(
∇2

θJ (θs) + λI
)(drb−z,damp

dϵ

∣∣∣∣
ϵ=ϵ0

)
−∇θL(f(θs,x), t), (34)

where we used these two equalities:

∇2
θQb

−z(r
b
−z,damp(ϵ0), ϵ0) = ∇2

θJ (θs) + λI (35)

∇2
θ,ϵQb

−z(r
b
−z,damp(ϵ0), ϵ0) = −∇θL(f(θs,x), t) (36)

Rearranging the terms in Eqn. 34, the Jacobian of the PBRF at ϵ0 can be expressed as:

drb−z

dϵ

∣∣∣∣
ϵ=ϵ0

=
(
∇2

θJ (θs) + λI
)−1 ∇θL(f(θs,x), t). (37)

Note that both Hessian and gradient are computed on the final parameters θs instead of the optimal
parameters θ⋆. Hence, influence functions at the non-converged parameters θs (with a damping) can
be seen as an approximation to the PBRF rather than an approximation to LOO retraining.

B.4 Linearized Proximal Bregman Response Function Derivation

We show that the linearized proximal Bregman response function (PBRF) is equivalent to the influence
estimation with the Gauss-Newton Hessian approximation and a damping term λ > 0. Let θs ∈ Rd

be a possibly non-converged learned parameters, z = (x, t) ∈ Dtrain be a training example we want
to downweight, and λ > 0 be a damping term. Recall that the linearized PBRF is defined as:

rb−z,damp,lin(ϵ) = argmin
θ∈Rd

1

N

N∑
i=1

DL(i)
quad

(flin(θ,x
(i)), f(θs,x(i)))

−∇θL(f(θs,x), t)⊤θϵ+
λ

2
∥θ − θs∥2,

(38)

where Lquad(·, ·) and flin(θ,x) are defined as:

Lquad(y, t) = L(ys, t) +∇yL(ys, t)⊤(y − ys) + (y − ys)⊤∇2
yL(ys, t)(y − ys). (39)

flin(θ,x
(i)) = f(θs,x(i)) + Jy(i)θs(θ − θs). (40)

19

Here, ys is the prediction of the network parameterized by θs and Jy(i)θs is the parameter-output
Jacobian of the i-th training example. We further assume that the loss function is convex as a function
of the network outputs which hold for commonly used loss functions. The first Bregman divergence
term in Eqn. 38 can be expressed as:

DL(i)
quad

(flin(θ,x
(i)),ys) = ∇yL(ys, t(i))⊤Jy(i)θs(θ − θs) (41)

+ (θ − θs)⊤J⊤
y(i)θs∇2

yL(ys, t(i))Jy(i)θs(θ − θs) (42)

−∇yL(ys, t(i))⊤Jy(i)θs(θ − θs) (43)

= (θ − θs)⊤J⊤
y(i)θs∇2

yL(ys, t(i))Jy(i)θs(θ − θs). (44)

Now, taking the gradient of linearized PBRF objective with respect to the parameters θ and setting it
equal to 0, we get:

0 =
1

N

N∑
i=1

(
J⊤
y(i)θs∇2

yL(ys, t(i))Jy(i)θs(θ − θs)
)
−∇θL(f(θs,x), t)ϵ+ λ(θ − θs)

= J⊤
yθsHs

yJyθs(θ − θs)−∇θL(f(θs,x), t)ϵ+ λ(θ − θs),

(45)

where Hs
y is the Hessian of the loss with respect to the network outputs evaluated at ys. Rearranging

the terms, we get:

θ⋆
lin, PBRF = θs +

(
J⊤
yθsHs

yJyθs + λI
)−1 ∇θL(f(θs,x), t)ϵ, (46)

where θ⋆
lin, PBRF is the optimal solution to the linearized PBRF objective. Note that the Gauss-Newton

Hessian (GNH) Gs = J⊤
yθsHs

yJyθs is positive semidefinite (assuming that the loss function is
convex as a function of network outputs) and an addition of damping term guarantees the invertibility.
Therefore, the optimal solution to Eqn. 46 is equivalent to the influence estimation with the GNH
approximation and a damping term λ.

C Experimental Details

C.1 Computing Environment

All experiments were implemented using the PyTorch [Paszke et al., 2019] and JAX [Bradbury et al.,
2018] frameworks and we ran all experiments on NVIDIA P100 GPUs.

C.2 Experiment Set-up

In all experiments, we first trained the base network (initialized with some θ0) with the entire dataset
for K epochs to obtain the base parameters θs. We then select 20 random data points zt ∈ Dtrain
from the training dataset and computed the additional parameters for each t as follows:

1. Cold optimum. We retrained the network for K + K/2 epochs with the initialization θ0. To
minimize the effect of stochasticity in stochastic gradient-based optimizer, we further used
the same batch order used for training the base network for the first K epochs.

2. Warm optimum. We retrained the network for K/2 epochs with the initialization θs.

3. Proximal warm optimum. We retrained the network for K/2 epochs with the initialization
θs using the objective defined in Eqn. 7.

4. Proximal Bregman warm optimum. We retrained the network for K/2 epochs with the
initialization θs using the objective defined in Eqn. 8.

5. Linearized proximal Bregman warm optimum. We retrained the network for K/2 epochs
with the initialization θs using the objective defined in Eqn. 10.

6. Influence estimation. We used the LiSSA algorithm on the base parameters θs with the
Gauss-Newton Hessian approximation (Eqn. 6).

20

The “warm-start gap” refers to the discrepancy between cold-start and warm-start optima. The
“proximity gap” refers to the discrepancy between warm-start and proximal warm-start optima. The
“non-convergence gap” denotes the discrepancy between proximal warm-start and proximal Bregman
warm-start optima. The “linearization error” represents the discrepancy between proximal Bregman
warm-start and linearized proximal Bregman warm-start optima. Lastly, the “solver error” denotes
the discrepancy between linearized proximal Bregman warm optimum and influence estimation with
the LiSSA algorithm.

We treated the scaling in the LiSSA algorithm as a separate hyperparameter [Koh and Liang, 2017]
and tuned the scaling in the range {10, 25, 50, 100, 150, 200, 250, 300, 400, 500} so that the algorithm
converges.

C.3 Influence Misalignment Decomposition

Logistic Regression. We used Cancer and Diabetes classification datasets from the UCI collec-
tion [Dua and Graff, 2017]. In training, we normalized the input features to have zero mean and unit
variance. We trained the model using L-BFGS with L2 regularization of 0.01 and damping term of
λ = 0.001.

Multilayer Perceptron. For regression experiments, we used 2-hidden layer MLP with 128 hidden
units. For both Concrete and Energy datasets, we normalized the input features and targets to have
a zero mean and unit variance. For classification experiments with 10% of MNIST [Deng, 2012]
and FashionMNIST [Xiao et al., 2017] datasets, we used 2-hidden layer MLP with a hidden unit
dimension of 1024. For both regression and classification experiments, we used a batch size of 128
and trained the base network for 1000 epochs using SGD. While we did not use any L2 regularization,
we set the damping strength to λ = 0.001.

We conducted the hyperparameter searches over the learning rates for the base model, making choices
based on the final validation loss. We swept over the learning rates {1.0, 0.3, 0.1, 0.03, 0.01, 0.003,
0.001}. We used a learning rate decayed by a factor of 10 for computing PBRF and linearized PBRF.
We set the recursion depth to 5000 and the number of repeat to 5 for the LiSSA algorithm.

Autoencoder. We used the same experimental set-up from Martens and Grosse [2015]. The loss
function was the binary cross-entropy and the L2 regularization with strength 5 · 10−5 was added
to the cost function. The layer widths for the autoencoder were [784, 1000, 500, 250, 30, 250, 500,
1000, 784] and we used sigmoid activation functions. We trained the network for 1000 epochs on the
full MNIST dataset with SGDm (SGD with momentum) and set the batch size to 1024. The damping
term was set to λ = 0.001.

We conducted the hyperparameter searches for the base model making choices based on the final
validation loss. We kept the momentum to 0.9 and swept over the learning rates 1, 0.3, 0.1, 0.03, 0.01,
0.003, 0.001. We used a learning rate decayed by a factor of 10 for computing PBRF and linearized
PBRF. We set the recursion depth to 10000 and the number of repeat to 5 for the LiSSA algorithm.

Convolution Neural Networks. We trained LeNet [Lecun et al., 1998], AlexNet [Krizhevsky et al.,
2012], VGG13 Simonyan and Zisserman [2014], and ResNet-20 [He et al., 2015] on 10% of MNIST
dataset and the full CIFAR10 [Krizhevsky, 2009] dataset. For the MNIST experiment, we kept the
learning rate fixed, while for CIFAR10 experiment, we decayed the initial learning rate by a factor of
5 at epochs 60, 120, 160. We used L2 regularization of 5 · 10−4 and a damping factor of λ = 0.001.
For both datasets, we trained the base network for 200 epochs with the batch size of 128.

We used 10% of the MNIST dataset for the test loss correlation experiments in Table 2 and computed
the approximated test loss with Eqn. 20 on randomly selected test examples. We conducted the
hyperparameter searches for the base model making choices based on the final validation accuracy.
We fixed the momentum to 0.9 and swept over the initial learning rates {1.0, 0.3, 0.1, 0.03, 0.01,
0.003, 0.001}. We used a learning rate decayed by a factor of 10 for computing PBRF and linearized
PBRF. We set the recursion depth to 10000 and the number of repeat to 5 for the LiSSA algorithm.

Transformer. We trained a 2-layer Transformer language model on the Penn Treebank (PTB)
dataset [Marcus et al., 1993]. The number of hidden dimensions was set to 256 and the number of
attention heads was set to 2. We trained the model with Adam for 10 epochs. We set the batch size to
20 and a damping term of λ = 0.01. We conducted the hyperparameter searches for the base model
making choices based on the final validation perplexity. We swept over the learning rates {0.03, 0.01,

21

Model Dataset Warm-Start Proximity Non-Convergence Linearization Solver

MLP

Concrete 0.079 ± 0.008 0.002 ± 0.000 0.082 ± 0.001 0.000 ± 0.000 0.017 ± 0.026
Energy 0.016 ± 0.001 0.001 ± 0.000 0.016 ± 0.001 0.000 ± 0.000 0.000 ± 0.000
MNIST 0.208 ± 0.732 0.006 ± 0.024 0.211 ± 0.745 0.000 ± 0.000 0.003 ± 0.006
FashionMNIST 2.968 ± 0.545 0.385 ± 0.028 0.408 ± 0.033 0.000 ± 0.001 0.009 ± 0.014

Table 4: Decomposition of the discrepancy between influence functions (without the Gauss-Newton Hessian
approximation) and LOO retraining into (1) warm-start gap, (2) proximal gap, (3) non-convergence gap, (4)
linearization error, and (5) solver error for each model and dataset. Different from Table 5, we computed
influence functions without the Gauss-Newton Hessian approximation. The size of each component is measured
by the L2 distance between the networks’ outputs on the training dataset.

0.003, 0.001, 0.0003, 0.0001} for training the base model and set the recursion depth to 5000 and the
number of repeat to 5 for the LiSSA algorithm.

C.4 Factors in Influence Misalignment

The experiment in Section 6.2 was conducted using 10% of the MNIST dataset. We trained 2-hidden
layer MLP composed of 1024 hidden units for 1000 epochs using SGD. We used the batch size of
128 and conducted the hyperparameter searches for each model making choices based on the final
validation loss. We swept over the learning rates {1.0, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003,
0.0001}.

To see how the gaps and errors change as we increase the width of the network, we repeated the
experiments with all widths in a set {16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192} while
keeping the depth fixed to 2. To see the effect of increase in the depth of the network, we fixed the
width to 1024 and computed gaps and errors with depth {1, 3, 5, 7, 9, 11, 13, 15}.

While keeping all configurations the same (2-hidden layer MLP with 1024 hidden units), we computed
the decomposition by changing the total number of epochs to train the base model in the range {100,
500, 1000, 3000, 5000, 7000, 9000}, changing the strength of the weight decay {0.5, 0.1, 0.05, 0.01,
0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}, and changing the strength of the damping term in
the range {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005, 0.000001}.
Lastly, we modified the downweighted objective to remove a group of training examples (rather than
a single training example) and altered the percentage we remove the training dataset in range {0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

D Additional Results

D.1 Influence Functions without the Gauss-Newton Hessian Approximation

In all experiments, we computed influence functions using the Gauss-Newton Hessian (GNH)
approximation. As the previous error analysis was conducted without the GNH approximation [Basu
et al., 2020a], we repeated a subset of our experiments without the GNH approximation (using the
Hessian matrix). The results are summarized in Table 4.

As the warm-start gap, proximity gap, non-convergence gap, and linearization error do not depend
on the way influence estimates are computed, these numerical values are identical to the results
in Table 5. However, as the linearized PBRF optimum is equivalent to influence estimations with
the GNH approximation, the solver error slightly increased when we computed influence functions
with the Hessian for all datasets. Nevertheless, the solver error is still significantly lower than other
decomposition terms.

Furthermore, we investigated how the test loss difference on randomly selected test examples
approximated by influence functions correlates with the actual value computed using cold-start
retraining, warm-start retraining, and the PBRF. Table 6 shows the correlations with influence
approximations using the GNH approximation. While influence estimates do not accurately predict
the effect of retraining the model, they closely align the values obtained by the PBRF. Moreover,
we conducted the same experiment with influence approximations without the GNH approximation
(using the Hessian matrix) and show the results in Table 7. Similar to the previous results, the test loss

22

Model Dataset Warm-Start Proximity Non-Convergence Linearization Solver

LR Cancer 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Diabetes 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

MLP

Concrete 0.079 ± 0.008 0.002 ± 0.000 0.082 ± 0.001 0.000 ± 0.000 0.001 ± 0.002
Energy 0.016 ± 0.001 0.001 ± 0.000 0.016 ± 0.001 0.000 ± 0.000 0.000 ± 0.000
MNIST 0.208 ± 0.732 0.006 ± 0.024 0.211 ± 0.745 0.000 ± 0.000 0.001 ± 0.004
FashionMNIST 2.968 ± 0.545 0.385 ± 0.028 0.408 ± 0.033 0.000 ± 0.001 0.007 ± 0.010

Autoencoder MNIST 20.743 ± 0.522 14.330 ± 0.184 11.409 ± 0.430 0.000 ± 0.000 0.307 ± 0.088

LeNet

MNIST

7.434 ± 1.068 5.393 ± 0.547 3.748 ± 0.324 0.000 ± 0.001 0.001 ± 0.001
AlexNet 13.403 ± 1.289 0.001 ± 0.000 0.118 ± 0.000 0.000 ± 0.000 0.013 ± 0.002
VGG13 7.389 ± 0.744 4.872 ± 1.052 8.601 ± 0.478 0.000 ± 0.000 0.001 ± 0.001
ResNet-20 4.433 ± 0.059 4.061 ± 0.157 4.940 ± 0.155 0.001 ± 0.000 0.002 ± 0.001

LeNet

CIFAR10

10.668 ± 0.162 6.520 ± 0.442 5.032 ± 0.799 0.001 ± 0.000 0.000 ± 0.000
AlexNet 7.530 ± 0.233 5.956 ± 0.102 2.864 ± 0.367 0.000 ± 0.000 0.000 ± 0.000
VGG13 8.410 ± 1.926 6.279 ± 0.708 6.031 ± 0.660 0.000 ± 0.000 0.073 ± 0.161
ResNet-20 5.827 ± 0.152 4.435 ± 0.669 3.280 ± 0.429 0.000 ± 0.000 0.003 ± 0.001

Transformer PTB 57.926 ± 5.055 30.756 ± 0.673 61.675 ± 1.042 5.002 ± 1.556 3.316 ± 2.630

Table 5: Decomposition of the discrepancy between influence functions and LOO retraining into (1) warm-start
gap, (2) proximal gap, (3) non-convergence gap, (4) linearization error, and (5) solver error for each model
and dataset. The size of each component is measured by the L2 distance between the networks’ outputs on the
training dataset.

Dataset Cold-Start Warm-Start PBRF

P S P S P S

Concrete -0.11 0.12 0.09 0.11 0.93 0.94
Energy 0.03 0.04 0.09 0.13 0.97 0.91
MNIST -0.10 0.01 0.22 0.35 0.98 0.91

FashionMNIST 0.16 0.00 0.06 0.07 0.90 0.92

Table 6: Comparison of test loss differences computed by influence function (with the Gauss-Newton Hessian
approximation), cold-start retraining, warm-start retraining, and PBRF. We show Pearson (P) and Spearman
rank-order (S) correlation when compared to influence estimates.

differences predicted by influence functions align with the value obtained by the PBRF while failing
to capture the effect of retraining the model for both regression and classification datasets. Hence, in
both settings, the PBRF better captures the behavior of influence functions than LOO retraining.

D.2 Two-Stage LOO Retraining: An Alternative Method for PBRF computation

As discussed in Section 4.3, when the network has not fully converged, the LOO retraining simply
reflects the effect of training the network for a longer period of time, which does not correctly reflect
the effect of removing a data point from the training set (a question that influence functions aim to
answer). This difference yields the discrepancy between LOO retraining and influence estimates.
We further introduced the PBRF objective which penalizes the LOO retraining with both function-
and weight-space discrepancy terms and showed that the PBRF better reflects the question influence
functions try to answer.

Here, we discuss an alternative method to capture the behaviour of influence functions by performing
two separate LOO retrainings, one with the full dataset and the other one with the removed data
point. The first LOO retraining reflects the effect of training longer with the full dataset and the
second LOO retraining reflects the effect of training longer with a removed data point. The difference
between LOO retrainings in parameter space can approximate the effect of removing a data point by
neglecting the effect of longer training. Such difference can be added to the current parameters θs.
This two-stage LOO retraining method can be interpreted as removing O(1) terms when the network
has not fully converged.

We repeat the experiment from Appendix D.1 with the proposed two-stage LOO retraining. The
results are shown in Table 8. While the two-stage LOO retraining shows a worse correlation with

23

Dataset Cold-Start Warm-Start PBRF

P S P S P S

Concrete -0.14 0.32 0.24 0.37 0.85 0.71
Energy -0.01 -0.24 0.44 0.57 0.95 0.83
MNIST -0.16 -0.12 0.21 -0.14 0.98 0.81

FashionMNIST -0.19 0.01 0.05 0.24 0.91 0.88

Table 7: Comparison of test loss differences computed by influence function (without the Gauss-Newton
Hessian approximation), cold-start retraining, warm-start retraining, and PBRF. We show Pearson (P) and
Spearman rank-order (S) correlation when compared to influence estimates.

Dataset Two-Stage LOO Warm-Start PBRF

P S P S P S

Concrete 0.52 0.61 0.24 0.37 0.85 0.71
Energy 0.92 0.75 0.44 0.57 0.95 0.83
MNIST 0.73 0.53 0.21 -0.14 0.98 0.81

FashionMNIST 0.69 0.52 0.05 0.24 0.91 0.88

Table 8: Comparison of test loss differences computed by influence function, warm-start retraining, PBRF, and
two-stage LOO retraining on MNIST dataset. We show Pearson (P) and Spearman rank-order (S) correlation
when compared to influence estimates.

influence estimates compared to the PBRF objective, it has a significantly higher correlation with
influence estimates compared to the warm-start retraining. Although the two-stage LOO retraining
requires retraining the network twice, it can be seen as a better reflection to what influence functions
compute in neural networks.

D.3 Mislabelled Examples Detection

0.1 0.2 0.3 0.4 0.5
Fraction of train data checked

0.2

0.4

0.6

0.8

F
ra

ct
io

n
of

fli
ps

fix
ed

Random

Influence

PBRF

Figure 6: Effectiveness of PBRF and influence functions on fixing mislabeled training examples on corrupted
MNIST dataset. We examine the fraction of the training data to fix the mislabelling while prioritizing the data
examples with higher influential scores produced by PBRF and influence functions. The PBRF and influence
functions help detect mislabelled examples.

While the PBRF may not necessarily align with LOO retraining because of warm-start, proximity,
and non-convergence gaps, the motivating use cases for influence functions typically do not rely on
exact LOO retraining. Hence, the PBRF can be used instead of LOO retraining for many tasks, such
as identifying influential or mislabelled examples. We conducted an additional experiment to verify
that the PBRF (and influence function) is still helpful in detecting mislabelled training data points.

We used 10% of the MNIST dataset and randomly corrupted 10% of the training examples by
assigning random labels. Then, we simulated the scenario where we manually inspect a fraction of
training examples, correcting them if they were mislabelled. We trained 2-hidden layer MLP with
1024 hidden units using SGD with a batch size of 128. We used the damping term of λ = 0.001 for

24

PBRF and influence functions. For each PBRF and influence estimation, we measured the influence
of removing a single training training example on the total training loss (self-influence scores [Koh
and Liang, 2017, Khanna et al., 2019]) to identify the top influential training examples.

We prioritized inspecting training examples that obtained high scores generated by the PBRF and
influence functions. The results are summarized in Figure 6. Using the self-influence score generated
by the PBRF, it is possible to detect over 80% of the mislabelled training examples by only examining
20% of training examples. Similarly, as influence functions closely align with the PBRF, influence
functions can provide an efficient tool to help fix mislabelled training examples. Both PBRF and
influence functions outperform the baseline of randomly selecting a subset of training examples to
inspect if there are any mislabelled training examples.

E Influence Misalignment Decomposition Table

In Table 5, we present the numerical results shown in Figure 4.

G Efficient iHVP Computation

One of the major challenges in applying influence functions to neural networks (Eqn. 4) is that
they involve the computation of an inverse-Hessian vector product (iHVP). However, for large
networks, computing iHVPs exactly via storing and inverting the Hessian is intractable. To circumvent
this, Koh and Liang [2017] consider alternative methods for approximating iHVPs, namely, the method
of conjugate gradients (CG) [Martens et al., 2010] and the Linear time Stochastic Second-Order
Algorithm (LiSSA) [Agarwal et al., 2016].

Conjugate Gradient. Given a positive-definite damped Hessian ∇2
θJ (θs) + λI (where θs are the

potentially-suboptimal parameters at which the Hessian is taken and λ > 0 is a damping factor)
and vector v ∈ Rd, CG arrives at the iHVP by solving an equivalent convex quadratic optimization
problem:

(∇2
θJ (θs) + λI)−1v = argmin

t∈Rd

1

2
t⊤(∇2

θJ (θs) + λI)t− v⊤t. (47)

The CG algorithm starts with an initial guess v0 ∈ Rd and iteratively updates it, with the bottleneck at
each step being an O(Nd) Hessian-vector product. Although an exact solution is only guaranteed
after d CG iterations, in practice, Koh and Liang [2017] use truncated CG with fewer iterations and
achieve a sufficiently close approximation.

LiSSA. The LiSSA algorithm approximates the iHVP using a truncated Neumann series. Given a
positive-definite damped Hessian ∇2

θJ (θs) + λI and vector v ∈ Rd, we have:

(∇2
θJ (θs) + λI)−1v ≈ σ−1

T∑
t=1

((1− σ−1λ)I− σ−1∇2
θJ (θs))tv, (48)

which becomes exact as the recursion depth T approaches ∞. Here, σ > 0 is a scaling hyperparameter
that is chosen sufficiently large to ensure convergence of the series. Eqn. 48 can be recursively
computed over T iterations, with each step requiring an O(Nd) Hessian-vector product. In practice,
the computation is further optimized by estimating ∇2

θJ (θs) using a randomly-sampled batch
B ⊆ Dtrain of size |B| ≪ N , so that the Hessian-vector product is reduced to O(d) cost. Then, to
accommodate for the added stochasticity, the iHVP is estimated by averaging Eqn. 48 over R trial
repeats. Hence, the LiSSA algorithm estimates:

(∇2
θJ (θs) + λI)−1v ≈ 1

R

R∑
r=1

(
σ−1

T∑
t=1

((1− σ−1λ)I− σ−1∇2
θJ (r,t)(θs))tv

)
, (49)

where J (r,t)(θs) is the average loss over the (r, t)-th sampled batch of data.

The stest trick. Finally, we note that another simple trick can be made when using influence functions
to predict the change in test loss at a particular test point (Eqn. 20). It is often the case that we wish to
compute the influence scores for the pairwise interactions of the entire training dataset on the loss at

25

a comparatively smaller number Ntest ≪ N of test points. Since the Hessian is symmetric, the order
of multiplication in the second term of Eqn. 20 can be permuted as follows:

1

N
v⊤

test

[
(∇2

θJ (θs) + λI)−1v
]
=

1

N
v⊤ [(∇2

θJ (θs) + λI)−1vtest
]
, (50)

where v = ∇θL(f(θs,x), t) and vtest = ∇θL(f(θs,xtest), ttest). This means that we can precom-
pute stest = (∇2

θJ (θs) + λI)−1vtest over all Ntest test points of interest, and then cheaply compute
influence scores over all N training points by simply taking dot products of the form v⊤stest. We
refer readers to Koh and Liang [2017] for details.

26

	Introduction
	Related Work
	Background
	Downweighting a Training Example
	Influence Function Estimation in Neural Networks

	Understanding the Discrepancy between Influence Function and LOO Retraining in Neural Networks
	Warm-Start Gap: Non-Strongly Convex Training Objective
	Proximity Gap: Addition of Damping Term in iHVP
	Non-Convergence Gap: Influence Estimation on Non-Converged Parameters
	Linearization Error: A First-order Taylor Approximation of the Response Function
	Solver Error: A Crude Approximation of iHVP

	PBRF: The Question Influence Functions are Really Answering
	Experiments
	Influence Misalignment Decomposition
	Factors in Influence Misalignment

	Conclusion
	Table of Notation
	Derivations
	Influence Function Derivation
	Proximal Response Function Derivation
	Proximal Bregman Response Function Derivation
	Linearized Proximal Bregman Response Function Derivation

	Experimental Details
	Computing Environment
	Experiment Set-up
	Influence Misalignment Decomposition
	Factors in Influence Misalignment

	Additional Results
	Influence Functions without the Gauss-Newton Hessian Approximation
	Two-Stage LOO Retraining: An Alternative Method for PBRF computation
	Mislabelled Examples Detection

	Influence Misalignment Decomposition Table
	Efficient iHVP Computation

