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1 Linear-quadratic regulator (LQR)

The optimal control problem is to determine an output feedback law that minimizes the expected
value of a cost criterion. If the cost J is quadratic, the optimal output feedback is a linear control law
known as linear-quadratic regulator (LQR).

J = x>TQxT +

T−1∑
t=0

(
x>t Qxt + u>t Rut

)
(S1)

ut = −Ktxt with control gain Kt = (B>Pt+1B +R)−1B>Pt+1A (S2)

where Pt is determined by the dynamic Riccati equation that runs backwards in time

Pt−1 = A>PtA− (A>PtB)
(
R+B>PtB

)−1
(B>PtA) +Q (S3)

from terminal condition PT = Q. Linear-quadratic-Gaussian (LQG) control uses the Kalman
estimate x̂ in the controller, ut = −Ktx̂t.

2 Experimental details

The experiments to produce the figures of the paper were performed on a Linux-based (CentOS)
desktop with Intel Xeon CPU E5-2643 v4 @ 3.40GHz (6 cores) and 128 GB of RAM. No usage
of a GPU was made. We used SciPy’s [1] minimize function (with the default BFGS algorithm) to
optimize the learning rate for Fig. 2 (which took 98 s) and the optimal gains K and L for Fig. 3
(which, dependent on the delay, took from few seconds up to 2 minutes).

To produce Figs. 4 and 5 (also supporting Figs. S6-S9), 20 parallel runs with different random
seeds for 10000+1000 episodes took 9.3 s for open loop and 14.0 s for closed loop control, largely
irrespective of the considered LDS and delay. The learning rates used in those experiments were
obtained earlier with Optuna [2]. This hyperparameter optimization was performed on a linux-based
(CentOS) cluster with Intel Xeon CPU E5-2680 v4 @ 2.40GHz (14 cores) and 512 GB of RAM,
dedicating an individual node to each combinatorial choice of LDS, control setting (open/closed
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Figure S1: Schematic of our proposed neural networks for OFC and alternative artificial neural
network. (A) Schematic of our proposed neural network (Bio-OFC). Nodes are annotated with the
quantity they represent in their firing rates; edges are annotated with synaptic weights. (B) Input
currents when updating et−1, ut−1 (top), and x̂t (bottom). x̂t is updated directly using the delayed
measurement yt−τ , even for delays τ > 1. (C) The alternative artificial neural network (ANN) that
updates the past estimate x̂t+1−τ , and predicts forward in time to estimate x̃t+2−τ , ..., x̃t, would
require biologically implausible weight copies of A and B, as well as a memory of past controls
ut−τ , ...,ut−1.

loop), and delay. Using a computing budget of 1000 trials optimization took about 130 min for open
loop and 190 min for closed loop control.

Computational complexity of our algorithms are the same as that of policy gradient and Kalman
filtering. That is, our approximations and biological implementation do not change the computational
complexity of these methods.

3 Code

Code to reproduce the figures in the paper can be found in the GitHub repository https://github.
com/j-friedrich/neuralOFC.
Requirements: python, matplotlib, numpy, scipy
The hyperparameters obtained with optuna [2] are provided in the subdirectory results.
To recreate a figure run the corresponding script. Figures will be saved in the subdirectory fig.

4 Learning rules

The marginal mean-squared error decreases if the angle between the gradient gθ for parameter θ and
the update ∆θ is less than 90◦, i.e. g>θ ∆θ > 0. Thus to obtain ∆θ we can left-multiply the gradient
gθ by any real square matrix M that is positive definite, i.e. its symmetric part 1

2 (M +M>) has
positive real eigenvalues, thus that g>θ (M + M>)gθ > 0 while the anti-symmetric part always
satisfies g>θ (M −M>)gθ = 0. Replacing C> with L to obtain the learning rules, Eqs. (13-14),
corresponds to multiplication of the gradients, Eqs. (11,12), by the product of L and the Moore-
Penrose inverse of C>,M = LC>+. We therefore initialize C and L in such a way that LC>+ is
positive definite (but not necessarily symmetric).

While we can initialize this way, a further issue is whether the learning rules still minimize the
objective at the end of training upon convergence, i.e. near the optimum given by the Kalman filter.
Using Eqs. (11-14), we have g>θ ∆θ = vt−τe>t CLetv

>
t−τ , where v ∈ {x̂,u, e} for θ ∈ {A,B,L}.

Hence it suffices if either CL or LC>+ is positive definite. (If the matrices C and L are not square,
one of the products won’t have full rank, and have eigenvalues that are zero.) For the Kalman filter
holdsL = AΣC>(CΣC>+W )−1, cf. Eq. (7). It follows thatCL = CAΣC>(CΣC>+W )−1.
It is reasonable to assume this is positive semi-definite: For now assume A = I , then CAΣC>

is the covariance due to uncertainty of the state, and (CΣC> +W ) is the total covariance due to
uncertainty of the state plus observation noise. The product CL can be considered as a ratio of these
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Figure S2: Probabilistic graphical models of MDPs and POMDPs. Grey colored nodes are
observed, black and blue colored edges depend on the environment and actor, respectively. (A) MDP;
the state is observed directly and the optimal action ut depends only on the current state xt. (B)
POMDP; the state is only partially observable and the action ut depends on the history of observations
y0, ..., yt. (C) POMDP with delayed observations (here τ = 1); the action ut depends on the limited
history of available observations y0, ..., yt−τ . (D) Model-based controller that produces action ut
based on the current state x̂t of the internal model that effectively summarizes past observations. Our
Bio-OFC is an instance of such a controller. (E) Model-free memory-less controller that produces
action ut based on the currently available delayed observation yt−τ .

0 1000 2000 3000 4000 5000
Episodes

0.0

0.5

1.0

1.5

2.0

2.5

T t
e t

CL
e t

0 1000 2000 3000 4000 5000
Episodes

0.0

0.5

1.0

1.5

2.0

2.5

T t
e t

CL
e t

0 1000 2000 3000 4000 5000
Episodes

0.0

0.5

1.0

1.5

2.0

2.5
T t

e t
CL

e t
A B C

Figure S3: Alignment of weight update ∆θ and gradient gθ. Average
∑T
t e
>
t CLet over one

episode during system identification as function of episodes for (A) 2-d observations (LDS1), (B)
3-d observations (LDS2) and (C) 3-d observations (LDS2) with an over-representing Bio-OFC that
assumes 3 instead of the actual 2 latent dimensions. All 20 runs are shown using different colors.

covariances, which is close to I for small observation noise. Our learning rules scale the gradients by
these covariances. Because A = I +O(∆t) the product CL remains positive definite, as long as
the time discretization is not too coarse. Indeed, in the continuous limit of the Kalman-Bucy filter the
Kalman gain is simply L = ΣC>W−1.

g>θ ∆θ > 0 holds at the end and beginning of training, the latter due to the way we initializeC and L.
However, what happens throughout learning? When performing stochastic gradient descent only the
average update aligns with the negative gradient, whereas individual updates could even increase the
objective. Similarly g>θ ∆θ > 0 has to hold only on average. Note that g>θ ∆θ = vt−τe>t CLetv

>
t−τ ,

where v ∈ {x̂,u, e} for θ ∈ {A,B,L}. We therefore revisited the simulations of Fig. 4 for delay=1
and kept track of e>t CLet, which needs to be positive on average. While e>t CLet was negative for
7.1% of the individual updates for LDS2 (0% for LDS1), the average over one episode

∑T
t e
>
t CLet

was negative for merely 0.036% of the episodes, cf. Fig. S3, and always positive if averaged over
multiple episodes. Although we do not present a theoretical derivation to show that E[e>t CLet] > 0
the simulations show this is the case.
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Figure S4: Adaptive filtering under varying noise levels. Analogous plots to Fig. 2, but using
the non-local SGD learning rule (12) instead of Eq. (14) which replaces C> with L to render the
learning rule local.
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Figure S5: Dependence on initial alignment of C> and L. (A) Average MSE (±SEM) when the
minimal eigenvalue λ1 of LC>+ at initialization is varied while the maximal eigenvalue is constant,
λ2 = 1. Performance does not change in a statistically significant way over a wide range of initial
alignments. (B) Convergence to optimal asymptotic performance occurs if λ1 > 0 but not if λ1 ≤ 0.

5 Consequences of replacing C> with L

To obtain local learning rules, Eqs. (13-16), we replaced C> in the gradient formulas, Eqs. (11-12),
with L. Fig. S4 repeats the experiment of Fig. 2 without replacing C>. The learning rate that
minimizes the average MSE over all episodes is smaller, convergence slower, and the average MSE
even marginally larger than in Fig. 2. However, the overshooting after the covariance change at 2500
episodes (in Fig. 2A) does not occur. Thus we find that the replacement does not harm performance.

We further noted that replacing C> with L corresponds to multiplication of the gradients by LC>+,
and we therefore initialize C and L in such a way that LC>+ is positive definite, i.e. its symmetric
part has positive real eigenvalues. We investigated the dependence on initial alignment of C> and L
for the LDS1 experiment and found that the performance does not change in a statistically significant
way over a wide range of initial alignments that we considered. In more detail, we learned the Kalman

gain L for LDS1 (C = I), initializing L as
(

1− a a
a 1− a

)
, which has eigenvalues λ1 = 1− 2a

and λ2 = 1. If a = 0 then L and C> are perfectly aligned, for a = 0.5 eigenvalue λ1 of L, and thus
of the symmetric part of LC>+, becomes zero. The asymptotic performance (operationally defined
as average MSE of the last 100 episodes) for λ1 > 0.02 did not differ in a statistical significant way
(p>0.6, two sided t-test), but convergence was slower for small but positive λ1 & 0, cf. Fig. S5. Panel
B shows that for λ1 ≤ 0 performance did not converge to the optimal asymptotic value. For each
value of λ1 the learning rate was tuned to minimize the average MSE over all episodes.
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Figure S6: Open-loop training of Bio-OFC on LDS1 for different controller noise levels. Cost
as function of episodes for (A) σ = 0.05, (B) σ = 0.1, (C) σ = 0.2, and (D) σ = 0.5, cf. Fig. 5 for
details. Panel C is identical to Fig. 4D.
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Figure S7: Open-loop training of Bio-OFC on LDS1 using different momenta in the controller
update. Cost as function of episodes for (A) m = 0, (B) m = 0.9, (C) m = 0.99, and (D)
m = 0.9995, cf. Fig. 4 for details. Panel C is identical to Fig. 4D.
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Figure S8: Closed-loop training of Bio-OFC on LDS1 for different controller noise levels. Cost
as function of episodes for (A) σ = 0.05, (B) σ = 0.1, (C) σ = 0.2, and (D) σ = 0.5, cf. Fig. 5 for
details. Panel C is identical to Fig. 5A.
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Figure S9: Closed-loop training of Bio-OFC on LDS1 using different momenta in the controller
update. Cost as function of episodes for (A) m = 0, (B) m = 0.9, (C) m = 0.99, and (D)
m = 0.9995, cf. Fig. 5 for details. Panel C is identical to Fig. 5A.
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6 Learning of a sensory-motor control task

We considered the task of making reaching movements in the presence of externally imposed
forces from a mechanical environment [3]. The movements are restricted to a fixed z-plane and
the 6-dimensional state vector contains the position, velocity and acceleration in x and y direction,
x = (px, py, vx, vy, ax, ay)>. In the absence of a force field the system is described by matrices

A =


1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 , B =


0 0
0 0
0 0
0 0
1 0
0 1

 , C = I (S4)

For simplicity we follow [4] and assume that the action u is already in Cartesian coordinates as
opposed to controlling the torques applied on joints. We leave it for future work to further tighten the
connection to biological motor control. We assumed time units of 10 ms, length units of 1 cm and –
in line with experimental data [5] – a measurement delay of 50 ms. Further, the noise covariances
and reward matrices were parametrized as

V = v diag(1, 1, .1, .1, .01, .01), W = V , Q = diag(q1, q1, q2, q2, 0, 0), R = I (S5)

where the different scales in V reflect the different numerical scales of position, velocity and
acceleration. The forces were computed as a function of the velocity. Application of the force field
changesA to

A← A+ f


0 0 0 0 0 0
0 0 0 0 0 0
0 0 −10.1 −11.2 0 0
0 0 −11.2 11.1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (S6)

where the numerical values of the non-zero matrix entries were taken from [3]. We chose parameters
v, q1, q2, f that result in a qualitative match with the experimental data, see Fig. S10 (v = 10−4,
q1 = 10−5, q2 = 0.002, f = 0.002). The optimal filter gain was determined by minimizing the
mean squared prediction error over 1000 trajectories. This demonstrated that our network, that
approximates OFC, can adequately describe experimental behavior, which is mostly a testimony to
the success of OFC. It is standard in linear control theory to put the target state at the origin. This
can be achieved by using variables related to the difference between the initial state and the target
state. As a result, we can use the same estimator/controller for each reach condition and the different
reach conditions correspond to different initial states x0. The more interesting question is whether
our plasticity rules Eqs. (13-16) for the filter and Eqs. (21-23) for the controller, capture human
performance during the training period. Fig. 6 shows that this is indeed the case and after about 1000
episodes the trajectories are close to straight lines. Fig. S12 repeats this analysis but updates only the
system matricesA,B,C and Kalman gain L, while keeping the controller weightsK fixed. Even
switching off learning in the controller yields similar results, thus learning is driven primarily by
changes in the estimator. Because the force field alters the system, greater changes in the part that
performs system identification, i.e. the estimator, are somewhat to be expected.

To strengthen the connection to biological motor control we reran the reaching task using signal-
dependent motor noise in the plant [6] which increases with the magnitude of the control signal. We
scaled the amount of noise by the norm of u, i.e. we replaced the dynamics xt+1 = Axt+But+vt
with xt+1 = Axt+But+ |ut|vt. The results, shown in Figs. S13 and S14, are similar to the earlier
results obtained with additive noise (Figs. S10 and 6).
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Figure 6. Typical hand trajectories at the right workspace in a null 
force field during no-visual feedback conditions. Dots are 10 msec apart. 

centripetal forces that make up the G matrix can be derived from the 
inertia tensor; cf. Slotine and Li, 199 1, p 400). For example, the dif- 
ferential equation describing the dynamics of the arm and the controller 
for movements in the force field of Equation 1 were 

kd 4 + G(a 4) + JW B J(q) 4 = C(a 4. t). (11) 
where Cis defined in Equation 9. Values for joint stiffness and viscosity 
(K and IJ’) were chosen based on measurements of Mussa-Ivaldi et al. 
(1985) and Tsuji and Goto (1994). The desired trajectory q*(t) was 
assumed to be minimum jerk in hand-based coordinates lasting 0.65 
sec. Values used for these variables are summarized in Table 1. 

Results 
Reaching movements were made while the hand interacted with 
a mechanical environment. This environment was a program- 
mable force field implemented by a light-weight robot mani- 
pulandum whose end-effector the subject grasped while making 
reaching movements. When the manipulandum was producing 
a force field, there were forces that acted on the hand as it made 
a movement, changing the dynamics of the arm. When the 
manipulandum’s motors were turned off, we say that the hand 
was moving in a “null field.” 

Hand trajectories before adaptation 
Our first objective was to determine how an unanticipated ve- 
locity-dependent field affected the execution of reaching move- 
ments. The forces in the field (e.g., Eq. 1, as shown in Fig. 3.4) 
vanished when the hand was at rest, that is, at the beginning 
and at the end of the movement. However, as shown in Figure 
4B, a significant force was exerted midway, when the hand 
velocity was near maximum. How would this force influence 
the execution of a movement? Would subjects follow a pre- 
planned trajectory that was scarcely influenced by this pertur- 
bation or would they modify the movement and the final po- 
sition in response to the perturbing force? To answer this question, 
we compared reaching movements in the null field with those 
in a force field. Trajectories in the null field are shown in Figure 
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Figure 7. Performance during initial exposure to a force field. Shown 
are hand trajectories to targets at the right workspace while moving in 
the force field shown in Figure 3. Movements originate at the center. 
All trajectories shown are under no-visual feedback condition. Dots are 
10 msec apart. 

6. As observed in previous reports (Morasso, 1981; Flash and 
Hogan, 1985), the hand path was essentially along a straight 
line to the target. The velocity profile (see Fig. 1OA) had one 
peak, with approximately equal times spent to accelerate and 
decelerate the hand. 

Once our subjects were familiar with the task of reaching 
within the null field, we began to introduce a force field in 
random trials. Note that subjects could not anticipate the pres- 
ence of the field before the onset of the movement because the 
force field was not effective when the hand was at rest and no 
other clues were available. Furthermore, during the movement, 
the cursor indicating hand position was blanked, eliminating 
visual feedback. Figure 7 shows the hand trajectories ofa typical 
subject when the movements were executed under the influence 
of the field shown in Figure 3A (Fig. 10B shows the tangential 
velocity of hand trajectories in this field). This field was designed 
to have opposing effects along two directions. At approximately 
30” and 210” the field produced resisting forces that opposed 
movement as a viscous fluid would do. At approximately 120” 
and 300” the forces assisted the movement, thus producing a 
destabilizing effect. 

Note that the effect of the field on the hand trajectory was 
quite significant and may be divided into two parts. In the first 
part, the hand was driven off course by the field and forced 
toward the unstable direction of the field. Movements to targets 
at o”, 225”, 270”, and 3 15” are pulled toward the unstable region 
at 300”, while movements to the remaining targets are pulled 
toward the unstable region at 120”. At the end of this first part, 
the field had caused the hand to veer off the direction of the 
target and the hand decelerated and stopped before making a 
second movement to the target. The pictorial effect of these two 
parts of the hand trajectory appeared as a “hook” that was 
oriented either clockwise or counterclockwise. The orientation 

A B

C D

Figure S10: Optimal feedback control qualitatively captures hand reaching trajectories. Model
trajectories (A) in a null force field and (B) during initial exposure to a force field. Typical human
trajectories (C) in a null force field and (D) during initial exposure to a force field [3]. Copyright
©1994 Society for Neuroscience.
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Figure S11: Learning to adapt to a a force field. (A) Mean squared prediction error and (B) cost
during training. (C) Model trajectories during training. Performance plotted during the first (top left),
second (top right), third (bottom left), and final (bottom right) 250 targets. Dots show the mean and
are 10 ms apart, shaded area shows a kernel density estimate thresholded at 0.04. (D) Averages±SD
of human hand trajectories during training [3]. Copyright ©1994 Society for Neuroscience.
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Figure S12: Learning to adapt to a a force field without adaptation of controller weights. (A)
Mean squared prediction error and (B) cost during training. (C) Model trajectories during training.
Performance plotted during the first (top left), second (top right), third (bottom left), and final (bottom
right) 250 targets. Dots show the mean and are 10 ms apart, shaded area shows a kernel density
estimate thresholded at 0.04. (D) Averages±SD of human hand trajectories during training [3].
Copyright ©1994 Society for Neuroscience.
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centripetal forces that make up the G matrix can be derived from the 
inertia tensor; cf. Slotine and Li, 199 1, p 400). For example, the dif- 
ferential equation describing the dynamics of the arm and the controller 
for movements in the force field of Equation 1 were 

kd 4 + G(a 4) + JW B J(q) 4 = C(a 4. t). (11) 
where Cis defined in Equation 9. Values for joint stiffness and viscosity 
(K and IJ’) were chosen based on measurements of Mussa-Ivaldi et al. 
(1985) and Tsuji and Goto (1994). The desired trajectory q*(t) was 
assumed to be minimum jerk in hand-based coordinates lasting 0.65 
sec. Values used for these variables are summarized in Table 1. 

Results 
Reaching movements were made while the hand interacted with 
a mechanical environment. This environment was a program- 
mable force field implemented by a light-weight robot mani- 
pulandum whose end-effector the subject grasped while making 
reaching movements. When the manipulandum was producing 
a force field, there were forces that acted on the hand as it made 
a movement, changing the dynamics of the arm. When the 
manipulandum’s motors were turned off, we say that the hand 
was moving in a “null field.” 

Hand trajectories before adaptation 
Our first objective was to determine how an unanticipated ve- 
locity-dependent field affected the execution of reaching move- 
ments. The forces in the field (e.g., Eq. 1, as shown in Fig. 3.4) 
vanished when the hand was at rest, that is, at the beginning 
and at the end of the movement. However, as shown in Figure 
4B, a significant force was exerted midway, when the hand 
velocity was near maximum. How would this force influence 
the execution of a movement? Would subjects follow a pre- 
planned trajectory that was scarcely influenced by this pertur- 
bation or would they modify the movement and the final po- 
sition in response to the perturbing force? To answer this question, 
we compared reaching movements in the null field with those 
in a force field. Trajectories in the null field are shown in Figure 
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Figure 7. Performance during initial exposure to a force field. Shown 
are hand trajectories to targets at the right workspace while moving in 
the force field shown in Figure 3. Movements originate at the center. 
All trajectories shown are under no-visual feedback condition. Dots are 
10 msec apart. 

6. As observed in previous reports (Morasso, 1981; Flash and 
Hogan, 1985), the hand path was essentially along a straight 
line to the target. The velocity profile (see Fig. 1OA) had one 
peak, with approximately equal times spent to accelerate and 
decelerate the hand. 

Once our subjects were familiar with the task of reaching 
within the null field, we began to introduce a force field in 
random trials. Note that subjects could not anticipate the pres- 
ence of the field before the onset of the movement because the 
force field was not effective when the hand was at rest and no 
other clues were available. Furthermore, during the movement, 
the cursor indicating hand position was blanked, eliminating 
visual feedback. Figure 7 shows the hand trajectories ofa typical 
subject when the movements were executed under the influence 
of the field shown in Figure 3A (Fig. 10B shows the tangential 
velocity of hand trajectories in this field). This field was designed 
to have opposing effects along two directions. At approximately 
30” and 210” the field produced resisting forces that opposed 
movement as a viscous fluid would do. At approximately 120” 
and 300” the forces assisted the movement, thus producing a 
destabilizing effect. 

Note that the effect of the field on the hand trajectory was 
quite significant and may be divided into two parts. In the first 
part, the hand was driven off course by the field and forced 
toward the unstable direction of the field. Movements to targets 
at o”, 225”, 270”, and 3 15” are pulled toward the unstable region 
at 300”, while movements to the remaining targets are pulled 
toward the unstable region at 120”. At the end of this first part, 
the field had caused the hand to veer off the direction of the 
target and the hand decelerated and stopped before making a 
second movement to the target. The pictorial effect of these two 
parts of the hand trajectory appeared as a “hook” that was 
oriented either clockwise or counterclockwise. The orientation 
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Figure S13: Optimal feedback control with multiplicative signal-dependent noise qualitatively
captures hand reaching trajectories. Model trajectories (A) in a null force field and (B) during
initial exposure to a force field. Typical human trajectories (C) in a null force field and (D) during
initial exposure to a force field [3]. Copyright ©1994 Society for Neuroscience.
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Figure S14: Learning to adapt to a a force field with multiplicative signal-dependent control
noise. (A) Mean squared prediction error and (B) cost during training. (C) Model trajectories during
training. Performance plotted during the first (top left), second (top right), third (bottom left), and
final (bottom right) 250 targets. Dots show the mean and are 10 ms apart, shaded area shows a kernel
density estimate thresholded at 0.04. (D) Averages±SD of human hand trajectories during training
[3]. Copyright ©1994 Society for Neuroscience.
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Figure S15: The fly simulation environment.

7 A simplified fly simulation environment

We designed Gym-Fly, an OpenAI gym [7] environment which simulates flying in a simplified 2-d
environment (cf. Fig. S15). We implemented the physical simulations using the Box2D, a 2-d physics
engine often used for games [8]. In this environment, the agent controls the flapping frequency of
each wing individually. Each wing flap results in an impulse that is up and away from the wing (i.e.
direction up and left when flapping the right wing) and for simplicity, we assume that the flapping
frequency translates linearly to the magnitude of the impulse imparted at each time-step. Furthermore,
we assume that negative flapping frequency results in an impulse in the opposite direction. While
this is not realistic in many physical situations, it is necessary for a linear environment which can be
described by Eq. (1). The environment has gravity, and wind that randomly increases or decreases
at each time-step, up to a maximum value. Furthermore, the system suffers from stochastic noise
in that the result of the agent’s actions are corrupted before being implemented by the engine. The
agent receives sensory stimuli that are composed of its 2-d location and 2-d velocity, as well as the
measurement of the wind in the environment. However, these observations are delayed by 100 ms,
equivalent to τ = 5 time-steps of the simulation.

The goal of the agent is to fly to a fixed target and stabilize itself against gravity, the environment
wind, and stochastic noise in the system. The agent suffers a cost that is proportional to the distance
to the target, and the magnitude of the control variables. To verify the flexibility of the Bio-OFC
algorithm, we implemented the Gym-Fly environment to deviate from the assumptions used for
deriving Bio-OFC in a number of ways. First, the cost suffered by the agent is not quadratic as
required by LQR (cf. Eq. (S1)) but is an L1 distance. Second, the system noise that corrupts the
control parameters was chosen to be uniform and not Gaussian.

Because of gravity, the description and control of the system with Eqs. (1) and (4), require a bias term.
This is because the agent will fall if it stops flapping its wings, that is the point x = 0 and u = 0
is not a fixed point. Bio-OFC can be easily modified to allow for a bias term. The simplest way
to derive the algorithm with a bias is to allow for a component of x̂ to be fixed at a constant value,
i.e. by replacing x̂→ (x̂, 1). In a biological setting this bias can be implemented as a thresholding
mechanism in the post-synaptic neuron and does not violate the locality and biological plausibility of
the learning rules.

We trained Bio-OFC in this environment in a closed-loop setting for a total of 30,000 episodes.
The length of the episodes start at 150 time-steps and was linearly increased to 1000 time-steps at
episode 500 after which they no longer increase. A video demonstration of how Bio-OFC learns
to control this environment is given in code-gym/gym-fly-demo.mp4. However, the learning of
the bias term, which controls the locations that the agent is stabilized, takes longer to be learned.
This is understandable since deviations in the bias term lead to a constant cost at each time-step.
However, failure to stabilize the agent against wind or gravity leads to a cost that will diverge in
time. We also compared the performance of Bio-OFC to policy gradient. We find that, because
of the delay, the agent trained with policy gradient overshoots the target and needs to backtrack,
cf. Fig. S16a. However, the agent trained with Bio-OFC flies directly towards the target with no
significant overshoot, cf. Fig. S16b.
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The code for the Gym-Fly environment (gym-fly/gym_fly/envs/fly_env.py) as well as the
detailed parameters of the training are provided in the accompanying code (Bio-OFC gym-fly
demo.ipynb) in the GitHub repository https://github.com/golkar/bio-ofc-gym. Installa-
tion directions are given in installation.txt.
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(a) Policy gradient
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Figure S16: Flight trajectory of agents trained with policy gradient (left) and Bio-OFC (right) under
the same initial conditions. The agent trained with policy gradient overshoots the target, whereas the
agent trained with Bio-OFC has no significant overshoot.
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