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Appendix

A LIMITATIONS AND FUTURE WORK

Theory We leverage our proposed PQ Index and derive a PQI-bound to indicate the number of
retained parameters r. Our result is a lower bound for r, which only suggests the maximum number
of model parameters we should prune. One potential future work is to develop an upper for r so
that we can better understand the relationship between sparsity and pruning. Furthermore, our result
introduces an additional term ηr, which is unavailable before determining the pruning ratio. We treat
it as a hyper-parameter in our algorithm and experiments. However, it is desirable to develop a tighter
bound without such approximation. Additionally, how p and q together impact the sparsity measure
and model pruning has not been thoroughly analyzed. Finally, the theoretical justification of the
proposed hypothesis is lacking.

Method Our corroborated hypothesis indicates that a dynamic relationship exists between the
model’s sparsity and compressibility. However, our proposed SAP algorithm determines the number
of pruned parameters based on a static PQI-bound at each iteration. Thus, one potential future work is
to further develop the SAP algorithm by considering the dynamics of sparsity. For example, stopping
pruning when the PQI starts to increase or the pruning ratio is below some threshold. In this work,
we demonstrate the relationship between the performance of iterative pruning and the dynamics
of PQI. It is interesting to analyze the critical factors that may determine such dynamics, such as
initialization and model architecture. Recent works also introduce gradual magnitude pruning which
can outperform iterative pruning algorithms Gale et al. (2019); Renda et al. (2020). Therefore, it is
also interesting to study how PQI are related to various pruning methods Evci et al. (2020); Hoefler
et al. (2021). We demonstrate that SAP with proper choice of hyper-parameters can outperform LT.
It is interesting to explore when SAP can outperform LT with respect to the accuracy-compression
trade-off.

Application We apply the proposed PQ Index for model compression because model compression is
one of the most important topics related to sparsity. However, many other interesting topics could
leverage the PQ Index. For example, one may consider directly optimizing the objective function and
PQ Index together for regularization. Furthermore, fairness that advocates similar performances of
various groups may also benefit from our PQ Index. Finally, other fields using Gini Index, such as
sociology and economics, may also find the proposed alternative index interesting.

B THEORETICAL ANALYSIS

Proof of Theorem 1:
Note that for any 0 < p < q, Hölder’s inequality gives that

∥w∥q ≤ ∥w∥p ≤ d
1
p−

1
q ∥w∥q.

We immediately obtain I(w) ∈ [0, 1− d
1
q−

1
p ] from the inequality above.

Next, we prove that I satisfies six properties, which implies that I(w) is larger if w is sparser. Hurley
& Rickard (2009) prove that (P1) and (P2) are automatically satisfied as long as (D1)-(D4) are met.
Furthermore, we note that f(x) = 1 − 1/x is monotonous for x > 0. Therefore, we only have to
prove (D1)-(D4) hold for S(w) = d

1
p−

1
q ∥w∥q/∥w∥p.

(D2) Scaling is automatically satisfied for S(w) since ℓq-norm is homogeneous for any q > 0, and
(D4) Cloning is clear from the definition of S(w).

For (D1) Robin Hood, we only need to prove that for any wi > wj > 0, the derivative of f(t) at
t = 0 is negative, where

f(t) =
{(wi − t)q + (wj + t)q}1/q

{(wi − t)p + (wj + t)p}1/p
.
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Let a = wi − t and b = wj + t. Take the derivative with respect to t, we have

f ′(t) =
(aq + bq)

1
q−1(−aq−1 + bq−1)(ap + bp)1/p

(ap + bp)2/p

− (aq + bq)1/q(ap + bp)
1
p−1(−ap−1 + bp−1)

(ap + bp)2/p

= f(t)

[
−aq−1 + bq−1

aq + bq
− −ap−1 + bp−1

ap + bp

]
= f(t)

(ap−q − bp−q)(a+ b)aq−1bq−1

(aq + bq)(ap + bp)
.

Note that when t = 0, f(0) > 0 and a > b > 0. Thus, f ′(t) < 0.

Similarly, for (D3) Rising tide, we need to show that f ′(t) is negative, where

f(t) =
(
∑d

i=1(wi + t)q)1/q

(
∑d

i=1(wi + t)p)1/p
.

We can verify that

f ′(0) = f(0)

[∑d
i=1 w

q−1
i∑d

i=1 w
q
i

−
∑d

i=1 w
p−1
i∑d

i=1 w
p
i

]
.

Thus, we conclude the proof by showing that h(t) = (
∑d

i=1 w
t−1
i )/(

∑d
i=1 w

t
i) is a monotonously

decreasing function for t > 0. This is done by showing h′(t) < 0 for all t > 0. Actually, since
wi ≥ 0 and wi’s are not all the same, we know

h′(t) =
(
∑d

i=1 w
t−1
i ln(wi))(

∑d
i=1 w

t
i)− (

∑d
i=1 w

t−1
i )(

∑d
i=1 w

t
i ln(wi))

(
∑d

i=1 w
t
i)

2

=

∑
1≤i<j≤d(wi − wj)(ln(wi)− ln(wj))w

t−1
i wt−1

j

(
∑d

i=1 w
t
i)

2
< 0.

Proof of Theorem 2:

Recall that Mr is the largest r components of w, and ηr is a constant such that
∑

i/∈Mr
|wi|p ≤

ηr
∑

i∈Mr
|wi|p. Therefore,

∥w∥p =

( ∑
1≤i≤d

|wi|p
) 1

p

=

( ∑
i∈Mr

|wi|p +
∑
i ̸∈Mr

|wi|p
) 1

p

≤
( ∑

i∈Mr

|wi|p + ηr
∑
i∈Mr

|wi|p
) 1

p

=

( ∑
i∈Mr

|wi|p
) 1

p

(1 + ηr)
1
p

≤
( ∑

i∈Mr

|wi|q
) 1

q

r
1
p−

1
q (1 + ηr)

1
p ≤ ∥w∥qr

1
p−

1
q (1 + ηr)

1
p .

Rearranging the above inequality gives

r ≥ d(1 + ηr)
−q/(q−p)[1− I(w)]

qp
q−p .
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C EXPERIMENTAL SETUP

Table 1 and 2 summarizes the model architecture of MLP and CNN used in our experiments. Table 3
shows the statistics of model architecture and hyper-parameters used in our experiments.

Table 1: The model architecture of Multi-Layer Perceptron (MLP) used in our experiments. The
nc, H,W represent the shape of images, namely the number of image channels, height, and width, re-
spectively. K is the number of classes in the classification task. The ReLU layers follow Linear(input
channel size, output channel size) layers, apart from the last one.

Image x ∈ Rnc×H×W

Linear(nc ×H ×W , 128)

Linear(128, 256)

Linear(256, K)

Table 2: The model architecture of Convolutional Neural Networks (CNN) used in our experiments.
The nc, H,W represent the shape of images, namely the number of image channels, height, and
width, respectively. K is the number of classes in the classification task. The BatchNorm and ReLU
layers follow Conv2d(input channel size, output channel size, kernel size, stride, padding) layers.
The MaxPool2d(output channel size, kernel size) layer reduces the height and width by half.

Image x ∈ Rnc×H×W

Conv2d(nc, 64, 3, 1, 1)

MaxPool2d(64, 2)

Conv2d(64, 128, 3, 1, 1)

MaxPool2d(128, 2)

Conv2d(128, 256, 3, 1, 1)

MaxPool2d(256, 2)

Conv2d(256, 512, 3, 1, 1)

MaxPool2d(512, 2)

Global Average Pooling

Linear(512, K)

Table 3: Statistics of the models and hyper-parameters used in our experiments for training and
pruning.

Dataset FashionMNIST CIFAR10

Model Architecture Linear MLP CNN ResNet18 Linear MLP CNN ResNet18

Model Size 7.9 K 136.1 K 1.6 M 11.2 M 30.7 K 428.9 K 1.6 M 11.2 M

FLOPS 3.9 M 67.8 M 20.1 G 114.4 G 15.4 M 214.2 M 29.4 G 139.4 G

Train

Epoch E 200

Batch size 250

Optimizer SGD

Learning rate 1E-01

Momentum 0.9

Weight decay 5E-04

Nesterov ✓

Scheduler Cosine Annealing (Loshchilov & Hutter, 2016)

Prune T 30 15 30 15

P 0.2
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D EXPERIMENTAL RESULTS

D.1 PQ INDEX

We visualize the PQ Index of pruned models at the global scale with various combinations of p and q.
We use zero to indicate the numerical overflow may happen when p = 0.1. Note that we use p = 0.5
and q = 1.0 to compute PQ Index for other figures. The results show that various combinations of p
and q also corroborate our hypothesis in different scales, e.g (d) One Shot in Figure 7 and (b) SAP
(p = 1.0, q = 2.0) of Figure 8.

(a) SAP (𝒑 = 𝟎. 𝟓, 𝒒 = 𝟏. 𝟎)

(b) SAP (𝒑 = 𝟏. 𝟎, 𝒒 = 𝟐. 𝟎)

(c) Lottery Ticket

(d) One Shot

Figure 7: Results of PQ index visualized with various combinations of p and q for FashionMNIST
and MLP.
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(a) SAP (𝒑 = 𝟎. 𝟓, 𝒒 = 𝟏. 𝟎)

(b) SAP (𝒑 = 𝟏. 𝟎, 𝒒 = 𝟐. 𝟎)

(c) Lottery Ticket

(d) One Shot

Figure 8: Results of PQ index visualized with various combinations of p and q for CIFAR10 and
ResNet18.
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(a) SAP (𝒑 = 𝟎. 𝟓, 𝒒 = 𝟏. 𝟎)

(b) SAP (𝒑 = 𝟏. 𝟎, 𝒒 = 𝟐. 𝟎)

(c) Lottery Ticket

(d) One Shot

Figure 9: Results of PQ index visualized with various combinations of p and q for CIFAR100 and
WResNet28x8.
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(a) SAP (𝒑 = 𝟎. 𝟓, 𝒒 = 𝟏. 𝟎)

(b) SAP (𝒑 = 𝟏. 𝟎, 𝒒 = 𝟐. 𝟎)

(c) Lottery Ticket

(d) One Shot

Figure 10: Results of PQ index visualized with various combinations of p and q for TinyImageNet
and ResNet50.
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D.2 RETRAINED AND PRUNED MODELS

(a) Retrained models

(b) Pruned models

Figure 11: Results of (a) retrained and (b) pruned models at each pruning iteration for ‘Global
Pruning’ with FashionMNIST and Linear.

(a) Retrained models

(b) Pruned models

Figure 12: Results of (a) retrained and (b) pruned models at each pruning iteration for ‘Global
Pruning’ with FashionMNIST and CNN.

(a) Retrained models

(b) Pruned models

Figure 13: Results of (a) retrained and (b) pruned models at each pruning iteration for ‘Global
Pruning’ with FashionMNIST and ResNet18.
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(a) Retrained models

(b) Pruned models

Figure 14: Results of (a) retrained and (b) pruned models at each pruning iteration for ‘Global
Pruning’ with CIFAR10 and Linear.

(a) Retrained models

(b) Pruned models

Figure 15: Results of (a) retrained and (b) pruned models at each pruning iteration for ‘Global
Pruning’ with CIFAR10 and MLP.

(a) Retrained models

(b) Pruned models

Figure 16: Results of (a) retrained and (b) pruned models at each pruning iteration for ‘Global
Pruning’ with CIFAR10 and CNN.
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(a) Retrained models

(b) Pruned models

Figure 17: Results of (a) retrained and (b) pruned models at each pruning iteration for ‘Global
Pruning’ with CIFAR100 and WResNet28x8.

(a) Retrained models

(b) Pruned models

Figure 18: Results of (a) retrained and (b) pruned models at each pruning iteration for ‘Global
Pruning’ with TinyImageNet and ResNet50.
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D.3 PRUNING SCOPES

(a) Compression Trade-off

(b) Layer-wise Percent of Remaining Weights

(c) Layer-wise PQ Index

Figure 19: Results of various pruning scopes regarding (a) compression trade-off, (b) layer-wise
percent of remaining weights, and (c) layer-wise PQ Index for FashionMNIST and MLP. (b, c) are
performed with SAP (p = 0.5, q = 1.0).

(a) Compression Trade-off

(b) Layer-wise Percent of Remaining Weights

(c) Layer-wise PQ Index

Figure 20: Results of various pruning scopes regarding (a) compression trade-off, (b) layer-wise
percent of remaining weights, and (c) layer-wise PQ Index for FashionMNIST and CNN. (b, c) are
performed with SAP (p = 0.5, q = 1.0).
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(a) Compression Trade-off

(b) Layer-wise Percent of Remaining Weights

(c) Layer-wise PQ Index

Figure 21: Results of various pruning scopes regarding (a) compression trade-off, (b) layer-wise
percent of remaining weights, and (c) layer-wise PQ Index for FashionMNIST and ResNet18. (b, c)
are performed with SAP (p = 0.5, q = 1.0).

(a) Compression Trade-off

(b) Layer-wise Percent of Remaining Weights

(c) Layer-wise PQ Index

Figure 22: Results of various pruning scopes regarding (a) compression trade-off, (b) layer-wise
percent of remaining weights, and (c) layer-wise PQ Index for CIFAR10 and MLP. (b, c) are performed
with SAP (p = 0.5, q = 1.0).
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(a) Compression Trade-off

(b) Layer-wise Percent of Remaining Weights

(c) Layer-wise PQ Index

Figure 23: Results of various pruning scopes regarding (a) compression trade-off, (b) layer-wise
percent of remaining weights, and (c) layer-wise PQ Index for CIFAR10 and CNN. (b, c) are
performed with SAP (p = 0.5, q = 1.0).

(a) Compression Trade-off

(b) Layer-wise Percent of Remaining Weights

(c) Layer-wise PQ Index

Figure 24: Results of various pruning scopes regarding (a) compression trade-off, (b) layer-wise
percent of remaining weights, and (c) layer-wise PQ Index for CIFAR10 and ResNet18. (b, c) are
performed with SAP (p = 0.5, q = 1.0).
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(a) Compression Trade-off

(b) Layer-wise Percent of Remaining Weights

(c) Layer-wise PQ Index

Figure 25: Results of various pruning scopes regarding (a) compression trade-off, (b) layer-wise
percent of remaining weights, and (c) layer-wise PQ Index for CIFAR100 and WResNet28x8. (b, c)
are performed with SAP (p = 0.5, q = 1.0).

(a) Compression Trade-off

(b) Layer-wise Percent of Remaining Weights

(c) Layer-wise PQ Index

Figure 26: Results of various pruning scopes regarding (a) compression trade-off, (b) layer-wise
percent of remaining weights, and (c) layer-wise PQ Index for TinyImageNet and ResNet50. (b, c)
are performed with SAP (p = 0.5, q = 1.0).
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D.4 EFFECTS OF p AND q

(a) 𝒒 = 𝟏. 𝟎

(b) 𝒑 = 𝟏. 𝟎

Figure 27: Ablation studies of p and q for global pruning with CIFAR10 and Linear.

(a) 𝒒 = 𝟏. 𝟎

(b) 𝒑 = 𝟏. 𝟎

Figure 28: Ablation studies of p and q for global pruning with CIFAR10 and MLP.

(a) 𝒒 = 𝟏. 𝟎

(b) 𝒑 = 𝟏. 𝟎

Figure 29: Ablation studies of p and q for global pruning with CIFAR10 and ResNet18.
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D.5 EFFECTS OF ηr AND γ

(b) 𝜼𝒓 = 𝟎. 𝟎

(a) 𝜸 = 𝟏. 𝟎

Figure 30: Ablation studies of ηr and γ for global pruning with CIFAR10 and Linear.

(b) 𝜼𝒓 = 𝟎. 𝟎

(a) 𝜸 = 𝟏. 𝟎

Figure 31: Ablation studies of ηr and γ for global pruning with CIFAR10 and MLP.

(b) 𝜼𝒓 = 𝟎. 𝟎

(a) 𝜸 = 𝟏. 𝟎

Figure 32: Ablation studies of ηr and γ for global pruning with CIFAR10 and ResNet18.
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