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Abstract

The momentum acceleration technique is widely adopted in many optimization
algorithms. However, there is no theoretical answer on how the momentum affects
the generalization performance of the optimization algorithms. This paper studies
this problem by analyzing the implicit regularization of momentum-based optimiza-
tion. We prove that on the linear classification problem with separable data and
exponential-tailed loss, gradient descent with momentum (GDM) converges to the
L? max-margin solution, which is the same as vanilla gradient descent. That means
gradient descent with momentum acceleration still converges to a low-complexity
model, which guarantees their generalization. We then analyze the stochastic and
adaptive variants of GDM (i.e., SGDM and deterministic Adam) and show they
also converge to the L? max-margin solution. Technically, the implicit regular-
ization of SGDM is established based on a novel convergence analysis of SGDM
under a general noise condition called affine noise variance condition. To the
best of our knowledge, we are the first to derive SGDM’s convergence under such
an assumption. Numerical experiments are conducted to support our theoretical
results.

1 Introduction

It is widely believed that the optimizers have the implicit regularization in terms of selecting output
parameters among all the minima on the landscape [26, 17, 45]. Parallel to the analysis of coordinate
descent ([31, 40]), [34] shows that gradient descent would converge to the L2 max-margin solution
for the linear classification task with exponential-tailed loss, which mirrors its good generalization
property in practice. Since then, many efforts have been taken on analyzing the implicit regularization
of various local-search optimizers, including stochastic gradient descent [24], steepest descent [8],
AdaGrad [29] and optimizers for homogeneous neural networks [21, 14, 43].

However, though the momentum acceleration technique is widely adopted in the optimization
algorithms in both convex and non-convex learning tasks [37, 41, 38], the understanding of how
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Table 1: The algorithms investigated in this paper (GDM and Adam) along with algorithms (GD)
already investigated in the existing literature. We also compare the learning rates required to obtain
the characterization of implicit regularization. As for stochastic Adam with 51 # 0, we leave its
implicit regularization as future work.

Method With Random Sampling  Learning Rate ~ Corresponding Literature

GD X Constant [34]
v Constant [24]
GDM X Constant This Work
v Constant This Work
Adam X Constant This Work

\

Decaying (%) B = 0 in this Work

the momentum would affect the generalization performance of the optimization algorithms is still
unclear, as the historical gradients in the momentum may significantly change the searching direction
of the optimization dynamics. A natural question is:

Can we theoretically analyze the implicit regularization of momentum-based optimizers?

In this paper, we take the first step to analyze the convergence of momentum-based optimizers
and unveil their implicit regularization. Our study starts from the classification problem with the
linear model and exponential-tailed loss using Gradient Descent with Momentum (GDM) optimizer.
Then the variants of GDM such as Stochastic Gradient Descent with Momentum (SGDM) and
deterministic Adam are also analyzed. We consider the optimizers with constant learning rate
and constant momentum hyper-parameters, which are widely adopted in practice, e.g., the default
setting in popular machine learning frameworks [27] and in experiments [46]. Our main results are
summarized in Theorem 1.

Theorem 1 (informal). With linearly separable dataset S, linear model and exponential-tailed loss:

e For GDM with a constant learning rate, the parameter norm diverges to infinity, with its
direction converging to the L? max-margin solution. The same conclusion holds for SGDM
with a constant learning rate.

* For deterministic Adam with a constant learning rate and stochastic RMSProp (i.e., Adam
without momentum) with a decaying learning rate, the same conclusion holds.

Theorem 1 states that GDM and its variants converge to the L? max-margin solution, which is the
same as their without-momentum versions, indicating that momentum does not affect the convergent
direction. Therefore, the good generalization behavior of the output parameters of these optimizers is
well validated as the margin of a classifier is positively correlated with its generalization error [16]
and is supported by existing experimental observations (e.g., [34, 23, 43]).

Our contributions are significant in terms of the following aspects:

* We establish the implicit regularization of the momentum-based optimizers, an open problem
since the initial work [34]. The momentum-based optimizers are widely used in practice, and
our theoretical characterization deepens the understanding of their generalization property,
which is important on its own.

 Technically, we design a two-stage framework to analyze the momentum-based optimiz-
ers, which generalizes the proof techniques in [34] and [24]. The first stage shows the
convergence of the loss. Specifically, we derive the first convergence analysis of SGDM
under affine noise variance condition [2], generalizing the results under bounded noise
variance condition in literature [47, 20]. The second stage shows the convergence of the
parameters. We propose an easy-to-check condition of whether the difference between
learned parameters and the scaled max-margin solution is bounded. This condition can be
generalized to implicit regularization analyses of other momentum-based optimizers.



* We further verify our theory through numerical experiments.

The technical difficulty to analyzing the implicit regularization of the momentum-based optimizers
mainly come from the historical information of training trajectory contained by the momentum
term. Specifically, the foundation of the analysis is to derive the convergence of the loss. It is not
trivial because, for momentum-based optimizers, the loss may not monotonously decrease due to the
mismatch between the direction of the gradient and the momentum. Furthermore, even if the loss
is proved to converge, the converging direction of the parameters is still hard to characterize as it’s
difficult to track the training trajectory due to the momentum term.

Organization of This Paper. Section 2 collects further related works on the implicit regularization
of the first-order optimizers and the convergence of momentum-based optimizers. Section 3 shows
basic settings and assumptions which will be used throughout this paper. Section 4 studies the
implicit regularization of GDM, while Section 5 and Section 6 explore respectively the implicit
regularization of SGDM and Adam. Discussions of these results are put in Section 7. Detailed proofs
and experiments can be found in the appendix.

2 Further related works

Implicit Regularization of First-order Optimization Methods. [34] prove that gradient descent on
linear classification problem with exponential-tailed loss converges to the direction of the max L?
margin solution of the corresponding hard-margin Support Vector Machine. [24] extend the results in
[34] to the stochastic case, proving that the convergent direction of SGD is the same as GD almost
surely. [29] go beyond the vanilla gradient descent methods and consider the AdaGrad optimizer
instead. They prove that the convergent direction of AdaGrad has a dependency on the optimizing
trajectory, which varies according to the initialization. [15] propose a primal-dual analysis framework
for the linear classification models and prove a faster convergent rate of the margin by increasing
the learning rate according to the loss. Based on [15], [12] design another algorithm with an even
faster convergent rate of margin by applying the Nesterov’s Acceleration Method on the dual space.
However, the corresponding form of the algorithm on the primal space is no longer a Nesterov’s
Acceleration Method nor GDM, which is significantly different from our settings.

On the other hand, another line of work is trying to extend the linear case result to deep neural
networks. [13, 9] study the deep linear network and [34] study the two-layer neural network
with ReLU activation. [21] propose a framework to analyze the asymptotic direction of GD on
homogeneous neural networks, proving that given there exists a time the network achieves 100%
training accuracy, GD will converge to some KKT point of the L? max-margin problem. [43] extend
the framework of [21] to adaptive optimizers and prove RMSProp and Adam without momentum
have the same convergent direction as GD, while AdaGrad does not. The results [21, 43] indicate
that results in the linear model can be extended to deep homogeneous neural networks and suggest
that the linear model is an appropriate starting point to study the implicit bias.

Except for the exponential-tailed loss, there are also works on the implicit bias with squared loss.
Interested readers can refer to [30, 19, 1] etc. for details.

Convergence of Momentum-Based Optimization Methods. For convex optimization problems,
the convergence rate of Nesterov’s Acceleration Method [25] has been proved in various approaches
(e.g., [25, 35, 44]). In contrast, although GDM (Polyak’s Heavy-Ball Method) was proposed in [28]
before the Nesterov’s Acceleration Method, the convergence of GDM on convex loss with Lipschitz
gradient was not solved until [7] provides an ergodic convergent result for GDM, i.e., the convergent
result for the running average of the iterates. [36] provide a non-ergodic analysis when the training
loss is coercive (the training loss goes to infinity whenever parameter norm goes to infinity), convex,
and globally smooth. However, all existing results cannot be directly applied to exponential-tailed
loss, which is non-coercive.

There are also works on the convergence of SGDM under various settings. [47] prove SGDM
converges to a bounded region assuming both bounded gradient norm and bounded gradient variance.
The bounded gradient norm assumption is further removed by [48, 20]. Nevertheless, a converging-
to-stationary-point analysis is required in the implicit regularization analysis. Thus their results can
not be directly applied. [39] analyze a particular case when the momentum parameter increases over
iterations, which, however, does not agree with the practice where the momentum parameter is fixed.



As for (stochastic) Adam, its convergence analysis is still an open problem, and the current analyses
are restricted to specific settings (e.g., bounded gradient, dynamical momentum hyperparameters).
We recommend interested readers to refer to [5, 4, 33, 10] for details.

3 Preliminaries

This paper focuses on the linear model with the exponential-tailed loss. We mainly investigate binary
classification. However, the methodology can be easily extended to the multi-class classification
problem (please refer to Appendix F.3 for details).

Problem setting. The dataset used for training is denoted as S = (z;, ;)Y ,, where =; € R? is the
i-th input feature, and y; € R is the ¢-th label (z = 1,2,--- ; N). We will use the linear model to fit
the label: for any feature € R? and parameter w € RY, the prediction is given by (w), x).

For binary classification, given any data z; = (x;,y;) € S, the individual loss for parameter w
is given as {(y;(w, x;)). As only y;x; is used in the loss, we then ensemble the feature and label
together and assume y; = 1 (Vi € {1,---, N}) without the loss of generality. We then drop y; for
brevity and redefine S = (x;)}Y . The spectral norm of the data matrix (x1,--- , zx) is defined as

Omaz- We use /(w, ) 2 (((w, z)) for brevity.

N .
The optimization target is defined as the averaged loss: L(w) = W

Optimizer. Here we will introduce the update rules of GDM, SGDM and deterministic Adam.
GDM’s update rule is

m(0) =0,m(t) = Bm(t—1)+ (1 — B)VL(w(t)),w(t + 1) = w(t) — nm(t). ¢))

SGDM can be viewed as a stochastic version of GDM by randomly choosing a subset of the dataset
to update. Specifically, SGDM changes the update of m(t) into

m(t) = fm(t — 1) + (1 — B)VLew (w(t)), )
where &(t) is the gradient noise of the ¢-th step, independent of the randomness of the previous
steps and satisfying E¢ ;) VL) (w) = VL(w), Yw. In this paper, {(f) comes from the random
sampling of a subset B(t) of S with size b (either with replacement (abbreviated as ""w/. r'") or
without replacement (i.e., with random shuffling, abbreviated as "'w/o. r'")), and L ;) is defined

as Leyy(w) = L (w) = M. We also define F; as the sub-sigma algebra over the

gradient noise collecting randomness before the ¢-th step. Therefore, w(t) is adapted with respect to
the sigma algebra flow F;.

The Adam optimizer can be viewed as a variant of SGDM in which the preconditioner is adopted,
whose form is characterized as follows:

m(0) = 0,m(t) = pim(t — 1) + (1 = B1) VLB (w(t)),
v(0) =0,v(t) =Bw(t—1)+ (1 — B2)VL(w(t) ® VL(w(t))

N 1 N 1
m(t) = mm(t),u(t) = 1_7551’('5)7
(Update Rule) : w(t) = w(t—1) — nm om(t—1), 3)
- d

where 1 is called the preconditioner.

A/ ﬁ(t*l)ﬁ*ﬁﬂd
Assumptions: The analysis of this paper are based on three common assumptions in existing

literature (first proposed by [34]). They are respectively on the separability of the dataset, the
individual loss behavior at the tail, and the smoothness of the individual loss. We list them as follows:

Assumption 1 (Linearly Separable Dataset). There exists one parameter w € RY, such that
(w,x;) >0, Vi € [N].
Assumption 2 (Exponential-tailed Loss). The individual loss { is exponential-tailed, i.e.,
* Differentiable and monotonically decreasing to zero, with its derivative converging to zero at

positive infinity and to non-zero at negative infinity, i.e., lim;_, o 0(x) =limg 00 ¢'(z) =0,
limg oo ¢/ () <0, and ¢'(x)<0, Yz € R;



* Close to exponential loss when x is large enough, i.e., there exist positive constants
C,a, by, i—, Ty, and x_, such that,

Vo >xp: —(x) <c(l+e Ht%)e 7, 4)
Vo >z —(z) > c(l —e * ") . 5)
Assumption 3 (Smooth Loss). Either of the following assumptions holds regarding the case:

(D): (Without Stochasticity) The individual loss ¢ is locally smooth, i.e., for any sy € R, there exists a
positive real Hy,, such thatVzx,y > so, |0/ (x) — € (y)| < Hg, |z — yl.

(S): (With Stochasticity) The individual loss { is globally smooth, i.e., there exists a positive real H,
() = '(y)| < Hlz —yl.

We provide explanations of these three assumptions, respectively. Based on Assumption 1, we can
formally define the margin and the maximum margin solution of an optimization problem:

Definition 1. Let the margin 7(w) of parameter w defined as the lowest score of the predlctlon of w
over the dataset S, i.e., ¥y(w) = mingeg{w, x). We then define the maximum margin solution w

and the L? max margin +y of the dataset S as follows:

1
w||

w2 arg min |w|? 72
A(w)>1 ST

Since || - ||? is strongly convex and set {w : §(w) > 1} is convex, w is uniquely defined.

Assumption 2 constraints the loss to be exponential-tailed, which is satisfied by many popular choices
of ¢, including the exponential loss (¢, () = e~ ") and the logistic loss ({j04(x) = log(1 + e~7)).
Also, as c and a can be respectively absorbed by resetting the learning rate and data as n = ¢n and
x; = ax;, without loss of generality, in this paper we only analyze the case that c = a = 1.

The globally smooth assumption (Assumption 3. (S)) is strictly stronger than the locally smooth
assumption (Assumption 3. (D)). One can easily verify that both the exponential loss and the logistic
loss meet Assumption 3. (D), and the logistic loss also meets Assumption 3. (S).

4 The implicit regularization of GDM

In this section, we analyze the implicit regularization of GDM with a two-stage framework 3. Later,
we will use this framework to investigate SGDM further and deterministic Adam. The formal
theorem of the implicit regularization of GDM is as follows:

Theorem 2. Let Assumptions 1, 2, and 3. (D) hold. Let 3 € [0,1) and n < 2

mazHI{

N
—1 (N[,('w1 ))
(0= is the inverse function of £). Then, for almost every data set S, with arbitrary initialization point
w(1), GDM (Eq. equation 1) satisfies that ||% - quu—HH = O(1/log(t)) and L(w(t)) = O(3).

Theorem 2 shows that the implicit regularization of GDM agrees with GD in linear classification with
exponential-tailed loss (c.f. [34] for results on GD). This consistency can be verified by existing and
our experiments (c.f. Section 7 for detailed discussions).

Remark 1 (On the hyperparameter setting). Firstly, the learning rate upper bound
]1v(N£(w1)) agrees with that of GD exactly [34], indicating our analysis is tight. Sec-

J%LarHZ_
ondly, Theorem 2 adopts a constant momentum hyper-parameter, which agrees with the practical use
(e.g., B is fixed to be 0.9 [46]). Also, Theorem 2 puts no restriction on the range of B, which allows

wider choices of hyper-parameter tuning.

We then present a proof sketch of Theorem 2, which is divided into two parts: we first prove that the
sum of squared gradients is bounded, which indicates both the loss and the norm of gradient converge
to 0 and the parameter diverges to infinity; these properties will then be applied to show the difference
between w(t) and In(¢)w is bounded, and therefore, the direction of w dominates as ¢ — co.

31t should be noticed that the proof sketches in Sections 4, 5, and 6 only hold for almost every dataset (means
except a zero-measure set in R**™), as we want the presentation more simple and straightforward. However,
the proof can be extended to every dataset with a more careful analysis (please refer to Appendix F.1 for details).



Stage I: Loss Dynamics. The goal of this stage is to characterize the dynamics of the loss and prove
the convergence of GDM. The core of this stage is to select a proper potential function £(t), which is
required to correlate with the training loss £ and be non-increasing along the optimization trajectory.
For GD, since L is non-increasing with a properly chosen learning rate, we can pick £(t) = L(¢).
However, as the update of GDM does not align with the direction of the negative gradient, training
loss £(t) in GDM is no longer monotonously decreasing, and the potential function requires special
construction. Inspired by [36], we choose the following £(¢):

Lemma 1. Let all conditions in Theorem 2 hold. Define &(t) 2 L(w(t))+ 26ﬁ lw(t)—w(t—1)|%4

.. . 2 aaH,—1(NL
Define C1 as a positive real with Cy & Tmaz"t 21]\(, (w1)) 7. We then have

1-C
E() 2 £t +1) + —[lw(t + 1) —w(®)]*. ©)
Remark 2. Although this potential function is obtained by [36] by directly examining Taylor’s
expansion at w(t), the proof here is non-trivial as we only require the loss to be locally smooth
instead of globally smooth in [36]. We need to prove that the smoothness parameter along the
trajectory is upper bounded. We defer the detailed proof to Appendix C.1.1.

By Lemma 1, we have that £(¢) is monotonously decreasing by gap 1—n01 lw(t + 1) — w(t)]?.
As £(1) = L(w(1)) is a finite number, we have > .~ [[w(t + 1) — w(¢)||* < oo. By that (1 —
BINVL(w(t)) = (w(t+1) —w(t)) — Bw(t) — w(t — 1)), it immediately follows that >~
IVL(w(t))]? < oo

Stage II. Parameter Dynamics. The goal of this stage is to characterize the dynamics of the
parameter and show that GDM asymptotically converges (in direction) to the max-margin solution

w. To see this, we define a residual term 7 (t) 2 w(t) — In(t)w — w with some constant vector W
(specified in Appendix C.1.2). If we can show the norm of (t) is bounded over the iterations, we
complete the proof as In(¢)w will then dominates the dynamics of w(t).

For simplicity, we use the continuous dynamics approximation of GDM [36] to demonstrate why
r(t) is bounded:

B d*w(t) n dw(t)
1- 38 ae dt
We start by directly examining the evolution of ||r(¢)]], i.e.,

Lo e [T LAl
i = gl = [ 595

:/IT <r(s),—V£(w(s)) é >ds+/f% <r(s),—d2;‘;55)>ds,

which by integration by part leads to

= 7 (ot S 2 (o D) o ) 720 220 )

We then check the terms one by one:

+VL(w(t)) = 0. @)

o [ {r(s),~VL(w(s)) — Lad) ds: This term also occurs in the analysis of GD [34], the
analy31s of which can be generalized as it does not depend on the form of w(s);

e (r(T), —d“(;iT)>: as shown in Stage I, d"c’{(f) — 0 (e, w(T) — w(T — 1) — 0in the

discrete case) as T' — oo. Thus, this term is o(||7(T")||);

fl <d'r' 5) dw(s >d3 finite due to dT(S) _ dw(s) Lo, floo ”dng) [|2ds is finite 3(i.e.,

ds ds s
Siey JJw(t + 1) —w(t)||? < coin the discrete case) by Stage I, and the mean-value
inequality.

*Please note that £(t) > 0 regardless of t.
>The derivation of this property is in the same manner as in the discrete case: we choose the potential function

as §(t) = L(w(t)) + 5= B)Ild"’(”ll2 Thederivativeoff() SO — (TL(w(t)), 8 4+ L (Ll

dw(t)) -1 dw(t) ||>. Therefore, £(0) fo 1<% dw(t) ||I2dt. Then, taking 7' — oo yields the conclusion.




Putting them together, we show that ||7(T)|> + o(||7(T)||) is upper bounded over the iterations,
which immediately leads to that ||»(7T")|| is bounded. Applying similar methodology to the discrete
update rule, we have the following lemma (the proof can be found in Appendix C.1.2).

Lemma 2. Define potential function g : Z+ — R as

B
(B w(t) —w(t—1).

9(t) is upper bounded, which further indicates ||r(t)|| is upper bounded.

9()) 2 Slr))® +

Remark 3. Our technique for analyzing GDM here is essentially more complex and elaborate than
that for GD in [34] due to the historical information of gradients GDM. The approach in [34]
cannot be directly applied. It is worth mentioning that we provide a more easy-to-check condition for
whether r(t) is bounded, i.e., "is g(t) upper-bounded?". This condition can be generalized for other
momentum-based implicit regularization analyses. E.g., SGDM and Adam later in this paper.

5 Tackle the difficulty brought by random sampling

In this section, we analyze the implicit regularization of SGDM. Parallel to GDM, we establish the
following implicit regularization result for SGDM:

Theorem 3. Let Assumption 1, 2, and 3. (S) hold. Let 8 € [0,1) and n < L -1 Then,
TNor (1) T 20t
with arbitrary initialization point w(1), SGDM (w/. r) satisfies Hn%ﬁ;n - HZ’)—”H = O(1/log(t))

and L(w(t)) = O(1), almost surely (a.s.).

Similar to the GDM case, Theorem 3 shows that the implicit regularization of SGDM under this
setting is consistent with SGD (c.f. [24] for the implicit regularization of SGD). This matches the
observations in practice (c.f. Section 7 for details), and is later supported by our experiments (e.g.,
Figure 1). We add two remarks on the learning rate upper bound and extension to SGDM (w/. 1).

Remark 4 (On the learning rate). Firstly, our learning rate upper bound 1/( \/I]\{]fi:?'{‘izﬁ) + HQC;%SI )
exactly matches that of SGD 2 HZZQ [24] when 8 = 0, and matches that of SGD in terms of the

order of Oz, H, and b when 3 # 0. This indicates our analysis is tight. Secondly, as the bound is
monotonously increasing with respect to batch size b, Theorem 3 also sheds light on the learning rate
tuning, i.e., the larger the batch size is, the larger the learning rate is.

Remark 5. (On SGDM (w/o. r)) Theorem 3 can be similarly extended to SGDM (w/o. r). We defer
the detailed description of the corresponding theorem together with the proof to Appendix F.2.

Next, we show the proof sketch for Theorem 3. The proof also contains two stages, where Stage I is
similar to that for GDM. However, we highlight that Stage I for SGDM is not a trivial extension
of that for GDM. The methodology used to construct GDM’s potential function fails for SGDM:
roughly speaking, the change of £(¢) (defined in Lemma 1) can be spitted into the "decrease term"
and the "error term". The "decrease term" comes from the alignment between directions of the update
of GDM and the negative gradient, and contributes to the decrease of £(¢). However, a gap remains
between the directions of the update of GDM and the negative gradient. The "error term" measures
this gap and potentially contributes to the increase of £(¢). For GDM, both the terms are in the order
of |[VL(w(t))||* while the "decrease term" has a larger coefficient, leading to the decrease of £(t).
For SGDM, the "decrease term" is in the order of (E||V.L(w(t))||)?, while the "error term" is in the
order of E(||VL(w(t))]|?), bigger than the "decrease term" in an unbounded magnitude. Therefore,
&(t) may no longer decrease. We defer a detailed discussion to Appendix C.2.3.

On the other hand, we find the stochastic gradient VL g ;) (w) is special, in the sense that it satisfies
the strong growth condition [32] as follows.

Lemma 3. Let all the assumptions in Theorem 3 hold. Then, for every t, VL) (w) satisfies the

A No?2
2 where Cy & “Zpaz

strong growth condition, i.e., Yw, Egy) | VL g1 (w)||* < Co||VL(w) 5

The proof is deferred to Appendix B.2. SGD has been known to converge faster when the strong
growth condition holds compared to the case when the variance of the stochastic gradient norm is



bounded [32, 42]. However, to the best of our knowledge, convergence of SGDM under the strong
growth condition has not been established. We then bridge this gap by proposing the following
theorem.

Theorem 4. Consider SGDM defined in Eq. (2) with general L and {(t). Let V L¢ ) (w) satisfy the
following properties:

* (Affine noise variance condition). Yw, E¢(1) ||V Le 1) (w)||? < 01| VL(w)||? + oo.
* (Bounded smoothness condition). Yw1, ws, [|[VL(w1) — VL(ws)|| < Lijw; — wal|.

Then, with learning rate n < W we have
W"' g1

1 & ) 1
7 L EIVE@O)I* <0 (77 ) +0ton).

To the best of our knowledge, Theorem 4 is the first to establish the convergence of SGDM under
the affine noise variance condition [6], which generalizes the strong growth condition and the
bounded gradient variance condition. Note that the affine noise variance condition with oy = 0 is

exact the strong growth condition, in which case Theorem 4 shows that - Z;‘FZI E(|VL(w(t))]?
decays with rate % Combining Lemma 3 and Theorem 4 completes the proof of Stage I for SGDM.

We then briefly state the proof idea of Theorem 4. Inspired by SGD’s simple update rule, we rearrange
the update rule of SGDM such that only the gradient information of the current step is contained, i.e.,

w(t+1) - pw(t) w(t)—Pw(t—1)
1_/3 = 1—ﬂ 777v£§(t)(w(t))
By defining u(t) £ “’(t)_lﬁf‘g(t_l) =w(t) + %(w(t) — w(t — 1)), we have that u(¢) is close to
w(t) (differs by order of one-step update w(t) — w(t — 1)), and the update rule of w(t) only contains
the current-step-gradient information V.L(w(t)). We then select potential function as L£(u(t)), and a
simple Taylor’s expansion directly leads to:

E[L(u(t +1))|F] ~ L(u(t)) = n{VL(w(t)), VL(u(t)) = L{u(t) — 0| VL w(t))|?,

i.e., L(u(t)) is a proper potential function. Summing the above equation across iterations completes
the proof.

6 Analyze the effect of preconditioners

6.1 Implicit regularization of deterministic Adam

This section presents the implicit regularization of deterministic Adam, i.e., Adam without random
sampling.

Theorem 5. Let Assumption 1, 2, and 3. (D) hold. Let1 > 35 > ﬁj‘ > 0, and the learning rate
n is a small enough constant (The upper bound of learning rate is complex, and we defer it to
Appendix D.1). Then, with arbitrary initialization point w(1), deterministic Adam (Eq. 3) satisfies

that || rtdhy — 127/l = O(1/ log(t)) and L{w(t)) = O(3),

Remark 6 (On the 31 and 35 range). Almost all existing literature assume a time-decaying hyper-
parameter choice of 81 or Ba (c.f., [18, 3]). On the other hand, our result proves that deterministic
Adam converges with constant settings of 51 and B2, which agrees with the practical use.

Remark 7 ((Discussion on the results in [34])). [34] observe that, on a synthetic dataset, the direction
of the output parameter by Adam still does not converge to the max-margin direction after 2 x 10°
iterations (but is getting closer). At the same time, GD seems to converge to the max-margin direction.
However, this example does not contradict Theorem 5, as we study the asymptotic behavior. In the
example, it can be observed that the angle gap keeps decreasing after 10° iteration, which stands
with our result. Furthermore, in Figure 3 and 4 of our paper, we reproduce the experiment and find
that the angle gap still keeps decreasing after extending the training time. Secondly, this synthetic
dataset is ill-posed, which has large singular value and makes the training rather slow, and it can be



observed that the training loss of Adam does not vary much until 10* iteration. On the well-posed
dataset adopted by (Figure 1, [34]), we observe that Adam will converge to the max-margin solution
rapidly (please refer to Figure 1 for details).

We simply introduce the proof idea here and put the full proof in Appendix D. The proof of determin-
istic Adam is very similar to that of GDM with minor changes in potential functions. Specifically, £(t)

in Lemma 1 is changed to £(t) £ L(w(t)) + %;J’l syl vela +o(t —1) © (w(t) —w(t — 1)) 2

and ¢(t) in Lemma 2 is changed to

g(t) 2 <r(t),(1—5§_1)\/:€]ld+f/(t— 1) © (w(t) —w(t—l))> 7 flﬂ *fll @)

The rest of the proof then flows similarly to the GDM case.

6.2 What if random sampling is added?

We have obtained the implicit regularization for GDM, SGDM, and deterministic Adam. One may
wonder whether the implicit regularization of stochastic Adam can be obtained. Unfortunately, the
gap can not be closed yet. This is because an implicit regularization analysis requires the knowledge
of the loss dynamics, little of which, however, has been ever known even for stochastic RMSProp
(i.e., Adam with 57 = 0 in Eq. (3)) with constant learning rates. Specifically, the main difficulty lies

in bounding the change of conditioner Jato® across iterations, which is required to make the
elg+v

drift term (VL(w(t)), E(w(t + 1) — w(t))) (derived by Taylor’s expansion of the epoch start from
Kt) negative to ensure a non-increasing loss.

On the other hand, if we adopt decaying learning rates 7; = "1 , [33] shows ,62 close enough to 1, the

following equation holds for stochastic RMSProp (w/o. 1) (recall that K 2 & is the epoch size)
T
VL (w(Kt))|| =00nT). 8
> 7 IVE (o (D)) = 0taT) ®)

Based on this result, we have the following theorem for stochastic RMSProp (w/o. r):

Theorem 6. Let Assumptions 1, 2, and 3. (S) hold. Let P2 be close enough to 1. Then, with

arbitrary initialization point w(1) and decaying learning rate n; = \”} stochastic RMSProp satisfies

It — Teap | = O(1/log(t)) and L(w(t)) = O( ).

Remark 8 (On the decaying learning rate). The decaying learning rate is a "stronger” setting
compared to the constant learning rate, both in the sense that GDM, SGDM, and deterministic Adam
can be shown to converge to the max-margin solution following the same routine as Theorems 2, 3,
and 5, and in the sense that we usually adopt constant learning rate in practice.

The proof is on the grounds of a novel characterization of the loss convergence rate derived from Eq.
(8), and readers can find the details in Appendix E.

(a) Margin Gap (b) Angle gap (c) Norm (d) Loss

Figure 1: Comparison of the implicit regularization of the optimizers. We use the synthetic dataset in
[34] with learning rate ——. Figure (b) shows (1). all the optimizers converge to the max margin
solution, and (2). the asymptotlc behaviors with & without momentum are similar. The experimental
observation support our theoretical results.




7 Discussions

Consistency with the Experimental Results. We conduct experiments to verify our theoretical
findings. Specifically, we (1). run GD, GDM, SGD, SGDM, and Adam on a synthetic dataset to
observe their implicit regularization; (2). run GD and Adam on ill-posed dataset proposed in [34]
to verify Theorem 5; (3). run SGD and SGDM on neural networks to classify the MNIST dataset
and compare their implicit regularization. The experimental observations stand with our theoretical
results. Furthermore, it is worth mentioning that experimental phenomenons that adding momentum
will not change the implicit regularization have also been observed by existing literature [34, 23, 43].

Influence of hyperparameters on convergence rates. Our results can be further extended to provide
a precise characterization of the influence of the hyperparameters 7 and 5 on the convergence rate of
(S)GDM. Specifically, in Appendix F.4, we show that the asymptotic convergence rate of (S)GDM
is C %%, where C' is some constant independent of 5 and 7. Therefore, increase 7 can lead to a
faster convergence rate (with learning rate requirements in Theorems 2 and 3 satisfied). However,
changing § does not affect the convergence rate, which is also observed in our experiments (e.g.,
Figure 1). Furthermore, to the best of our knowledge, there still lacks the theoretical justification of
the acceleration effect of the momentum except the strongly convex case. On the other hand, we still
can not provide a precise characterization of the exact convergence behavior of Adam in this case
due to the ever-changing preconditioner. As this work mainly focuses on the linear model, whether
momentum and preconditioner can accelerate the training of non-linear model with the non-convex
landscape is an exciting future direction and deserves further investigation.

Generalization Behavior of Adam. Our results characterize the implicit regularization behavior of
optimizers when the time is large enough, which can be changed by early stopping, especially for
Adam. This is because the proof of Theorem 5 relies on that when the training time is large enough,
the gradient is small and the adaptive learning rate L is dominated by %Ild, and then Adam

Vr(t)+elg

behaves like GDM and thus converges to the max margin solution. This can also be verified by Figure
1, as the angle gap of deterministic Adam and RMSProp only start to decrease late in the training.

Gap Between The Linear Model and Deep Neural Networks. While our results only hold for
the linear classification problem, extending the results to the deep neural networks is possible.
Specifically, existing literature [21, 43] provide a framework for deriving implicit regularization for
deep homogeneous neural networks. However, the approach in [21, 43] can not be trivially applied
to the momentum-based optimizers, as their proofs require the specific gradient-based updates to
lower bound a smoothed margin (c.f., Theorem 4.1, [21]). It remains an exciting work to see how our
results can be expanded to GDM and Adam for deep neural networks.

8 Conclusion

This paper studies the implicit regularization of momentum-based optimizers in linear classification
with exponential-tailed loss. Our results indicate that for SGD and the deterministic version of Adam,
adding momentum will not influence the implicit regularization, and the direction of the parameter
converges to the L2 max-margin solution. Our theoretical results stand with existing experimental
observations, and developed techniques such as the potential functions may inspire the analyses on
other momentum-based optimizers. Motivated by the results and techniques for linear cases in this
paper, it has the potential to extend them to the homogeneous neural network in the future. Another
topic left for future work is to derive the implicit regularization of constant learning rate stochastic
Adam. As discussed in Section 6.2, this topic is non-trivial, and it requires new techniques and
assumptions to be developed.
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Supplementary Materials for
“ Does Momentum Change the Implicit Regularization on
Separable Data?”’

A Additional Related Works

[11] and [49] also investigate the generalization behavior of GDM and Adam but focus on a different
setting from ours. Specifically, they work on a two-layer convolutional neural network with fixed
and untrained second layer and cubic activation, while we work on the linear classifier. Also, except
linear separability, they further pose additional specific requirements for the dataset (e.g., all data
shares a same (scaled) patch). Based on the settings, [11] shows that the output hypothesis by GDM
provably generalizes better than GD, while [49] proves that the output hypothesis by GD generalizes
better than Adam. These results, however, do not contradict our findings due to the difference in the
settings. We believe both the works and this paper have its own merits to unveil the mystery of the
generalization of momentum-based optimizers.

B Preparations
This section collect definitions and lemmas which will be used throughout the proofs.

B.1 Characterization of the max-margin solution

This section collects several commonly-used characterization of the max-margin solution from [24]
and [34].

To start with, we define support vectors and support set, which are two common terms in margin
analysis. Recall that in the main text, we assume that without the loss of generality, y; = 1,
vie{l,--- ,N}
Definition 2 (Support vectors and support set). For any i € [N], x; is called a support vector of the
dataset S, if
<111i, ’uAJ> =1.

Correspondingly, x; is called a non-support vector if (x;,w) > 1. The support set of S is then
defined as

Ss={xeS:(zx,w) =1}
The following lemma delivers w as an linear combination of support vectors.

Lemma 4 (Lemma 12, [34]). For almost every datasets S, there exists a unique vector v =
(v1,- - ,vN), such that W can be represented as

N
w = Zvi$i7 (9)
i=1

where v satisfies v; = 0if x¢; ¢ Ss, and v; > 0 if x; € Ss. Furthermore, the size ofS'S is at most d.

By Lemma 4, we further have the following corollary:

Corollary 1. For almost every datasets S, the unique v given by Lemma 4 further satisfies that for
any positive constant C'3, there exists a non-zero vector w, such that, x; € S, we have

Cye™ (@) — g, (10)

Proof. For almost every datasets S, any subsets with size d of S is linearly independent. Since S,
has size no larger than d (by Lemma 4), and Eq. (10) is equivalent to linear equations, the proof is
completed. O

For the stochastic case, we will also need the following lemma when we calculate the form of
parameter at time ¢.
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Lemma 5 (Lemma 5, [24]). Let B(s) be the random subset used in SGDM (w/. r). Almost surely,
there exists a vector W

N 1 bt\ . )
?Zg Z v;x; = In <N>w+n(t)+w,
s=1  x,€B(s)NS;
where n(t) satisfies ||n(t)|| = o(t~9°%¢) forany e > 0, and |n(t + 1) — n(t)|| = O(t™1). As for
SGDM (w/o. r), the a.s. condition can be removed.

B.2 Preparations of the optimization analysis

This section collects technical lemmas which will be used in latter proofs. We begin with a lemma
bounding the smooth constants if the loss is bounded.

Lemma 6. If loss { satisfies (D) in Assumption 3, then for any wy, if L(w) < L(wy), then we have
L is 02,,,Hs, smooth at point w, where sy = {1 (N L(wy)). Furthermore, L is globally 02,,, Hs,
smooth over the set {w : L(w) < L(wg)}

Proof. Since { is positive, we have Vi € [N],

N
L w, x;) < Z_j:l Uw, z;)
N N
which leads to /(w, x;) < NL(wyp), and £ is H,, smooth at (w, x;).

= L(w) < L(wo),

Furthermore, since Vo, /(w, ;) = Vo l((w, ;) = ¢ ((w, x;))x;, for any two parameters w; and
w- close enough to w,

IV L(w:) = VeLlws)| = | > (€ (wr, ) = ' ({wz, @)z

xzeS

<Omaz Z(€I(<wlvm>) - €I(<’w27x>))2 < UmamHso Z(<w1 - wg,w>)2

xzeS xzeS

SUznaz]yso le - w2||

Now if w; and ws both belong to {w : L(w) < L(wy)}, we have for any x; € S, (wy,x;) >
7Y (NL(wp)), and (wsq, x;) > £~(NL(wp)). Following the same routine as the locally smooth
proof, we complete the second argument.

The proof is completed. O

Based on Assumption 2, we also have the following lemma characterizing the relationship between
loss ¢ and its derivative ¢ when x is large enough.

Lemma 7. Let loss ¢ satisfy Assumption 2. Then, there exists an large enough xo and a positive real
K, such that, Vx > xqg, we have

—iﬁ’(m) < U(z) < —40(z).

Proof. By Assumption 2, there exists a large enough x(, such that Vx > z, we have

1
§e—” < —l'(x) <27, (11)

On the other hand, as lim;_,, £(2) = 0, we have

(@) = / T _v(s)as,

=z

which by Eq. (11) leads to

1 1 o0 o0
ieﬂj = 5/ e ds < {(z) < 2/ e °ds = 2e".

x

The proof is completed. O
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By Lemma 7, we immediately get the following corollary:

Corollary 2. Let loss { satisfy Assumption 2. Then, there exist positive reals Cy and Cy, such that,
for any w € R? satisfying either |VL(w)| < C, or L(w) < C), we have

L) < [VL(w)] < 4L(w).

Proof. We start with the case ||VL(w)|| < C,. By simple calculation, we have

N
IV L(w Ze/ w, )z || < f% ;K’«w,mi)), (12)
and
[VL(w)[[|w]| = (VL(w),w) > —fzﬂ’ w, x;)) (13)

By Assumption 2, we have there exists a constant C?, s.t., any z with —¢'(z) > Cj satisfies
x > x9. Let Cy = CJ{,W. We then have if |[VL(w)|| < Cj, then (w,xz;) > x¢ (Vi), and thus
4((w, ;) > —0' ((w, x;)) > ((w, z;)). Combing Egs. (12) and (13), we then have
N
AL(w) =4 (w,z) = |VEL@w)| = T Zz (w, z;)) %ﬁ(w)‘

i=1

Similarly, as for the case £L(w) < Cj, we have there exists a constant C}, s.t., any  with (z) < C]
satisfies ¢ > . Let C; = % and the rest of the proof follows the same routine as the first case.

The proof is completed. O

The following lemma bridges the second moment of V£ g ;) with its squared first moment.

Lemma 8 (Lemma 3, restated). Let the dataset S satisfies the separable assumption 1. Let B be a
random subset of S with size b sampled independently and uniformly without replacement. Then, at
any point w, we have

2
IVL(w)|* < Ep [[VLE(w)]?] < s 7 2 ) 2.

Proof. To start with, notice that
[VL(w)|| = |[EgVLp(w)|| < Ep||VLp(w)].

Therefore, the first inequality can be directly obtained by Cauchy-Schwartz’s inequality. To prove the
second inequality, we first calculate the explicit form of VL g (w).

2

IVLE(w)|?* = Z Vi(w,z)| = Z ! ((w, z))x Tmas Z ¢ ((w, x)
xeB xeB xeB
Therefore,
) 2
Eg||VLp(w)|? < ”"'“ > U ((w, ) < Imaz (Z ¢ ((w :c))) . (14)
— Nb )
xeS xzeS
On the other hand,
|V L(w Z@' (w, x)
xeS
w *) ~
>— ! ({w, ) > =y ((w,z))
<Z Hw|> V2



where Eq. (%) is due to V& € S, (@, —w) > 1 and ¢’ < 0.

Therefore,
2
[VL(w)|? > N2 (Z O ((w,x ) . (15)
xeS
The proof is completed by putting Eqs. (14) and (15) together. O

In the following lemma, we show the updates of GDM, Adam, and SGDM are all non-zero.
Lemma 9. Regardless of GDM, Adam, or SGDM, the updates of all steps are non-zero, i.e.,

w(t+1) — w(t)] > 0,Vt > 1.

Proof. We start with the alternative forms of the update rule of GDM, Adam, and SGDM using the
gradients along the trajectory respectively. For GDM, by Eq. (1), the update rule can be written as

t
w(t+1) —w(t) = —n(l - B) (Z Bt‘sV£(w(S))> : (16)
s=1
Similarly, the update rule of SGDM can be written as
t
w@+1f—wﬁ)=—ﬂﬂ—%ﬂ(2:5“”V55@ﬂw@D>» (17)
s=1

while the update rule of Adam can be given as

S B8 L w(s)
VLa S 1 B (VL ()2

w(t+1) —w(t) =-—n (18)

On the other hand, by the definition of empirical risk £, the gradient of £ at point w can be given as

Sy O (w, @)

VL(w) = ~

19)

By Eq. (19) and Eq. (16), we further have for GDM,

w(t +1) — w(t) = <Zﬂf Lo (o). m””’”). 0)

By Assumption 1, there exists a non-zero parameter w, such that, (w, x;) > 0, Vi. Therefore, by
executing inner product between Eq. (20) and w, we have

[w(t +1) —w@)[[[@] = (w(t +1) - w(t), w)

—(1-75)n (Zﬁt 52 1 U((w (]\;vwl»(mz,ﬁ))) (;) 0,

where Eq. () is due to £ < 0. This complete the proof for GDM.
Similarly, for SGDM, we have

: v z)) (yx, w
Jaw(t +1) - wio) bl > —n(1 - ) (ZBHE“’”GB ). vty >> >0,

s=1

which completes the proof of SGDM.

17



For Adam, we have

ot +1) — w(®)| |[d @ eld+21_§§ L (VL(w(s)))?

zi R8TV L(w(s)) >

52 t—s 2 — 2
1 § U,C w(s ) 13 VL(w(s

-5

t
:<Mz;:gl B>
s=1 1

! 1—81 s ij\ilf’ w(s), x;)){x;, w
=—n<21_ﬂfl i (b)) >)>0’

which completes the proof of Adam.

The proof is completed. O

C Implicit regularization of GD/SGD with momentum

This section collects the proof of the implicit regularization of gradient descent with momentum
and stochastic gradient descent with momentum. The analyses of this section hold for almost every
dataset, and the "almost every" constraint is further moved in Section F.1.

C.1 Implicit regularization of GD with Momentum

This section collects the proof of Theorem 2.

C.1.1 Proof of the sum of squared gradients converges

To begin with, we will prove the sum of squared norm of gradients along the trajectory is finite for
gradient descent with momentum. To see this, we first define the continuous-time update rule as

w(t+a)—w(t)=awlt+1)—w(t)),VteZ Va € [0,1].

We then prove a generalized case of Lemma 1 for any w(t + «).

Lemma 10 (Lemma 1, extended). Let all conditions in Theorem 2 hold. We then have

Cw(t)) + anm —w(t— 1| >L(w(t +0)) + Mlﬁﬂ)&w(w 1) — w(t)?
" “‘f”“nwm 1)~ w(®)?, e

where C1 is a positive real such that n = ZfC’l and sy = 2 - YN L(wn)).
s09mazx

Proof of Lemma 10. We prove this lemma by reduction to absurdity.

Concretely, let t* be the smallest positive integer time such that there exists an « € [0, 1], such that
Eq. (21) doesn’t hold. Let o* = inf{a € [0,1] : Eq. (21) doesn't hold for (t*,«)}. By continuity,
Eq. (21) holds for (t*, a*).

We further divide the proof into two cases depending on the value of o*.

Case 1: o* = 0: For any t* > t > 1, we have Eq. (21) holds for (¢, 1). Specifically, we have

B B

Lw(t) + 5 lw® —wt = DI* 2 Lw(t+ 1) + 57—

lw(t +1) —w(®)]?,
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which further leads to

Lw(1) = Llw(1)+ 0

D (1) —w(0)]? > £(w(t*))+mHw(t*)—w(t*—l)H2-

2(1—-B)n

Since £ % lw(t*) — w(t* — 1)||? is non-negative, we have
Lw(1) > L(w(t).

By Lemma 6, we have £ is H,, smooth at w(t*). Therefore, by Taylor’s expansion for £ at point
w(t*), we have for small enough o > 0

L(w(t" + a))

<L(w(t)) + (VL) wt” +a) ~w(t) + P97 (1 1 ) — wo(t")

L) + oV L) w(t + 1) = w(t*)) + 0% T 1 1) (e

YLw(t) +a <%w(w(t*> —w(t” = 1)) = (w(t” + 1) = w(t)), w(t* +1) - w(t*>>

1—B)n

o H0 T (4 4 1) — ()|
—C(w(t Oéﬁ w(t®) — w(t* — w(t* — wl(t* HSOQQUmazi (e w(t* —aw(t* 2
() + (o (0(e) e ~ D + 1)~ w) + (TG e 1) - w(e)]

L) + 572w~ w - DI+ 5w + 1) - w() P

+ (HS(J‘;N“"‘” - _“5)77) lw(t* +1) = w(t)|?
L (w(t B () — (et — 12 af o« Hoo 0O maz \ | an(t* + 1) — ()12
() + g )~ w(e = DI+ (5~ g e ) (e + 1)~ w(e)]
L () + gy W)~ wle” = DI = 5 = () — e~ 1)

+ (2(10155)77 -t HSO‘;“;’"”) (w(t +1) —w()|?
Ce(wie) + S ) —w = DI = o + 1) —w()|

G0 4 1) — e, @)

where Eq. (%) is due to a simple rearrangement of the update rule of gradient descent with momentum
(Eq. (1)), i.e.,

VL(w(t)) = —

(1=5)n
Inequality (*x) is due to Cauchy Schwarz’s inequality and arithmetic-geometric average inequality,
and Inequality (¢) is due to

(Blw(t) —w(t = 1)) = (w(t + 1) —w(?))), vt > 1, (23)

,M w * —w * 2 Oéﬂ _ o H azo—?naz * —w *\ (12
sl —w(e = DIP+ (5 - o e e ) e+ 1) - wie')
_ (1—0[)6 w * —w * 2 a
= 72(1_5)77H( (") —w(t" = 1)[* + O(a)

_ B 042’(,0* —w(t* 2_(1_Cl)a2w* —w(t 2
ST Jw(t”+1) —w(t)|* - ———[lw(t” +1) — w(t")|]".
Heretheinequalityisduetothat—%H(w(t*)—w(t*qwtendto— [(w(t*) —w(t* —1)|2

as a tend to zero, which is a negative constant by Lemma 9, and — 5755 /3 a? ||'w(t* +1)—w(t*)||* -

(=C00% (1 4 1) — w(t*) 2 is O(a?).
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Eq. (22) indicates Eq. (21) holds at (t*, ) for & > 0 is small enough, which contradicts to o* = 0.
Case 2: o* # 0: Same as Case 1, we have for any 1 < ¢ < ¥,

p
2(1-pB)n

which further leads to

B

lw(t) —w(t = 1)* > Lw(t +1)) + lw(t +1) —w(®)]?,

L(w(1)) = L(w(t")) + %Il’w(t*) —w(t* = 1) (24)

On the other hand, by the definition of a*, we have for any 0 < o < «o*, we have Eq. (21) holds
for (t*, ), which by continuity further leads to Eq. (21) holds for (¢*, a*). Therefore, o* < 1,
otherwise, Eq. (21) holds for (¢*, ), Yo € [0, 1] which contradicts the definition of ¢*.

Combining Eq. (21) with (t*, &) and Eq. (24), we further have
__B
2(1-8)n

Consequently, for any « € [0, a*]

1-Cy
o llw(t+1) —w(t)|?,

Lw(1)) = L{w(t” +a)) + 20,

Pllw(t+1) —wt)|? +

L(w(1)) = Lw(t" + a)),
and by Lemma 6, we then have L is H%’%“” smooth at w(t* + «), which further by Taylor’s
expansion leads to
L(w(t™ +a"))
SL(w(t")) + (VL(w(t")), w(t” +a”) —w(t")) +

Hsogmaz H

(t" +a") —w(t")|?

L) + 57w — e~ D+ 5 BB) oot + 1) — w(e")|*

s (Ml O e 1) — o)

~Lwlt") + 5l ) — e — D+ (el e 2 CEB e e
Dt + g ) we ~ DI + (L S LI e 1) e
et + gL et e = I - 5w+ 1) - )

1 - O )2 * *
U= OO e 4 1) = wie)
where Eq. (o) follows the same routine as Case 1, Eq. (e) is due to the definition of 77 and C1, and
Eq. (*)is due to o* < 1, and ||w(t* + 1) — w(¢*)||? > 0 (given by Lemma 9).

By the continuity of £, for any small enough § > 0, Eq. (21) holds for (¢*, a* + ¢), which contradicts
to the definition of a*.

The proof is completed. O

By Lemma 1, one can easily obtain the sum of the squared norms of the updates across the trajectory
converges.

Corollary 3. Let all conditions in Theorem 2 hold. We have

ZHw (t+1)—wt)]? < (25)

Consequentially, we have

lw(®)l| = O(V?).
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Proof. By Lemma 1, we have

_B
2(1—B)n

LB
T8

e )
> 1 (1) —w ()],

L(w(t)) + lw(t) —w(t—1)|*— (L (t+1)) |w(t+1)—w(t)2)

which by summing over ¢ further leads to

L(w(1) > L(w(1)- (c<w<t 1)+ gy w4 1) - w<t>||2) > - ‘fl > lhw(s+1)

Taking ¢ — oo leads to

> lw(s +1) —w(s)]* < oo.
s=1
By triangle inequality, we further have

lw@)ll < lw(s +1) —w(s)[| + [w(1)]

% i (Z (s +1) - w<s>||2) (V)] = (),

where Eq. (%) is due to Cauchy-Schwartz’s inequality.
The proof is completed. ]

By the negative derivative of the loss and the separable data, we can finally prove the sum of squared
gradient converges.

Corollary 4. Let all conditions in Theorem 2 hold. We have, Y, ||V L(w(t))||* < oc.

Proof. By Eq. (20), we have
2

(1-5) Z/Btfs izt U ((w(s), zi))x

lw(t +1) = w(t)]|* =n* N

s=1

N s S ) e [ )
=1 =p7 |38 N e
() i N Ve \
D 220 _ ) <w,2 vl <<3uv<s>,wz>>wz>

s=1
0 (ZBH Al <<§v<>wz>>>

N o0 (w(t), x; ?
(1 B2 (zi_le (o) z>>>
@220 = B)* | S, (i), waa: |
a U;naw N
B Gt )y LTS 6)

where Inequality () is due to Cauchy-Schwartz’s inequality, Inequality (xx) is due to £'(s) < 0,
Vs € Rand (w,x;) > 7, Vi € [N], and Inequality (e) is due to the definition of 0y,4,. By combining
Eq. (25) and Eq. (26), we complete the proof. O
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By the exponential-tailed assumption of the loss (Assumption 2), we further have the following
corollary.

Corollary 5. Let all conditions in Theorem 2 hold. Then, lim;_, «, |VL(w(t))|| = 0, and

Jim (w(t), z,) = o0, ¥i.

Consequently, there exists an large enough time to, such that, ¥t > to, Vi, we have (w(t), x;) > 0,
and

~({w(t), @) < (14 et (Om)em o,
—0'((w(t), z;)) > (1 — e H-{wBzi))e=(wt)@i)

v

C.1.2 Parameter dynamics

To prove Theorem 2, we only need to show w(t) — In(¢)w (¢ > 1) has bounded norm for any
iteration ¢ > 0. Letting C's = 7t in Corollary 1, we obtain an constant vector w satisfying Eq. (10).
Define

£ w(t) — In(t)w — 1. 27)

7(t)
As W is a constant vector, that w(t) — In(¢)w (¢ > 1) has bounded norm is equivalent to (t) has

bounded norm. As discussed in the main body of the paper, we then propose an equivalent proposition
of ||r(t)|| is bounded, and further prove this proposition is fulfilled. Specifically, we have

Lemma 11. Let all conditions in Theorem 2 hold. Then,
g(t) is upper bounded, where g : ZZ+ — R is defined as

r(t)|| is bounded if and only if the function

B
1-p

2

g(t) =5 e @)1 +

> (r(t), w(t) ~ w(t = 1)) = 75 S0 (r) = iz — 1, w(r) — wir - 1).

Furthermore, for almost every dataset, we have Y ;- | (g(t + 1) — g(t)) is upper bounded.

As the proof is rather complex, we separate it into two sub-lemmas. We first prove ||7(t)|| is bounded
if and only if function g(t) is upper bounded.

Lemma 12 (First argument in Lemma 11). Ler all conditions in Theorem 2 hold. Then, ||r(t)|| is
bounded if and only if function g(t) is upper bounded.

Proof. We start the proof by showing that A, () 2 Zi:2<r(7) —r(t—1),w(r) — w(T — 1)) has
bounded absolute value.

By the definition of 7(¢) , we have

r(t) —r(t—1) —w(t) —w(t—1) —In (t_t1> W,

which further indicates




Therefore, the absolute value of A;(¢) can be bounded as

zt:<w(7)—w(7—l)—ln<7_il

T=2

AL ()] =

t

()3 < 1
<23 () —w(r = DI+ 53
T=2

T=2

(0)
<00,

where Inequality (x) is due to the Inequality of arithmetic and geometric means, and Inequality (o) is
due to Corollary 3 and In -5 = O(3).

Therefore, g(t) is upper bounded is then equivalent to 1||r(t)||* + %(r(t), w(t) —w(t—1))is
upper bounded. Now if 1 |[r(¢)[|? + %(r(t)7 w(t) — w(t — 1)) is upper bounded, we will prove
||7(t)]| is bounded by reduction to absurdity.

Suppose that ||7(¢)|| has unbounded norm. By Corollary 3, we have lim;_, o ||w(t) —w(t—1)|| = 0,
and there exists a large enough time 7', such that ||w(¢) — w(t — 1)|| < 1 for any ¢ > T. On the
other hand, since 7(t) is unbounded from above, there exists an increasing time sequence k; > T,
i € Z7T, such that

lim ||r(k;)|| = oo.
1—> 00

Therefore, we have

1 B
L (k)| + 1 (k) (k) — w(ks 1)
> lim (k)2 — L (k) | (ki) — w (ki — 1))
T i 2 ’ 1- ﬁ ' ' '
1 B _
>t (8P 1 (k)] = o,

which leads to contradictory, and completes the proof of necessity.

On the other hand, if ||r(¢)|| is upper bounded, since ||w(t) — w(t — 1)|| is also upper bounded,
we have 1||r(t)[|? + %(r(t), w(t) — w(t — 1)) is upper bounded, which completes the proof of
sufficiency.

The proof is completed. O

Therefore, the last piece of this puzzle is to prove g(t) is upper bounded V¢ > 0.

Lemma 13 (Second argument in Lemma 11). Let all conditions in Theorem 2 hold. Then, for almost
every dataset, we have that g(t) is upper bounded.
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Proof. We start the proof by calculating g(¢t + 1) — g(¢). For any ¢ > 2, we have
1 B
gt +1) = g(t) =5lrt+1) —=r®I + (r(t), r(t+ 1) —7(1)) + 1

-B
1f5 1fﬂ<r(t+1)—7'(t),w(t+1)—w(t))

=St 1) = O + (r(0), (1 1) — (1)) +

(rt+1),w(t+1) —w(t))

(r(t), w(t) —w(t—1))

T (r@),wt+1)+w(t—1) —2w(t)).

On the other hand, by simply rearranging the update rule Eq. (1), we have

%(w(t + 1) +w(t—1)—2w(t) =-—nVL(w()) — (w(t+1) —w(t)), (29)

which further indicates

gt +1) —g(t)
:%HT(HD —r@)I° + (), r(t+1) —r(t) + (r(t), —nVL(w(1) — (w(t+1) —w(t))

:;r(t+1)—r(t)2+< <t+1> ))>'

Denote Ay (t) = ||7(t + 1) — =(t)||%, and A3(t) = < (t), —In (%) w — nVL(w(t))). We then
prove respectively Y -, Ao(t) and >, As(t) are upper bounded.

First of all, by definition of r(¢) Eq.(27), we have

ZAQ Z<||w(t+1)—w(t)|2+ln(t;r1) o] _21n(tt1)<w(t+1)—w(t),w>>

t=1

2
gzz <w(t+1) — w(®)|? +n (”tl) 4] ) Y, (30)
t=1

where Eq. (e) is due to Lemma 3 and In (1) = O(}).
Then we only need to prove -, As(t) < oo.

To begin with, by adding one additional term %uﬁ into As, we have
1 t+1 1
As(t) = <1°(t)7 Zw —In (: 'LZJ> + <r(t), —;’UA) - nVE(w(t))> .

On the one hand, by Corollary 3, ||w(t)| = O(v/t), which further leads to
lr ()] = lw®)| +W@®)|w] + @] = O(V?)
By —1In t+1 =0 (%) we have

(0o () w) =0 (1), -

On the other hand, by direct calculation of the gradient, we have

(v~ - 19 Lw0))

1 <r(t> LS g, _nié’“'w z))z >
~ S i y L i
z; €S, i=1
:% <’I’(t), 7nm;9 ( e (w,x;) + f’(<w(t),$l>)) $1> — N <7’(t),77 % E’(<w(t)7mz>)wz> 3



where Eq. () is due to the definition of w (Eq. (10) with C5 = n/N).
Denote
A4(t) = - <’I"(t)71’} Z él(<w(t)7wl>)ml> )

and

As(t) = <7’(t)7 -n Z <1€_<w’wi> +€/(<w(t)7ﬂ3i>)) fﬂz> .

x; €S,
We then analysis these two terms respectively. As for A4(¢), due to ¢/ < 0, we have

Ag(t) < —n <r<t)7 > ¢ ((w(t), wi>>:ci> :
x;¢8Ss,(r(t),2i)>0
By Corollary 5, we further have V¢ > ¢,
—0'(w(t), z;)) < (1 + e H+wB@)e—(wt)z:) < go=(w(t)z:)
which further indicates

Ay(t) <= > C((w(t), @) (r(t), i)

x;¢Ss,(r(t),x;)>0

<n Z 9e—(w(t),®i) (r(t), ;)
x; ¢S5, (r(t),z;)>0

—n Z 26—(r(t)+1n tw+w,x;) (r(t), fBi>
x;¢Ss,(r(t),z;)>0
<n(maxeCme0) 3T e O (r(g) o)

x; ¢85, (r(t),2i)>0

(©) (max; el~®®i) () @
Sn(t—a) S 20 (1), @)
@i ¢Ss,(r(t),@i)>0

() (maxi e<_’z”mi>)

<n 7 2N,
where 6 in Eq. (o) is defined as
0 = min (z;,w) > 1. (32)
As >0, 75 < 0o, we have
Z Ay(t) < ocS. (33)
t=1

For each term (r(t), —n (e~ (@@ 4+ 0'((w, @;))) x;) (x; ¢ Ss) in A5(t), we divide the analysis
into two parts depending on the sign of (r(¢), x;).

Case 1: (r(t), z,;) > 0. By Corollary 5, we have

<r(t), n (;W’vwﬁ +€’(<w,:c,»>)) x>
1 .

)

®In this paper, for a real series {r;}52,, we use 0%, r; < oo representing >_,_, 7; is uniformly upper
bounded for any 7.
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where Eq. (¢) is due to the definition of »(¢) (Eq. (27).

Since (r(t), ;) > 0, we further have

1 .
<’I"(t), —n (te_<‘w7wi> +€/(<U},$Z>)> $2>
1 . L L
<n <_t€<“’f”i> +(1+ e“*““t“’“”’“’”)e<’°(t)““t"’+w’wi>) (r(t), @)

1 oay 1 ] i
D, <_6<w7wi> il tu+eu+<w7wi>)6<r<t>+w,mi>) (r(t), )

t
1 " .
:n;e*“”w” (71 g fu+67u+<w,wi>)67<r(t>,mi>) r(t),z)
where Eq. (O) is due to (w, ;) = 1, Va; € S;.
Specifically,
— 14 (1 tH 6*H+(u~1,wi>)e*<7"(t),mi>
= 14 e @) 4 pmps gmpp (W) o—(r(8), @)
St—/“re—HJr(ﬁ%wz:)e—(’”(t)@i).
Therefore,
1 5 .
nge%w@'ﬁ (71 (1 tﬂue*mw,wn)ef<r<t>,wi>) (r(t), ;)

gn%(m’mn (fwefw<w,wi>ef<r<t>,mi>) (r(t), )

/R S CEURR T S S S
S(1 — B)e titur - =0\ )

Case 2: (r(t), z;) < 0. Similar to Case 1., in this case we have

<r(t), - (16—@@0 0 ((w, :r,i>)) :1:>

<n (_16—@5@1} + (1 _ e—u,<'w(t),:c7:)> e—(w(t),m)) (r(t)7wi>

1 - o o
=n <te(w,mi> + (1 _ ef,u,(r(t)+lntw+w,mi>) e(r(t)+1ntw+w,:ci>> (r(t), x;)

1 . L
:nge—m,mi) (_1 n (1 _ e—u,<r(t)+1ntw+w,wi>) e—(r(t),:m)) (r(t), i) .

Specifically, if (r(t), z;) > —t 05—,

1 , S
’nte—(w,mi> (_1 + (1 _ e—u,(r(t)—i—lntw—&-w,:ni))e—(r(t),mi)) <1‘(t),:1:i>

1 . ~
_ ‘nte(w,mi> (71 + (1 _ tfufe*/x,(r(t)+w,mi))ef(r(t),wi>) <’I’(t), $1>

1
S77751+0.5,L_ €

) 1
:O <t1+0<5ﬂ> )

where Eq. (1) is due to if (r(t), ;) > —t =051,

7<1b,£l:1>

1+ (1 _ t*ufe*u%"(t)ﬂb,mi)) o= (r(t).@:)

lim ‘—1 + (1 - t*“fe*“%"(f)*wxmﬂ) e~{r@d| =,

t—o0
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If =2 < (r(t),z;) < —t~%5#~ we have

1 ~ L
nze_(w,wi) (_1 + (1 N e—y,(r(t)—&—lntw-{-w,wi)) e—(r(t),wi)) <’I‘(t),$i>

_pLe-twa <_1 N (1 _ 1 eu<r<t>+w,wi>) e<r<t>,wi>) (r(t), )

n th—
Sﬂ%e_w”““) (—1 + <1 _— e‘“m”w”) e_<r(t)’mi>> (r(t), ;).

62;17

Therefore, when ¢ is large enough, 1 — S e~H={0i) > 0 which by e~ (r®):®i) > 1 — (r(1), x;)
leads to

2p_

1 ~ eQ;L, -
nie—(w,wi) (_1 + (1 _ e—lb<w7mi>) e—(T(t),iBi)) <’I“(t>,iL‘i>

t tH-
2pn_

Sn%e—(u’;,mi) 1 (1 _ etuf e—u_<u“:,m7~,>> (1- <r(t)’ggl>)) (r(t), ;)

1 2p- . 1
Sn;e‘“"’“ (—1 + (1 - etuf 6_”_<w’m’7>> (1 + t””)) (r(t), ;)

If =2 > (r(t), z,),
n%6_<ﬁ”mi> (_1 + (1 _ e—ﬂ—<7'(t)+1nt1i;+ﬁl7wz‘>) e‘("(t)»ﬂci)) (r(t), z;)
L () —n(w(t),@i) ) o~ (r(t)@)
=npe T (—1+(1—e " ’ 7’)6 : ‘)(r(t),:m).

For large enough ¢, 1 — e—#~{w(t)z:)

t

>
e (@) (_1 n (1 _ e—u7<w<t>,wi>) e—<r(t),wi>> (r(t), )
Sn%e—m,wi) (_1 n (1 _ e—;uw(t),wi)) 62) (r(t), @)

62

1 -
Sn;e‘wm) <—1 + 2) (r(t),z;) <O0.

Therefore, in Case 2., for large enough ¢, we have

Combining Case 1. and Case 2., we conclude that

1
AS(t> S 0 <t1+0'5H+> )

which further yields
D As(t) < 0. (34)
t=1

Combining Eq. (33) and Eq. (34), we conclude that ) ,° | A3(t) < co, which together with Eq. (30)
yields Y72, g(t + 1) — g(t) < oo, and completes the proof. O

We are now ready to prove Theorem 2.
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Proof of Theorem 2. By Lemma 13, we have g(t) is upper bounded. Therefore, by Lemma 11, we
have ||r(t)|| is bounded, which further indicates ||w(t) — In(¢)w|| is bounded.

Therefore, the direction of w(t) can be calculated as

w(t) (e w(t) - I In() | wlt) ~ (0w
WOl Te@l w0l Te0e e - woe] el

B w w(t) — In(t)w w s o

"o+ mozmme] el el 07

The proof is completed.

C.2 Implicit regularization of SGDM

This section collects the proof of Theorem 3. Following the same framework as Appendix C.1, we
will first prove that the sum of the squared gradient norms along the trajectory is finite. One may

expect L(w(t)) + 2% lw(t) — w(t — 1)||? is a Lyapunov function of SGDM. However, due to the

randomness of the update rule of SGDM, L(w(t)) + % lw(t) — w(t — 1)||*> may no longer decrease
(we will show this in the end of Appendix C.2, please see Appendix C.2.3 for explanation).

C.2.1 Loss dynamics
Recall that in the main text, we define u(t) as

w(t) — fw(t—1)
1-0 ’
where the update of u(t) is given by u(t + 1) = u(t) — nVLp) (w(t)). We then prove Theorem 4.

ult) = (35)

Proof of Theorem 4. By the bounded smoothness assumption, we have that
L
Lu(t+1)) < L{u®) + (ult+1) —w(t), VL(u®) + 3 lult +1) - w@)]?,

which by Eq. (35) leads to
L(u(t +1)) < L(u(t)) — (VL (w(t)), VL(u(t))) + LTUHVQ@) (w®)I*.  (36)

Taking the expectation of Eq. (36) with respect to w(t 4 1) conditioning on F; (recall that F; is the
sub-sigma algebra over the mini-batch sampling, such that V¢ € N, w(t) is adapted with respect to
the sigma algebra flow F;), we have

E[L(u(t +1))|F]
Wk, [L(u(t + 1))
SB[ £(au(t)) — (¥ Loy (w(0), V(1)) + “0 [V Legoy (w0 (1))

2
S L(u(®) - n(VLE@(1), VL(u(1) + LTnEé(t) [V Loy (w(t)]1?]

2u(v) — n(V L)), VL0 + 2 01|Vl + 00). G7)

where Eq. (%) is due to that w(¢ + 1) is uniquely determined by B(t) given {w(s)}._;, Eq. (o) is
due to u(t) is uniquely determined by {w(s)}!_,, and Inequality. (o) is due to the affine variance
assumption .

28



Therefore, we have

E[L(u(t +1))F]
<L(u(t)) = n(VL(w(1)), VL(u(t))) + LTn(mHVﬁ(w(?f))H2 +00)

=Lult)) — (VL (1)), VEL(e)) + 0V Lw(D), VE@(D) ~ VL))
+ Z (| VL ()P +o0)

—cu(e) - (1= 5 ) VL) + (7 Lw(o), Ew(o) - Veu) + 75

Lno 1 A
<clu(t) - n( )nvc( wh)IF + 55 VL) + 5 [VL@(®) ~ VL)
LiPag
+ 2
1 L A Ln?
—c(ute) ~u (1= (55 + 5 ) ) IVEGEDI + 5 IVLwlo) - Ve + 252,
where ) is a positive constant that will be specified latter.
Reusing the bounded smoothness assumption leads to
IVL(w(t)) = VL (b))
2 2 (O p*L? _1\112
<L7w(t) - u(@)| = Wll w(t) —w(t =1
t—1 2 t—1
=BLY || nB T TV L) (w(s)) < pry (Zﬁf [ VLe (w H)
%) i1 t—1
S 52L2n2 (Zﬁf 1-s HV‘CE s) H > <Z/6t—1—s>
s=1 s=1
B L%y s
T3 ;5* 1|V L (w(s)| (38)

where Inequality (0) is due to S(w(t) —w(t — 1)) = (1 — 5)(u(t) — w(t)) by Eq. (35), Inequality
(¢) is due to triangular inequality, and Inequality (&) is due to Cauchy-Schwartz Inequality.

Combining Egs. (37) and (38), we have
E[L(u(t +1))|F]

1 L AB2L2? (&S
<) —n (1 (55 + 52 ) ) IV £l + 3020 (Zﬂt VLo ()| )
Ly
+ 5
which by taking expectation with respect to F; leads to
B[L(u(t+1))]
2, 2 [t-1
<eeu) - (1- (55 + 52 ) ) BV + 5352 (Zﬁt 1 [V g (a0 s>>||>
L7]2O'0
+ 2
2 2 t—1
<eeu) - (1- (55 + 55 ) ) BIVEG)IF + 35 o (Zﬁt ORIV <>>||2)
A\B2L2n? Lo
+ 2(1 — /8)2 go + 2 )

29



where the last inequality is due to the affine variance assumption. Letting A\ = Lg:/% then leads to

E[L(u(t + 1))]
<ecu(n) 0 (1~ (5755 + 55 ) n) BIVL@)* + 25 v (i 8=E |vz:<w<s>>||2>

20-48) = 2
BLy’ Lioo
HECEE N AR
By the learning rate upper bound n < W, summing the above inequality over ¢ then leads
to o
E[L(w(T +1))]
T 2 2

U > BLn Ln“ao

= T .

)= S EIvE o) + (Q(lﬂ) oo+ 2%
The proof is completed. O

As a direct corollary of Theorem 4 and Lemma 3, we have the following corollary.
Corollary 6. Let all conditions in Theorem 3 hold. Then, we have

ZEIIVE )2 < (39)

Consequently,
ijz )| < oo

and -
(w(t),z) = oo,V € S
hold almost surely.
Proof. Eq. (39) directly follows from Theorem 4 and Lemma 3. The rest of claims follows immedi-

ately by Fubini’s Theorem and Assumption 2.
The proof is completed. O

C.2.2 Parameter dynamics

Similar to the case of GDM, we define w as the solution of Eq. (10) with C'5 = = 13) ~ - We also let
n(t) be given by Lemma 5, and define 7(t) in this case as

r(t) £ w(t) — In(t)w — b — n(t). (40)

As  is a constant vector, and ||n(¢)|| — 0 as t — oo, we have w(t) — In(¢)w has bounded norm if
and only if ||r(¢)|| is upper bounded. Similar to the GDM case, we have the following equivalent
condition of that ||7(¢)]| is bounded.

r(t)|| is bounded almost surely if and only
if function g(t) is upper bounded almost surely, where g : 7 — R is defined as

1>

g(t)

%Ilr(t)ll2 o) w(t) —w(t—1)) = 2 Y (r(r) —r(r = 1), w(r) —w(r - 1). (41

Proof. To begin with, we prove that almost surely | ' _, (r(7) — (7 — 1), w(7) — w(r — 1))| is
upper bounded for any ¢. By Corollary 6, we have almost surly

Z IVL(w(t))]* < oo.
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On the other hand, for any w, we have

IVEsm@)l =7 | 3 ¢(w a)e

xzeB(t)
< _ Imaz Z ! ((w, x) < —Tmaz ZZ’((w x))
Py b b b
zcB(t) z€S
Omazx ’ ~ NJmax ’ ~
g_iz€(<wvw>)<w7x>77 Zf (w,z))z|| |0
xzeS weS
NUmaz
=N 9 ().

Therefore, we have almost surely,
STIVLB@ W @) < .

which further leads to almost surely

Zuw<t+1> wb)|? <P(1- 52

2

Z BV LB ) (w(s))

Qi@ﬁ””v‘” H)
L EE ) )
<’ Z IVL B (w(s)]|” < oc.
By the definition Sof r(t) (Eq. (40)), we further have
ijzwm — (e — 1) w(r) — wlr — 1))
<Z| ™) = r(r = 1), w(r) — w(r — 1)
< w(r—1)-1 <le>_<n<7>_n(r_1>>,w<r)_w<7_1)>’
ggznw() w(r = 1) < 2 (T - a(r) = e = 1), i)~ wir - 1) )|
szénwm—w(f—nn? 22 (7)) i1
%);Zt:”w(T) wir — 1|2 + Zo( ) <,

where Inequality (x) is due to ||n(7) — n(r — 1)[| = O(1) and In ZHL = O(1).

Therefore, g(t) is upper bounded almost surely is equivalent to 2 ||7(¢) H%—% (r(t), w(t)—w(t—1))
is upper bounded, which can be shown to be equivalent with ||7(¢)|| is bounded following the same

routine as Lemma 11.

The proof is completed. O
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As the case of GDM, we only need to prove g(t) is upper bounded to complete the proof of Theorem
3.

Lemma 15. Let all conditions in Theorem 3 hold. Then, for almost every dataset, we have g(t) is
upper bounded.

Proof. Following the same routine as Lemma 11, we have
g(t+1) —g(t)
=%H"‘(t +1) =) + (r(t), r(t+1) = () + (r(t), VLB (w(t) — (w(t+1) - w(1))),
where >~ || (¢t + 1) — r(¢)||? is upper bounded.
On the other hand, by the definition of 7(t) (Eq. (40)), we have

r(t+1) —r(t)

=w(t+1)—w(t)—1In <t+t1) w—n(t+1)+n(t),

while by Lemma 5,

N1 t+1Y\ .
77 Z v;x; = In <t> w4+ n(t+1) —n(t).

v EB(t)NS,
Combining the above two equations, we further have
N
) ) = wi ) —w) - Y v
i, EB(t)NS,
which further indicates
1 9 N
gt +1) = g(t) = Sllrt +1) = r@)[7 + { 7(t), =1V LB (w(t)) = 4 > v ).

= 3 |
iz, €EB(t)NS,

Therefore, we only need to prove > ,°  (r(t), —nVL(w(t)) — & iwieB(H)ns, ViTi) < 00. By
directly applying the form of VL(w(t)), we have

<7'(t)» *77V£B(t)(w(t)) - % Z Vi

v, €EB(s)NSs

_<r(t),—(1_776)b > ez(<w(t),mi>)mi_% > vzr:>

i, €EB(s) w:x; EB(s)NS,

7 <r<t>7— S e, me - DLy m>

(]‘ - ﬁ)b iz €B(s) N iz, €B(s)NS,
1 3
:7:7 r(t), — Z U((w(t),x;))x; — Z e~ (Wi,
(1=p)b . t
i:x; €B(s) iz, €B(s)NS,

o O (w(t), m)) — ~em @) (r(t), a2)
(1 - ﬂ)b i:wieg(:s)ﬂss ( ! )

- r(t), =0 ((w(t), z;)ex;) .
T B)bi:m;jsm; (1), = ((w(t), x:));)

Let Ag(t) = Zi:wieB(s)ﬂSS (ff’(<w(t),a:i>) — %e*@f’vwﬁ) (r(t),z;), and Az(t) =
Zi:mieB(s)ﬂS? (r(t), =0 ({w(t), x;))x;). We will investigate these two terms respectively.
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As (w(t),z) — oo, V& € S, a.s., we have a.s., there exists a large enough time ¢, s.t., V¢ > to,
Ve € S,

—0'((w(t),z)) < (1 + e r+iw®@))e—(wt)@)
—0((w(t), ) > (1 - e—u7<w(t),w))e—<w(t)7w>’
(z,w(t)) > 0.

Therefore,

Aty < Y0~ (w(t), @) (1), 20) Lir(t) w020
iz, €B(s)NS¢

< ) (e @m0 (1) 2 (1) 2020
i €B(s)NSE

<2 ) e OB rREn =) (1) 2) 1 (1) 0) 50

;€ B(s)NSE

*) 1 .
<2 Z t?e—<w+n(t),wi)e—(r(t),wi><r(t)’wi>]1<r(t)’mi>20
iz, €B(s)NS¢

21 _
—(w+n(t),x;
S @ Yo OB ez

i:x; EB(s)NS¢

(0) 1
=0 (5.

where Inequality. (%) is due the definition of 6 (Eq. (32)), Inequality. (}) is due to
e~ (r®@i) (p(t), ;) < e~ !, and Eq. (o) is due to limy_, o, e~ {(@H+7(0)2i) — o—(w.2i) Thys,

Z A7(t) < 00.
t=1

On the other hand, Ag(t) can be rewritten as
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If (r(t), ;) > 0, we have for ¢ < 0.5,

- ((1 n e—u+<r<t>+1n<t>w+w+n(t>,wi>) o (P(O) Ity b +n(t) @) _ 1e—<w,wi>> (r(t), )

t
N ~ 1 N
—_ —py (r(t)+ln(t)w+w+n(t),x;) —(rt)+n(t),x;) L N\ = (W)
(1—|—e ) e 1) t(r(t),ame
1
—pp(wtn(t),x:) | ,—(rt)+n(t)z:) _ - —(w,x;)
= (1 e ) e 1) L(r(t). @)
© 1 41 —(r(t),z; 1 —(w,x;
= <1+O(t/‘+>) <1+O<t0_5_6>>e (r®@:) _ 1 ¥<r(t),azi>e (@)
_ <67<r(t).,mi> _ 1) L), e Lo (1) om0 (), )o@
t e t tnlirl{p+,0,5—g} s Log
1 1 .
- = ) e r)m) Np—{(W,xi)
< t (tmin{p+70.5—e} ) € <T(t)’ $l>e

@)
©) 1
=0 (tmin{1+u+,1.5a}) ’

where Eq. (e) is due to n(t) = O(;52—), and Eq. (¢) is due to e~ (P (p(t), a;) < i
On the other hand, if {r(¢), ;) < 0, we have

Specifically, if (r(t), ;) > —t~0-5min{n-.0.5}

Hem,m (<14 (1= e 20 0 n20) (1 (1) )

1
s $1+0.5min{u_,0.5} €

(0) 1
=0 <t1+0.5min{u,0.5}> )

—(w,x;)

1 (1 _ 67u7<w<t>,mi>) o~ (r()+n(t).@:)

where Eq. () is due to that as (w(t), x;) — oo and ¢~ 0->ir{r—0-5} _ a5 ¢ — oo, there exists

a large enough time 7, s.t., V¢ > T, under the circumstance 0 > (r(t),x;) > —¢~0-omin{n-.0.5}
67<r(t)+n(t),zi> < 1 and efﬂ_hﬂ(t%mi) < 1.
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If —2 < (r(t),z;) < —t~05min{u—05}" then, for large enough t, |(z;,n(t))| < 2, 1 —
eh— (= (@) +4)

= > 0, and

1
t
% ( 14 (1 _ ek (r(O) () dbb+n (D), m,)) (r(t)Jrn(t),mi)) (r(t), z;)
1 (W,x;)
! ( <1 e ()4, m») e<r<t>+n<t>,mi>> (e (8), )
qertoe (14 (129 02 ) (o(1). )
1 (W,x;)+4

§Ee* W) ( 14+ <1 (1= (r)+ n(t),:I:l))) (r(t), z;)
1
feme (e (122 (
1
; ( (- (
1
ge = (-

1+1+t—05m1n{u 05}+O(t—05m1n{u O5})>< (t),(L'Z> <0.

- 14+ 105 min{p_,0.5} <n(t), :131>)> <7’(t),1131'>

—(w,xz;)+4

1—

)>

) ))
'wacl>+4)>
) ))

14 ¢~ 05min{u_0.5} 4 , (t—o.smin{upb}))) (r(t), ;)

Nl

If —2 > (r(t),z;), then for large enough time ¢, e~ ("M +n(0).@i) > o5 1 _ g=n-(w(t).zi) > o=
and

>

i) (_1 N (1 3 efp,,<w(t),m7;>> 6*<T(t)+n(t)-,wi>) (r(t), z;)

<

1,
t
1 5
<5 (<14 e) (r(t), i) < 0.

Conclusively, if (r(t), z;) < 0, for large enough ¢, we have

<€’(<w(t),wi>) - 16@‘”1’)) (r(t),zi) <O (m) ’

which further indicates, for large enough ¢, we have

1 1
Ag(t) < max {O <t1+0‘5min{,u,,0.5}> 0 (tmin{1+u+,1.55}) } ’

which indicates

> Ag(t) < o0

Therefore,

(gt +1) —g(t))

[M]8

~
Il
—

§||r<t+1>r<t>|2+<r<t>,nvcm)(w(t»Z )3 v:c>

wx; EB(t)NS,

M

ﬁ
Il
_

M

(;r(t +1) —r(t)||* + nAg(t) + 77A7(t)>

t
<00.

1

The proof is completed. O
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C.2.3 Explanation for proper lyapunov function

Based on the success of applying Lyapunov function £(w(t)) + 2% lw(t) — w(t — 1)||? to analyze
gradient descent with momentum, it is natural to try to extend this routine to analyze stochastic
gradient descent with momentum. However, in this section, we will show such Lyapunov function
is not proper to analyze SGDM as this will put constraints on the range of the momentum rate f3.

Specifically, at any step ¢, since the loss L is J(,'““C smooth at w(t), we can expand the loss £ in the
same way as the GDM case:

2

Lw(t+1)) <L(w(t)) + (w(t+1)—w®), VL(w(t))) + %Hw(t +1) —w(t)|?

By taking expectation with respect to w(t + 1) conditioning on {w(s)}._, for both sides, we further
obtain

E[L(w(t+1))[F]

<L(w(t)) + (E [w(t+ 1) — w(t) 7] TL@() + L8 [Ju(t + 1) - w(o) |7

“L(w U%+H;E;@wﬁ+D*UWHELﬁwﬁ%ﬂM#4D*EW@+D*w@HED
005 a4 1) — w027

~L(w(t) + L ((w(t) = wlt = 1) Efw(t+ 1)~ w(t)| 7]
%JﬁﬁmUm@+n—wwWVJ—aéﬂwmma+n—wwmm2

<L) + g () = wlt = DI+ g [B e+ 1) — w(o) |7
+Hﬁ¢EUm@+n—uwm2ﬂ]—a'}MJMw@+n—umnﬂm%

where Eq. () is becasue E [w(t + 1) — w(t) | Fz] = —(1 — B)nVL(w(t)) + B (w(t) — w(t — 1))
due to the definition of SGDM (Eq. (2)). Rearranging the above inequality and taking expectations of
both sides with respect to {w(s)},_; leads to

E[L(w(t+1))] + Q(I__g)nlﬁl IE [w(t + 1) — w(t) [ 7]
s [t + 1) ~ w(o) 2]
<EL((0) + 525 fwlt) = wit - D). (“2)

On the other hand, we wish to obtain some positive constant o from Eq. (42), such that (at least),

E[L(w(t +1))] + oF [Jw(t + 1) — w(t)].

<EL(w(t)) + oF [lw(t) — w(t — 1)|°, (43)
which requires to lower bound E ||E [w(t 4+ 1) — w(t) | F]||* by E || w(t + 1) — w(t)||*. However,
in general cases, I |E [w(t + 1) — w(t) | F]||* is only upper bounded by E || w(t + 1) — w(t)||*
(Holder’s Inequality), although in our case, || [w(t + 1) — w(t) | F;]||* can be bounded as

IE [w(t + 1) — w(t) | 7]

=[~(1 = BVLw(t) + B (w(t) —w(t - 1)
=== BVLwE)* + (18 (w(t) = w(t — D)|* +26(1 = B)nfw(t) — w(t — 1), =VL(w(t))),
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while by the separability of the dataset and that the loss is non-increasing,
E ||| w(t+1) —w(t)|? \]—}} can be bounded as
E[|| w(t+1) —w(t)]?|F]

NO-TQYL(J.T
=2

I [w(t + 1) — wl(t) [Fe])*. (44)

By Eqgs. (42) and (44), we have that to ensure Eq. (43), it is required that
2—0 by? Ho2,,. S 15}

which puts additional constraint on /3 as

B < 2b72 B Hnafnar
- b’72 + Nagna:p - Ho-;lna:cn.

Specifically, the upper bound becomes close to 0 when [N becomes large, and constrains /3 in a small
range.

D Implicit regularization of deterministic Adam

This section collects the proof of the convergent direction of Adam, i.e., Theorem 5. The methodology
of this section bears great similarity with GDM, although the preconditioner of Adam requires specific
treatment for analysis. The proof is still divided into two stages: (1). we first prove the sum of
squared gradients along the trajectory is finite. Additionally, we prove the convergent rate of loss is
O(4); (2). we prove w(t) — In(¢)w has bounded norm. Before we present these two stages of proof,
we will first give the required range of 7 for which Theorem 3 holds. The analyses of this section
hold for almost every dataset, and the "almost every" constraint is further moved in Section F.1.

D.1 Choice of learning rate

Let Hy, be the smooth parameter over [sg, o0) given by Assumption 3. (D). Let B2 = (¢f31)* (¢ > 1).
The "sufficiently small learning rate" in Theorem 3 means

. 1-p¢ 1-8071 1 (eBy)?
\/glnftZQ (1—51 - C(l—lﬁl) 1—(0[31)1“1

Hy-1((1-cp)-1NL(w(1)))

n<

To ensure 7 is well-defined, we need to prove
1— t 1— t—1 1— t
inf b — L (cf1) >0,
t>2 \ 1 — ﬂl C(l — Bl) 1-— (051)t71
and we introduce the following technical lemma:
Lemma 16. Define fi(x) = e’ gt e Z,t > 2. We have fi(x) is decreasing with respect to

— z(l—azt- 1)y

x. Furthermore, for any x € [0,1), we have

f@) =/ f(at). (45)

Proof. First of all, by definition,
1—at 1—x 1—x 1
fla) = x — xt :1+a:—xt :1+;1:(1—a:’5—1) :1+x(1—|—x—|—~~—|—xt_2)
is monotonously decreasing as 0 < x < 1. Secondly, Eq. (45) is equivalent to
(1—at)? (1 — 21
BRI —xt-1) = 2A(1 — 240D
(1—at)? S (1+2h) (1 + 2%)
(T—2t=1)3 = (1 + 2t 1)1 + 220D

—

The left side of the above inequality is no smaller than 1, while the right side is no larger than 1,
which completes the proof. O
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We are now ready to prove 7 is well-defined. First of all, for every ¢, we have

1-Bf  1-8"" 1-(cB)'
1-B c(l- 51) L —(cpr)t!

:ﬂl(l— i_l) < l—ﬂf B 1_(651)15 )
=6 \BO-AT) (@B (e8))
61(1:5) (fe(B1) — fe(eBr)) > 0, 6

where Eq. (x) is by Lemma 16 and ¢3; = /32 < 1.

On the other hand, we have

oy (LB 1= 1 (cB)’ )_( _1) 1
#w<1—& T en) ') TE @7

t t—1 t
By Eq. (46) and Eq. (47), we obtain }:gi — Claflﬁl) 11_@(;? )lt),l is lower bounded by some positive

constant across t, and 7 is well defined.

D.2 Sum of gradients along the trajectory is bounded

We start with the following lemma, which indicates £(w(t))+ || /elq + 2(t) © (w(t) —w(t—1))||?
is a proper Lyapunov function for Adam.

Lemma 17. Let all conditions in Theorem 5 hold. Then, for any t > 1,

L(t-f—l)-f— E]ld—l-l/

w(t + 1) H

1= (cB)!
)H 2en( 17ﬂ1)17(cﬁ y-1

1 1-5
2n(1 -

<L(w(t)) +

Velg+o(t—1)

(w(t) —

(43)

Proof. We start with the case t = 1. To begin with, we have £ is Hy-1(n £ (w(1))) Smooth around

w(1). By definition H, is non-increasing with respect to , and since £~ is also non-increasing, we
have

He=v(New) = Her (2 New())

which further indicates when « is small enough,

L1 +a)) LL(w(1) + o(VL@(1), w(2) ~w(D) + Za?w(2) -~ w()]

)

<L(w(1l)) — %oﬂ

VL o) © (w(2) —wi)|

2

where in Eq. (%) we denote L £ Hy NL(w(1))) and the last inequality is due to 2%704

1
T—cB1

2
4 5 _ — 2 1 :
SPESE) w(t))H o(a?), and <w(w(1)),nm @vc(w(1))> is
positive.
Now if there exists an o € (0,1), such that Eq. (48) fails, we denote o* = inf{«a

Eq.(48) fails for 1 + a}. We have a* > 0, and the equality in Eq. (48) holds for 1 4+ a*.
Therefore, we have for any « € (0, a*),

Vel 1 o) © (w(2) —w(n)|| < Lw(1).

Law(1 + ) < Lw(l +a)) + 2—17’042
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which by Lemma 6 leads to £ is Hy-1(n(w(1))) Smooth (thus L smooth) over the set {w(1 + «) :
a € [0,a*]}, and

L(w(1+a%))

<Lw(1)) + o (VL@(1), w(2) — w(D)) + =(a*)2]w(2) — w(1)|?

2

=ﬁ('w(1))—01*<717 E]ld+'9(1)®(w(2)—w(l)),w(2)—w(1)>+ (0")?[lw(2) — w(1)]

2|

2 L
Vel + o) 0 (w(2) —wD)| +F(a")?

Sﬁwﬂn—M%HVﬁjiﬂﬁ@@mm—quf+47

w — (o 21
<L(w(1)) = (@7)7

1
Vely + 1)(1)

=awu»—w% O Vela + (1) © (w(2) — w(1))

4dd+wm@uwm—wuwf

P Ve e © (w@) - w)|

vely +0(1) o H

<L(w(1)) - (@5

where the second-to-last inequality is due to [|w(2) — w(1)|| > 0 (by Lemma 9) and o* > (a*)?,
while the last inequality is due to

; (49)

Yely+ o) ® (w(2 )—w(l))‘

: 1-8f _ 1-B87' 1-(cB)? 1-57 1-p81  1=(cf1)?
<\/gmft22 (1—51 ~ ST-AD) 1—<c51)1t*1) _ ﬁ(l—ﬁi ~ W18 1—(c§1>)
= L = L
14+(c
VE(a - EE) eaoy e
- L -1 L

Eq. (49) contradicts the fact that the equality in Eq. (48) holds for 1 4+ o*, which completes the proof
oft =1.

If t > 2, following the similar routine as ¢t = 1, we also prove Eq. (48) by reduction to

absurdity. If there exist ¢ and o such that Eq. (48) fails. Denote t* as the smallest time

such that there exists an o € [0,1) such that Eq. (48) fails for t* and . By Lemma 9,
2

vVelg+o(t* —1) @ (w(t*) — w(t* — 1))H is positive, and strict inequality in Eq. (48) holds

for ¢ and o = 0, which by continuity leads to

1>a" 2 inf{a € [0,1] : Eq.(48) fails for 1+ a} > 0.

Then, for any « € [0, a*], we have
L(w(t* + a))

_at”
<L(w(t" +a)) + ;azntl—ﬂé) ’

1-87"1 1—(ep)”
ZCn(l—ﬁl)l—(cﬁ yEr—t

On the other hand, for any time 2 < s < t* — 1, we have

E(w(s—i—l))—i—% (11 _%)
Bi(l=p7Y 1= (ch)’

2en(1 — 61) 1—(efBy)s~1
By Eq. (47), we have
1-63 o 1-p5 1—6§ 1—(cB)*T 1—(cB)®

n(1—51) " en(l—=p1)  en(l—p1) 1—(cBr)® 1—(cfr)*+V

el F B O (w(t* +1) — w(t*))H

<L(w(t")) + Velg+o(tr —1)

—w(tt - 1))”2.

Vela + 5() © (w(s +1) w(s))H2

<L(w(s))+ Yela+ 505 — 1) © (w(s) — w(s — 1))H2 . (50)
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: (-~ "
which by =57 further leads to
1

1-871 1 (ch)®
2en(1—B1) 1 —(¢Br)s 1
1 1-p59
>L(w(s+ 1))+ 577(1 —6311)
L=p7 1=(cB)* 1= (ch)®
2en(1—B1) 1—=(cB1)* 1—(cBr)st!
1-p5) 1- (cﬁl)s"'l
2en(1—=p1) 1—(cbr)*

L(w(s)) + s 5]ld+19(s—1)®(w(s)—w(s—l))H2

YAl 1 () © (wls + 1) ’w(s))H2

2

>L(w(s+ 1)) +

> 11_—( 0(215)1)+1 (ﬁ(w(s +1)+

Velg+0(s) © (w(s +1) — w(S))H

Velg+0(s) © (w(s +1) — w(s))H2>
(5D

On the other hand, for s = 1, we have

£lw(1) 2Lw) + 5o | Ve oM © (w2) — )|
1—(cBi) 1-B 1—(ch)? . - ?
BT (E(w(2))+ S5 1= (e | Vel P @ (w(2) —w(l))H )

(52)

Combining Egs. (50), (51), and (52), we have

L(w(t" + a))

2

1-B071 11— ()"

SL(w(t)) + 2en(1—B1) 1 — (cBr)t" 1 Vela+ ot = 1) © (w(t) —w(t” - 1))H

_Clt" _5*72 _Clt*fl . _ . . 2
<11—(c(55)t)*—1 <£(w(t* —1)+ 2;7(1/3— 61)1— Ecglit** T -2 0 (i — 1) w(t — 2) )
<...

— (¢h1 v —P1 — (c/r)? = 2
TP (et + g 2 O o 0 etz - wi)|)
<P L) < L),
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Therefore, by Lemma 6, £is Hy—1(_1__ n 7 (w(1))) SMmooth (thus L smooth) over the set {w(t*+a) :

1—cpBy

a € [0, a*]}, which further leads to

L(w(t* 4+ a*))

<L(w(t)) + o™(VL(w(t")), w(t™ + 1) —w(t")) + g(a*)Qllw(t* +1) —w(t)]

(®) a* * * t* (4% * *

& —M<w(t +1) —w(t), (1 - B )Vela+ 0(t) © (w(t* +1) — w(t*))

— B = B VL D) © (w(t) — w(t* ~ 1))

+L(w(t")) + g(a*)zllw(t* +1) —w(t)|?

=L(w(t*)) + g(a*)QHw(t* +1) —w(t)|?* - 0‘77((11:5)11)) Velg +o(t*) © (w(t* +1) —w(t*)) ‘2
O[*(l—ﬂi*_l) * * ~ gk * *

o g (W 1) (), VLB © (w(t) — w( 1))

=L(w(t")) + g(a*)zﬂw(t* +1) —w(t)|?* - 0‘77((11_?11)) Velg +0(t*) © (w(t* + 1) —w(t*)) ‘2

O Velag+0(t%) © (w(t” +1) —w(t?)),

+51

a*(1- B < el + ot — 1)

n(l—pB1) Velg + o(t)

Vela b 0" 1) o o/ 550 — 1) 0 (w(t*) — wlt* — 1>>>

ely + I)(t*)

g/j('w(t*))—ks(a*)2||’lU(t*+1)_w(t*)”2_M ‘2

Velg +0(t*) © (wt* + 1) — w(t*))

(@21 = B8 Y | /el v B — 1) ?

+5 © Vela+ () © (w(t™ +1) —w(t))

27)(1_51) N 5]ld+19(t*)
e (R VR e Y o —wi -l
o 2n(1 — B1) S/ely + () OVelg+o(t*—1) 0 (w(t") —w(t" —1))

<L) + (@l + 1) — ()] - an<(11—§>)

Yela + 00 © (w(t* +1) - w(t*))H2

Vela+o(t*) © (w(t™ +1) —w(t")) \2

(@)?(1=p1 7"  1—(cp)"
2n(1 —B1)  cBr(l —(cBr)" 1)

Q-8  1-(p)"

Yon(1 = B1) cBi(l — (cBr)E )

<L(w(t")) + %Lﬁ(a*)Qll Vel +o(t) © (w(t™ +1) —w(t)|?

a*(1-81)
n(1—p1)

(@)*(1=81)  1—(cB)"
2n(1 = B1) Bl —(cfr)t" 1)
(1-p) 1—(cp)”

+51

2

+6

4 ely + l)(t* — 1) © (w(t*) - w(t* o 1))H

Vel 4 o) © (wr + 1) — w))|

2

s Yely 1 o(t) © (w(t* +1) —w(t*))H

2

h 2n(1 — B1) efr(1 — (cB1)t" 1) Velg +o(t* —1) O (w(t*) — w(t* — 1))“
o 2 ottt ,
(E)ﬁ(w(t*)) - M 4 elyg + 19(15*) ® (w(t* + 1) _ w(t*)) ‘
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2

)

+(1 -8 1= (eB)”
2n(1 = B1) e(1 = (cfr)" 1)

where Eq. (e) is due to an alternative form of the Adam’s update rule:

(1= B)Vela+0(t) © (w(t* +1) —w(t*)) = B (1 — B ~H)Vela+o(t — 1) © (w(t*) —w(t* — 1))
=—n(l = B)VL(w(t")), (53)

Inequality (o) is due to

Yelg + ot —1) \/e]ld—i—y tr—1) el + ot —1)

Vel + ot —1) 6 (w(t*) — w(t* — 1))]

= 4 -
E]ld + D(t*) ely + o(t¥) elyg + 52V(t*—1)+(11 ﬂBz)Vﬁ(w(t*))z
elg+ ot — 1) elato(t—1) elg+o(t* —1)
4 = 4 4
Bav(t*—1) atF Iy — t*—1 * =1y o
Eﬂd+2l—T 5]1d+ 52(1 Bi_B;’:J(t 1) 52(1 ﬂi ﬂt)* (t 1) ]l + ﬂ2(1 Bi_B;)*V(t 1)

1By
Ba(1— 857

and f(cf1) > v/ f((cf1)*), and Inequality (O) is due to
. _at Bl 1 (eBy)t 1-8t" . 1-87 71 1 (efy)t”
L b (5 - ) < <1B11 =5 1(651)“1>

<
2\/e ~ 2n - 2n ’

14 (all the computings are component-wisely),

at > (Oé*)Q,

2
Yelg+0(t) O (w(t* +1) — w(t*))H > 0.
This contradicts to that the equality in Eq. (48) holds for t* 4+ a*.
The proof is completed. O

As limy o 8¢ = 0 and limy_, oo (¢B1)* = 0, we have the following corollary based on Lemma 1.

Corollary 7. Let all assumptions in Theorem 5 hold. Then, for large enough t, we have

ﬁ(w(t+1))+m Velg+0(t) © (w(t+1) — H
<L) + g [P = 1) o (wll) - w(t—l»H. (54)
Consequently, we have
ZHVE I < (55)

The proof of Corollary 7 relies on the following classical lemma on the equivalence between the
convergence of two non-negative sequence. The proof is omitted here and can be found in [43].

Lemma 18 (c.f. Lemma 27, [43]). Let {a;}32, be a series of non-negative reals, and € be a positive

real. Then, Y ;2| a; < o< is equivalent to Zfol o < oo
+3 i1 as
Proof of Corollary 7. We have
SR T A S
t=o0 2en(1 = 1) 1 — (Cﬂl)t b 2e(1=By)  2¢en(1—By)’

- B 1 1

lim =

% 277(1 =) (=B 2ven(1- B
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which completes the proof of Eq. (54). Rearranging Eq. (54) leads to

e Y0 © w1 —w)| < gt [V 1 © ) - wie - 1)
3 enT = ) < 2ga )
+ewit) - (Llwl+ )+ 5 [V pm o e+ 1) - wi)| ).

which by iteration further leads to that for a large enough time 7}

Ty s
> b |0 e

<L(w(Ty)) + Vel + (T — 1) © (w(Ty) — w(Ty — 1))H2

1
2v/en(1 = Br)

_L(w(Ty + 1))+ ey BT © (w(Ts + 1) — w(Th + 1))H2

-
2v/en(1 = pr)

<L(w(T) + Ve BT 1) © (w(Th) —w(T ~ 1)

1

Consequently, we obtain
— 23/en(1 = Bu)

On the other hand, for any ¢, we have

Yelg+ o) ® (wt+1) — w(t))H2 < . (56)

Vel +0(t) @ (w(t+1) —

Vel + Dt @w”

2<4gnd+a<t>@<w<t+1>— w(t). | end+u<>@w>—<2eﬂd+ﬁ<t>®<w<t+1>—w<t>>’ﬁ’>
= (—mp(t), ) = — 1_5 : <Zﬂi VL (w >

x, €S x; €S

= 1- 1

TP Zf’(«ui,w(tmz W= wcwol.
1 x;, €S 1

which by Eq. (56) indicates
(11— B1) IVL(w (t))ll2
(=)

t=1 vVely 4+ o(t)

2
As limy_, o (7’(11_;13@1)) = n%(1 — 31)?, we then obtain

S IVL(w(t))|” -\ IVL(w(t))[”

et T VL) %:+zi 1<1— B)B=+ | VL (w(t))

Fz [VL(w(t))]? al Z [VL(w(t)]?
1- > i (- DR uvc(wtw - Vi1i-5 s vz |’
t=1 1/ + L —5 t 1 </5ﬂd+ >i.Q ﬁ)lliBtVL( (t))
1T & VE(w H"’ 2 [VL(w(?) ||2
=d - > 2 < d|w[|5 Z < 00,
t 1| elyg+D(t t 1

velyg+0(t)

which by Lemma 18 completes the proof. O
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Based on Corollary 7, we can further prove Lemma 19, characterizing the convergent rate of loss £
directly.

Lemma 19. Let all conditions in Theorem 5 hold. Then, L(w(t)) = © (t71) , |w(t)|| = ©(In(t)),
and |lw(t) —w(t —1)|| = 0@ 1).

Proof of Lemma 19. To begin with, Eq. (53) indicates
In(1 = BV L(w(t)]*
= - BOVELL B © (w(t + 1) ~w(t) — Fi(1 — ) VEIL 50— 1) © (w(t) — w(t — D)||

< H(1 —B)Vela+0(h) © (w(t +1) — “’(t))H + |

2

Bi(1— B HVela+0(t—1) O (w(t) — w(t — 1))
< (||veta+ o o (it +1) - we)| +||vela + 5 -1 © (w() - w(e - 1))H)2

<2 (H cla+o(t) O (w(t+1) — w(t))H2 + H g+ o0t —1) O (w(t) — w(t — 1))“2) 57)

On the other hand, by Corollary 7,

Z IVL(w(s))]* <

which following the same routine as Corollary 6 leads to
(w(t),z) — oo,V € S.
Therefore, by Lemma 7, there exists a large enough time 77, such that V¢ > T7,
1
(w(t),2) < 0 ({w(t),2)) < Kl((w(t),2)), Ve € S,

which by the separable assumption further leads to

z|| [yl = [VL(w@))|

g—fZK’ )) < KL(w(t)). (58)

xzcS
Combining Eq. (26) and the above inequality, we have
_ 2 2
(W) L(w(t)? <2 (H g+ 000 © (w(t+1) — w(t))H
‘ + H 5]1d+19(t—1)®(w(t)—w(t—l))H2>. (59)

On the other hand, by Eq. (56), we have

Yela + 50 © (w(t +1) - w(t))H2 < .

t=1

Therefore, there exists large enough time 75, such that V¢ > T5,

Yely +o(t) & (w(t +1) — w(t))H2 <1,

and thus,

Yela+ 0(0) © (w(t+1) — w(t))H4 < e om o @t +1) - 'w(t))H2. 60)
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Combining Eq. (59) and Eq. (60), there exists a positive real constant C, such that

L(w <C(Hm@ (t+1) ())H
+ VAR Do ()~ w(i - 1))”2),

| Ve o o e +1) - w(t))”4 <c (H S+ 5() © (w(t+1) - 'w(t))H2

+ Ve e D (w(t) it - 1))H2) _

Rearranging Eq. (54) leads to

Vo1
4/en(1 = B1)

2

(H Vely+0(t—1) @ (w(t) —w(t — 1))H

<Lw(t) + e VAL P (wlt) — it - 1)
_ (L(w(t T 1)+ ZWE\;[iltlﬁl) H Yelg+ o) ® (w(t + 1) — w(t))H2> :

which further indicates

(E(w(t)) Lo Vet

Ten(i = B)
< (c<w<t>>2 bV TR D o (wl) - w(t - 1>>H4)

H Yelg 1 o(t— 1) o (w(t) — w(t — 1))H2)2

4/en(1 = p)

<20 <1+ 4\%%;:161)) (H 6]1d+19(t)@(w(t+1)—w(t))H2

+ H ela+0(t—1) O (w(t) —w(t - 1))H2>

§2C(1+ vetl )4%n(1—ﬁl)<£(w(t»+ et 1

4/en(1 - B1) ve—1 4/en(1 - B1)
et =1 o () - w - 1) HQ— w(t+1))
- i |V e e - w1
Denote £(t) as
£(t) 2 Liw(t)) + —YF! H Yela+o(t—1) 0 (w(t) — w(t - 1))”2.

4/en(1 = p1)

‘We then have

£(t)? <20 (1 + Vetl ) 4y/en(1 — B1)

4\2/517(1751) \4/671 (g(t) —f(t—i—l)),

() =0 (1) e, L(w(t) = O (1) ,
1

and H Velg+o(t—1) 0 (w(t) —w(t — 1))H2 =0 (t) .

which leads to
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Due to Eq. (58), we further have ||VL(w(t))|| = O(¢t~!), which indicates

[w(®)] <[lw(1 H+lew s+1) —w(s)| = [lw(1

<JJw(1)]| + —= an )| = [lw(1 %Z

\/ +€]ld
Zﬁ“vawu))H

<Jw (D)l V) 225 VL)
<Jw (D) + ﬁ D IVL(w(s))] = O(n(1)).
s=1

Therefore, for any « € S, we have (w(t),z) = O(In(t)), which by £ is exponential-tailed leads
to £({(w(t), z)) = Q¢ 1), and thus L(w(t)) = O(¢t~1). Also, since L(w(t)) = O(t~1), we have
(w(t), z) = Q(In(t)), which further leads to ||w(¢)|| = Q(In(¢)), and thus ||w(t)| = O(In(t)).

Finally, we have

VY BV H—Nzﬁf :

s=1

> (w

xcS

> Y e ) < ﬂ”<z£ )
s=1 xzeS xeS
t

> BTVL(w(s))

s=1

I/\
2\4

<

|l = [[m(@)] < Zﬁt_SIIVE(w(S))II,

which leads to ||m(t)|| = ©(¢t~1). Similarly, we have v(t) = O(t~2), component-wisely. As
lim; o0 3% = 0 and lim;_, o, 3% = 0, we have

_om()

=0(t!
ely+o(t ).

Jw(t) —w(t = 1) =

The proof is completed. O

D.3 Parameter dynamics

By Lemma 4, there exists a solution w as the solution of Eq. (10) with C3 =
as

W. Define 7(t)

r(t) 2 w(t) — In(t)w — w, 61)

and we only need to prove ||7(t)| is bounded over time. We then prove r(t) has bounded norm.
Specifically, we will prove the following lemma:

Lemma 20. Let all conditions in Theorem 5 hold. Then, ||r(t)|| is bounded if and only if g(t) is
upper bounded, where ¢(t) is defined as follows.

g(t) £ (r(0), (1 = B )Vella + 50— 1) © (w(t) — w(t ~ 1))

B f ﬁl :
T-5 " () 5 > (r(r) —r(r - 1),

[
(1= B Wela+ (71— 1) © (w(r) —w(r — 1))).

Furthermore, we have .~ | (g(t + 1) — g(t)) is upper bounded.

Similar to GDM, the proof of Lemma 20 is divided into two parts, each focus on one claim of it. We
start with the first claim.
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Lemma 21. Let all conditions in Theorem 5 hold. Then, ||r(t)|| is bounded if and only if g(t) is
upper bounded.

Proof. Following the same routine as Lemma 11 and Lemma 14, we only need to prove

lim H(l BN el + ot —1) 6 (w(t) — w(t — 1))” —0, (62)

t—o0

and

S| == 1,0 - BTHVEL B - Do (w(r) wr - 1) <. (63)

As for Eq. (62), by Lemma 19, we have

H(1 B ey 4 ot —1) 6 (w(t) — w(t — 1))H
=0t~ =o(1).

As for Eq. (62), we have
(r(r) =r(r = 1),(1 = 7 )Vela+ 0(r = 1) © (w(r) = w(r - 1))

_ <w(T) —w(r —1)—In

= b, (1= 8] Vel + 0(r = 1) @ (w(r) — w(r - 1))>‘

< <1n Ti lﬁj, (1 - BT Helg+o(r—1) 0 (w(r) — w(T — 1))>‘
2
+ (=g Ve o =) @ (w(r) - wir - 1)
Zor),
where Eq. () is due to Lemma 19 and In(-=5) = ©(7~ ).
The proof is completed. O

We conclude the proof of Theorem 5 by showing g(#) is upper bounded.
Lemma 22. Let all conditions in Theorem 5 hold. Then, ¢(t) is upper bounded.

Proof. ¢(t) is upper bounded is equivalent to >_,~, g(t + 1) — g(t) < co. We then prove this lemma
by calculating g(t + 1) — g(¢) directly.
gt +1) —g(t)
Ve
T2
NG
- (2
A
1—p
Ve

2 B1
7+ 1) + 1-5
B1

1-p1
(r(t+1) —r@), (1 - BHVelg+0(t) © (wt +1) —w(t)))

_ B1
—7”7"@ +1) — ()] + -5

(1= B WVela+0(t—1) O (w(t) —w(t - 1))> +VE(rt+1) —r(t),r(1t)

(r(t+1), (= B)VeL+ 50 © (w(t +1) — w(t))

I 11 + @ﬁ%@—ﬁ*)eu+ﬁu—n@@ww—wu—nw)

(r(), (1= BOVELL+ 2(0) © (w(t + 1) — w(1))

D (r(0).~(1 = B)VEL T 900 © (wlt + 1) - w(0) - 5 VEw())

1-p
+ éllr(t +1) = r@O)|? + Ve(r(t+1) — (1), r(t)),
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where Eq. (%) is due to a simple rearranging of the update rule of Adam, i.e
P (= BOVEL B © (w(t + 1)~ w(®) - (1 617Vl + 5 - 1) © (w(®) - w(t - 1))
—1 _1751 VL(w(t)) — (1= B1)Vela +0(1) © (w(t +1) —w(t)).

On the one hand, as |7 (t + 1) — r(t)|| = |[w(t + 1) — w(t) — t+1 B = Ot~

Z ||7' t+1)—r(t)]? < oco.

On the other hand,

<7'(t)7 ~(1 = B)VELg + 5() © (w(t + 1) — w(t) - 1_176V£(w(t))>
+Velr(t+1) —r(t),r(t))

- <r(t>, (1= B)ela+ 0(t) O (w(t+1) —w(t) — ”vc<w(t))>
Ve <w(t 1) —w(t)—In (”tl) w, r(t)>

= (r(), ~(1 = BYVEL + (1) © (w(t + 1) — w(t) + VE@(t + 1) - w(t)))

< (t),—vEln <t+1>u§—1fﬁV£(w(t))>
Dot +1) + (vt ~vEm (1 ) 6 - L) ),

where Eq. (e) is due to &(t) = O(t~2).

Furthermore, following exactly the same routine as Lemma 13, we have

oo

) <'r(t), il (T) W — ”vc(w(t))> < 0.

t=1

The proof is completed. ]

E Implicit regularization of RMSProp (w/o. r) with decaying learning rate

This section collects the proof of Theorem 6. To begin with, we formally define RMSProp (w/o. r) as
follows to facilitate latter analysis: for each ¢ € {0,1,2- - -}, divide the sample set S into K subsets
{B(Kt+1),---,B(K(t+ 1))} uniformly and i.i.d., and let

v(0) = 0,v(7) = Bav (1 — 1) + (1 = B2) (VLB (w(r — 1)))?,

VL:B(T) (’U)(T - 1))

(RMSProp (w/o. r)): w(t) =w(T —1) — o(7) + 21
d

Nr

(64)

Here the Lp(,) is the individual loss average over B(7), i.e., Lp(-)(w) = Z(”"y)EB(”be(_mw’m)),

where b = % is the batch size. With Eq. (64), we restate the loss convergence result in [33] as the
following proposition.

Proposition 1 (Corollary 4.1 in [33], restated). Suppose £ is non-negative and L-smooth. Further-
more, assume that there exists a constant D, s.t., Yt > 0, Vw € R¢

K(t+1)

> IVLem(w)|* < DINVL(w)]|?, (65)
T=Kt+1
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and

4K2_1 B
: 2

Then, RMSProp (w/o. r) with decaying learning rate n, = % satisfies

T
S L IVL(w(K®)| = O(In(T)).

Combining Assumptions 1 and 2, we immediately get the following corollary:
Corollary 8. Let Assumptions 1, 2, and 3. (S) hold. Let

4K?
N dK dK 1 —
T, () 2\ G s (1—52>(622 L(&—l) <2t

Then, there exists a positive constant C1 and C3 independent of random sampling, s.t.,

w(Kt))|| < CyIn(T),¥T > 0,
0

and

Cs CCs
—||VL(w (Kt .
T IV e + 5

Applying relationship between ¢ and ¢’ of the exponentially-tailed loss, we can further obtain the loss
convergent rate.

Lw(K(t+1))) < L(w(Kt)) -

Lemma 23. Let all the conditions in Theorem 6 hold. Then, we have

Llw(Kt) = O (%) .

Proof. To begin with, we show that there exists an increasing positive integer sequence {t;}$2;, and
(IVL(w(Kt))| <201 ——=—= m by reduction to absurdity. Otherwise, suppose there exists a positive

integer T, such that | VL(w(Kt))|| > 2C, J%T’ Vt > Ty. Therefore, for T' > T}, we have
T
VL(w(Kt))| > VL(w(Kt
tz \/ﬁ” DI Z \/—H (w(K1))]
T
T+ 2
>2C — >2C
= 1;;75 1=
=11

T42

Let T be large enough, we have 2C In T

> C1 In T, which contradicts Corollary 8.

Denote T = {t > 0 : |VL(w(kt)]| < 20,

increasing positive integer sequence. We then prove that if s € T and s > sT, where sT is defined as

2 2 18,/2
sT £ max <ZCI> —1,(C37)* -1, (901> — 1,4, 1 In \/; —
C "G Cn(yf3-1 7

(C; and Cj is defined in Corollary 2), there exists s < r < 2s, and r € T'. We slightly abuse the
notation and letr =inf{t : ¢t € T,t > s}. If r = s + 1, this claim trivially holds. Otherwise, as
s € T, we have

}. By the above discussion, T contains an

IVL(w(Ks))|| < 2C < Cy,

1
vVs+1
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which by Corollary 2 further leads to
4
L(w(Ks)) < 5 IVL(w(Ks))l.

Therefore, by Corollary 8, we have

Lw(K(s+1))) < L(w(Ks)) +

which by s > sT further leads to
Lw(K(s+1))) <,
and thus L(w(K (s +1))) < %HVE(w(K(s +1)))||.- As (s + 1) ¢ T, we have

IVL(w(K (s + 1)l > 201m7

which leads to

Llw(K (s+2))) < Llw(K (s+1)))— (w(K(s+1)))] < (1 - C”) Clw(K(s+1))),

&Hvﬁ
2v/8+2 8vs+2
and thus £(w(K (s + 2))) < C). By the inductive method, we have for any j € {s +2,--- ,r},

LK QD) <0y (1= S2F) Ll (s + 1) < e s ¥ Ll (s + 1)

< _ O3y (VFFI-VEFD) _eav(vaFi-vsrn 90
e 4 4

Lw(K(s+1))<e

- Ws+1
If » > 2s, applying j = 2s into the above equation leads to
cavvmTi-varn  9C)
L(w(K(2s))) <e” 4 — < (],
(w(K (25))) et
and
_ O (VIAT- /EF) 36C, 2C1

VLK) < e -t

which leads to 2s € T, and contradicts the definition of r. Therefore, we have r < 2s.

As T contains an increasing integer sequence, there exists an sg, s.t., so € T and sg > sT. Let t be
any positive integer larger than sy and let ¢’ be the largest integer smaller than ¢ and belongs to T'.
We have t’ > sg, and t < 2t’ by the above discussion. Therefore, we have

9, 1 <9\/§Cl 1
vy VEFT T oy Vi 2

The proof is completed. ]

L(Kt) <

As a corollary, we can obtain an asymptotic estimation of VLp () (w(7)).
Corollary 9. Let all the conditions in Theorem 6 hold. Then, we have

9oy w(r) = 0 (7).

Proof. LetT > K(sT + 1), where sT is defined as Lemma 23. Lett = [%] > sT and s = 7 — K.
Then, we have

IVL(KL)| < C,
and
36v2C; 1
|VL(w(Kt))|| <4L(w(Kt)) < — iTs
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On the other hand, we have

1N N36\fc1 1
||V£B<T>(w(Kt))||S;;HVL‘( w(Kt))| < N 5

As Lp(7) is H smooth, we further have

IVLp ) (w(Kt)) = VLB (w(r))| <H

= VLpkt+itn) (w(Kt + 1)) H
Z NKt+i+1

i=0 VUKt +i+1) +elq
< KH
“VI=BVEKt+1
Combining the above two equations, we have
KH N 36{ 2C; 1
VL (w(m))| <
KH o N 36f 20, VK
M\/T—i v VTHEK
The proof is completed. O

Using Corollary 9, we are now able to prove Theorem 6.

Proof of Theorem 6 (for almost every dataset). To begin with, deﬁne r(t) £ w(t)— 1In(Et)w—

w — $n(t), where w is the solution of Eq. (10) with C5 = f and n(t) is given by Lemma 5.

As in the case of GDM, SGDM, and Adam (w/s), w(t) — 5 Lln ( Zt) has bounded norm if and only
if () has bounded norm. Also, it is a sufficient condition to ensure ||7(¢)|| is bounded that both

AESZ rt+1) —r@)|> <occand BE Y 72 (r(t+1) —r(t),r(t)) < <.
As for A, we have

M

A=Y 1r) == I
:i wt+1) —w(t) — %ln (Htl) w — %n(t—&—l)—i—%n(t) i
< (i () =)+ 5 3 (S ol + 3 e +n<t>||2>
(2)007

where Inequality (x) is due to

VLpw (w(t))
Velg+0(t+1)

U

[w(t+1) — ()H*\/tJrl

. m _ <
< Ve w)] =0 (1)

In(H) =0 (1), and [|[-n(t +1) + n(t)|| = O (3).
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As for B, we have

1 [/t+1) . 1 1
1) R G K Vs
;<“’ (t + 5 n( t )w Rt + 1)+ 2"(t)’r(t)>
- N
:Z <w = Z iniar(t)>
=1 'L:wiGB(t)mSS
o0 1 VL t N
:Z <_ B(t)gw( ) _ Y Z vi-’BuT(t)>
S\ VIR R el 2 Lo

p”qg

1 ViLpu(w(t )) + 1 VL(w(t))
\/t+1\/5]ld+19( \fW

~
Il

1

= w(t)) 1
+;< 7 Eﬂdw )+\[\fV£B(t)(w(t)),r(t)>
- N
+;< \[ (t»_thi:wieBz(t)msg viwi,T(t)> 0
On the other hand, as
t VLB
)] < 0] + 32 g | TR0 = o
we have |r(t)] = O(n(t)). Also, we have |[VLpq)(w(t))?| = O(3), and thus

1 !
‘ Velg+o(t)  Vela

1 VLB (w(t)) 1 VLpe(w(t)) , _ Int
< \/t+1\/end+ﬁ(t+1)+ﬁ clg+o(t+1) (t)>_0(t3>'
1 VL (w(t)) 1 _ o (Int
<_\/i clg+o(t+1) - ﬁﬁvgB(t)(w(t))’r(t)> -9 ( t? ) ’

i< 1 chmg()) L VEgm(w(t) (t><oo

= O(4). Combining these estimations, we have

and

Therefore,

t=1 \/t+1\/5]1d+V( \[\/m
5 (- Thm) i) <.

As for the last term in Eq. (66), we have

< \[1\[VLB ) (w (t))—% 3 viwi,r(t)>

i, EB(t)NS,

:# _p w T, _ie—<u~,7mi> r =
b\/f\/%e;;)mss( (). @) - )< (1), )

]' /
+ iz i:mieg(:s)ﬁsg (r(t), = ((w(t), zi))z:) -

Then, following the same routine as Lemma 15, we have

- N
E ——VLpm(w(t) — — E viwi,r(t)> < o0.
=1 < Ve PO 2ot iz €B(t)NS,
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The proof is completed. O

F Applications & Extensions

F.1 Deriving the conclusion for every dataset

In Sections 4, 5, and 6, we only derive the implicit regularization for almost every dataset, but not all
the separable datasets. In this section, we show that the "almost every" condition can be removed as
the following theorem.

Theorem 7. We have the following conclusions:

e For GDM, let all the conditions in Theorem 2 hold. Then, GDM converges to the L2
max-margin solution;

» For SGDM sampling with replacement, let all the conditions in Theorem 3 hold. Then,
SGDM (w/. r) converges to the L? max-margin solution (the same for SGDM (w/o. r), except
a different learning rate upper bound);

* For deterministic Adam, let all the conditions in Theorem 5 hold. Then, Adam (w/s) converges
to the L? max-margin solution;

* For RMSProp (w/o. r), let all the conditions in Theorem 6 hold. Then, RMSProp (w/o. r)
converges to the L? max-margin solution.

It can be easily observe that to prove Theorem 7, the analysis of Stage I of every optimizer still works.
Therefore, we only need to change Stage II. As the analyses of Stage II are highly overlapped for
different optimizers, we only provide a proof of GDM.

To begin with, we present some notations and results on the structure of the separable dataset from
[34].

Let So = {1,--- , N}, and Py = I; 4. We then recursively define the index sets S, S;., S, and

S;VLL = {Z € St | <7Dm713m—1-'1311> > 1},
S, ={i€Smn1|{wn Prno1xi) =1} = Sm1/S;},

N
S, = {z €S, |3 € RY) t by = > Py 1@, 05 > 0,95 ¢ S oy = o} ,
k=1
S, =85/Sm.

where P,,, = P,,,_1 (Id —Sg,, ng) (we also denote P,,, = Iyxq — P,y,), and w,), is defined as
the max-margin solution of dataset P,,_1S 5,,_, (thatis, the transferred data x; with index in St

projected through matrix P,,_;):

w,, = argmin||w|\27 st (w, P, 1) > 1,Vi € S, 1. (67)
weRd

The existence of the v is guaranteed by the KKT condition of Eq. (67). The above procedure will
produce a sequence w;, ws, - - -, and will stop at wy, if Sy, is empty (if the sequence is infinite,
we let M = oo). For every ¢ < M, we have w; is non-zero, and .S; is non-empty, which leads to
|Sl| < |S,‘+1|, and M < N.

The following lemma characterize the structure of the dataset.

Lemma 24 (Lemma 17, [34]). V3 € RLSOI I, we can find a unique w1, such that
D @iBiexp (= (@i, 1)) = iy,
€81

and w, € COI(Ssl )
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With Lemma 24, we then define w,,, as the solution of
Z exp ( > wk@i)) Po1@; = Wy,
265 k=1

with P,,,_1,, = 0 and P,,w,, = 0. We also define w = 27]\7/11:1 It
We then have the following lemma:
Lemma 25 (Lemma 18, [34]). Vm > k > 1, the equations

T .

Z exp (—(w, x;)) Pry_1; = Z lz exp (—(w, z;) z;x; ] W, m,
1€Sm k=1 LieSk

under the constraints Pj,_ 1wy, p, = 0 and Pkwk,m = 0 have the unique solution Wy, m,.

‘We then denote
r(t) = w(t) — wy log(t) — w — 7(1),

M N om M m—1 Wi, m
e 70) = (St 08”0+ T T i)

Similar to Eq. 28, we define

B
1-p

t
Al 3

g(t) = §||r(t)||2+ (r(t), w(t) —w(t—1))— 152 Z (t—1),w(r)—w(r—1)).

We then have the following lemma parallel to Lemma 11:

Lemma 26. Let all conditions in Theorem 2 hold. We have sup, g(t) is finite. Furthermore,
sup, ||r(¢)|| is finite if and only if sup, g(t) is finite, and consequently sup, |7 (t)|| is finite.

Proof. The proof of the second argument follows the same routine as the proof of the first argument
in Lemma 11, and we omit it here.

As for the first argument, we have

> (gt +1) —g(t) Z\rt-ﬁ-l—r )12
t=1

MM—\

Z< 0= 5 VL) - Uiy~ (r(e+ 1)~ 7(0)).

where the first term can be shown to be finite similar to Lemma 11, while the second term is finite by
Lemma 14 in [34].

The proof is completed. O

F.2 TImplicit regularization of SGDM (w/o. r)

This section provides formal description of the implicit regularization of SGDM (w/o. r) and its
corresponding proof. To begin with, we would like to provide a formal definition of SGDM (w/o. r).
SGDM (w/o. r) differs from SGDM by applying sampling without replacement to obtain B(t) in
Eq. (2). Specifically, let K = % For any T' > 0, we call time series { KT + 1,--- , KT + K} the
(T + 1)-th epoch, and during the T" + 1-th epoch, the dataset S is randomly uniformly divided into
K parts {B(KT +1),--- , B(KT + K)}, with UtK:TKJFTIil B(t) = S. The implicit regularization
of SGDM (w/o. r) is then stated as the following theorem:

Theorem 8. Let Assumptions 1, 2, and 3. (S) hold. Let learning rate n be small enough, and
B €10, 1).Then, for almost every dataset S, SGDM (w/o. r) satisfies w(t) — In(t)w is bounded as

w(t) W
t — 00, and lim;_, Tw®l = Tl
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The without-replacement sampling method leads to the direction of every trajectory of mini-SGDM
converge to the max-margin solution, compared to the same conclusion holds for SGDM a.s.. We
prove the theorem following the same framework of GDM, by proceeding with two stages.

Stage I. The following lemma proves £(u(t)) is an Lyapunov function for SGDM (w/o. r) and
without the a.s. condition.

Lemma 27. Let all conditions in Theorem 8 hold. Then, we have
L(u(t+1)) < ZIIVE s))|I>.

Proof. By the Taylor Expansion of £(u(t + 1)) at u(t), we have
LWw(KT+T+1))

K

<C(uw(KT + 1)) — 7 <vc<u(KT 1), 3 VL s (wlt + KT))>
t=1

H" (68)

Z Lpuirm(w(t+ KT))

t=1

On the other hand, for any ¢t € {2,--- , K}, we have

t KT+s
w(KT+1t)—w(KT+1) = nz < Z BKT+S_£V£B(Z)("U<£))>

s=1 =1

t KT+s t KT
:nz ( Z BKT+55V£B(¢)(w(€))) +1n Z <Z BETH=T Lo ) (w(ﬁ)))
s=1 s=1

(=KT+1 =1
t

1 _ gt—t+1 1_ 4t KT
Ve mer (KT +0) + /0D Y 65TV L (o)
=1 =1
t 1 gt—t+1 t 1 — gt—t+1
= ﬁiﬁVCB(KT+e) (w(KT +0) -3 22—

1

3 VLpxr+o)(w(KT + 1))
=1 =

_ ﬁt 41

_ gt
+Uﬁ(11_§)25m L ey (w +772 VLprso(w(ET + 1)),
=1

which by 7 is small enough further indicates
|lw(KT +t) —w(KT + 1)
t t
1— ﬂt7€+1 1— ﬁt7€+1
<17 ;:; WVEB(KT—M)(“J(KT +4)) - ;:; 15
BB\~ grer-
W Z pET eVﬁB(z)(w(@)

{=1

VLT o) (W(KT + 1))”

t 1— Bt—e-‘rl

=1

t KT
()Y lw(KT +£) = w(KT + 1)|| + O(n) (Z BTV LE e (w H)

=2 {=1
o) [VE(w(KT + 1))

Applying the same analysis to ||w(KT 4+t — 1) — w(KT + 1)|| recursively, we finally obtain
lw(KT +t) — w(KT + 1)

+n +n

KT
<O(n) <Z prE=t ||VEB(e>(’w(€))||) +O0M) IVL(w(KT + 1)) - (69)

(=1

55



Applying Eq. (69) to the HVL B (w H in Eq. (69) (V¢ € [1, KT)) iterative and choosing 7 to be
small enough, we further have

|w(KT +t) —w(KT +1)||

(Z VBET=O ||V Lp o1y (w (KL + 1))”) +0() [[VL(w(KT +1))||
=0(n) <Z VBET=O ||V Lp(py1) (w (KL + 1))“) :
=0

Therefore,

K
Z VLB xr)(w(t + KT))

D”ﬂx i

T
ﬁB(t+KT) (77 (Z V pET=0H ||V£B(K£+1)(W(K€ + 1))”))

\*
Il
_

T
=KV L(w( ( (Z VBET=0) VLB (k1) (w(KE+ 1))”)) : (70)
=0

Similarly, one can obtain
VL(u(KT + 1))
=VL(w(KT+1))+ O (Jw(KT 4+ 1) —w(KT)|)

=VL(w(KT +1) ( (Z\/BK(T || VLBke+1)( (K€+1))H>>. (71)

Applying Eq. (70) and Eq. (71) back to the Taylor Expansion (Eq. (68)), we have
Lw(KT+T+1))
<L(uw(KT+1)) = Q) (VL(w(KT + 1)), VL(w(KT + 1)))

T 2
2 (Z VBET=O ||V L (kp1) (w (KL + 1))H>
=0
<L(u(KT +1)) — Qn) (VL(w(KT + 1)), VL(w(KT + 1))

v (i (3 VAT [P aimennuta - 1)) ).

Summing the above inequality over 7" and setting 1 small enough leads to the conclusion.

The proof is completed. O

F.3 Extension to the multi-class classification problem

As mentioned in Section 3, despite all the previous analyses are aimed at the binary classification
problem, they can be naturally extended to the analyses multi-class classification problem. Specif-
ically, in the linear multi-class classification problem, for any (z,y) € R%* x {1,---,C} in the
sample set S, the (individual) logistic loss with parameter W € RC*4x is denoted as

eWy7w

ZiC:1 eWis

Correspondingly, dataset S is separable if there exists a parameter W, such that V(x,y) € S, we
have Wy, & > W, x, Vi # y. The multi-class L? max-margin problem is then defined as

min |W || g, subjectto: Wy x> W, x+1,V(x,y) € S,i#y,

ly,Wz)=In
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where || - || 7 denotes the Frobenius norm. Denote W as the L2 max-margin solution, we have SGDM
and Adam (w/s) still converges to the direction of W.

Theorem 9. For linear multi-class classification problem using logistic loss and almost every
separable data, with a small enough learning rate, and 1 > o > B > 0 (for Adam (w/s)), SGDM
and Adam (w/s) converge to the multi-class L? max-margin solution (a.s. for SGDM SGDM (w/. r)).

Here we use several notations and lemmas from [34]. We define w = vec(W), @ = vec(W),
e; € RY (i € {1,---,C}) satisfying (e;); = di;, and A; = e; ® I, where I, is the identity
matrix with dimension dx. We still consider the normalized data, i.e., ||z|| < 1, V(x,y) € S. Then,
the individual loss of sample (x, y) can be then represented as
Uy W) = 1o
,Wz)=1In .
(v, Wa) 0 clw A

Furthermore, the gradient of training error at W has the form

Z ZEJ | elwi(4;-A0)2) (A — Ay)z.

z,y)eS i=1
and the Hessian matrix of £ can be represented as

J 16< w,(A;—As)x) :
Z Z 2(Ai -~ Ay)z((4; - A)z)T,
(fﬂ,y)eSz I (ijl <w’(Aj—Aa‘,)m>>

one can then easily verify all absolute value of the eigenvalues of H.L(w) is no larger than 2, which
indicates L is 2-globally smooth.

On the other hand, the separable assumption leads to (w, (A, — A;)x) > 0, Yy # ¢, which further
indicates

(VL(w), ) > 0.

Letvy = m, following the similar routine as the binary case, we have for a random subset of S
sampled uniformly without replacement with size b, we have

[VL(w)|? < Epu)l[VLB@ (w)|? < < HVL( I (72)

Similarly, we have for any positive real series {a;};2,, ,

ta

> al)ve

t=t,

<Z NV L(w(t))]. (73)

t=t1

72 IVL(w®)] <

t=t1

The proofs of Stage I can then be obtained with Lyapunov functions unchanged and by replacing the
corresponding lemmas using Eq. (72) and Eq. (73).

As for the proofs of Stage II, the Lyapunov functions are still the same, while we only need to
prove the sum of (r(t), — 5 VL(w(t)) — In Hlap) (for GDM, (r(t ), — 15 VLBw (w(t)) —
3 YieieB(1)ns, Viti) for SGDM, (r (1), \fln (44) @ — 125 VL(w(t))) for Adam). For the

multi-class case using GDM, We present the following lemma from [34], while the other two cases
can be proved similarly:

Lemma 28 (Part of the proof of Lemma 20, [34]). If (w(t), (Ay — Az)w> — ocoast — oo
Y(x,y) € S and Vi # y, we have the sum of (r(t), —#Vﬁ(w(t)) n 214p) is upper bounded.

The proof of Theorem 9 is then completed.
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F.4 Precisely characterize the convergence rate

Theorem 2 and Theorem 3 can be further extended to precisely characterize the asymptotic conver-
gence rate for (S)GDM as the following theorem.

Theorem 10. Ler all the conditions in Theorem 2 (Theorem 3) hold. Assume the linear span of
support vectors contains the whole dataset. Then, we have

1
lim tL(w(t)) = C—,
t—o0 n
where C' is a constant independent of learning rate n, momentum hyperparameter 3, and mini-batch
size b.

The proof follows exactly the same routine as (Corollary 1, [23]) and we omit it here.

G Experiments

This section collects several experiments supporting our theoretical results.

G.1 Experiments on linear model

In the following sections, we conduct experiments on the well=posed and ill-posed datasets in
(Figures 1 and 3, [34]). Note that while we try our best to recover the result in [34] by using the same
hyperparameters and the same dataset, there is still some difference between the result of [34] and us,
as the code has not been open source and we are unable to know the initialization method and the
random seed.

G.1.1 Comparing the training behavior of (S)GD, (S)GDM, deterministic Adam and
RMSProp

The experiments in this section is designed to verify our theoretical results, i.e., Theorems 2, 3, 5,
and 6. We use exact the same setting as (Figure 1, [34]) (including the same separable synthetic
dataset and the same learning rate 1/02, ), and run (S)GD, (S)GDM, deterministic Adam and
stochastic RMSProp over it different random seeds (for random samples despite the support sets
{((1.5,0.5),1),((0.5,1.5),1), ((—1.5,—0.5), —1), ((—1.5,—0.5), —1) }), and random mini-batches.
We also report the results with a smaller learning rate 0.1/02,,,. Both the angle between the output

parameter and max-margin solution, the gap between current margin and max margin, parameter
norm and the training loss are plotted in Figure 2. The observations can be summarized as follows:

* With proper learning rates, all of (S)GD, (S)GDM, deterministic Adam and stochastic
RMSProp converge to the max-margin solution, which supports our theoretical results;

* (Similarity between (S)GD and (S)GDM). The asymptotic training behaviors of GD, SGD,
GDM and SGDM are highly similar, which supports our Theorem 10.

* (Different behavior of Adaptive Optimizers). While deterministic Adam and stochastic
RMSProp both converge to the max-margin solution, their training behaviors are different
from those of (S)GD(M). Specifically, their angle gap from the max margin solution first
increases then decreases. This phenomenon, however, can be explained by the proof of
Theorems 5 and 6, the key insight of which is that when the training time is large enough,
the gradient is small and the adaptive learning rate 1/4/v(t) + €1, is dominated by 1/£1,
and thus Adam behaves like GDM and converges to the max margin solution.

G.1.2 Adam on ill-posed dataset

In (Figure 3, [34]), an ill-posed synthetic dataset is proposed to support the argument "Adam does
not converge to max-margin solution". Specifically, such a dataset is derived by multiplying 20
to the second coordinate of all of the data in the dataset adopted in Section G.1.1, and thus both
make the dataset (almost) degenerates to an one dimension line and lead to large singular value
Omaz- However, their experiment does not contradict our implicit regularization result for Adam
(i.e., Theorem 5), as our results hold asymptotically and it can be observed that at the end of their
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(e) Margin Gap

(m) Margin Gap (n) Angle gap (0) Norm

Figure 2: Comparison of (S)GD, (S)GDM, deterministic Adam, and stochastic RMSProp on the
synthetic dataset in [34]. The first line use learning rate 1/02, .. and random seed 1. The second line
use learning rate 1/02, .. and random seed 2. The third line use learning rate 0.1/02, .. and random

seed 1. The forth line use learning rate 0.1/02,,,. and random seed 2.

experiment, the angle gap is still decreasing. Furthermore, we reconduct the experiment of (Figure 3,
[34]) in Figure 3. Specifically, we use the exact setting as [34] (the same ill-posed dataset, the same
learning rate 1/02,,, both for GD and Adam, and 2 x 106 training iterations). It can be observed that
the convergence of loss is rather slow at the first 10* iteration. Also, the angle gap keeps decreasing
at the end of experiment. We increase the training iterations to 2 x 107 in Figure 3 and find the
angle gap is still decreasing. This stands with our result that Adam asymptotically converges to the

max-margin solution.

(a) Margin Gap (b) Angle gap (c) Norm (d) Loss

Figure 3: We reproduce the experiment in (Figure 3, [34]). It can be observed that the loss does not
vary much until 10? iteration.

G.2 Evidence from deep neural networks

We conduct an experiment on the MNIST dataset using the four layer convolutional networks used
in [21, 43] (first proposed by [22]) to verify whether SGD and SGDM still behave similarly in
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—— Deterministic Adam

Angle gap

4 6
logL0(epoch)

Figure 4: We extend the training time in Figure 2 and find that the angle gap keeps decreasing.

(homogeneous) deep neural networks. The learning rates of the optimizers are all set to be the default
in Pytorch. The results can be seen in Figure 5. It can be observed that (1). SGDM achieves similar
test accuracy compared to SGD while (2). SGDM converges faster than SGD.

100.05
—— SGD 99.4 4 S6b
SGDM —8— SGDM
100.00 4 99.2
A e ol Mo oty phacryalnktyed
> 99.0
£ 99.959 z
g é 98.8
£ z
% 99.90 & 98.6
g
98.4
99.85
98.2
99.80 T T T T T T 98.0 T T T T
3 4 5 6 7 8 9 o 100 200 300 400 500
Epoch (log scale) Epoch
(a) Comparison of Training Accuracy (b) Comparison of Test Accuracy

Figure 5: Comparison of SGD and SGDM on MNIST with a four-layer CNN.
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