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A Ablation Visualization

Fig. 9 illustrates the ablation study we led in Tab. 2. When VidEdit receives both conditional controls, it
produces high quality results. Conversely, when these controls are deactivated, the model is free to perform
edits at random locations in the atlas, resulting in uninterpretable visual outcomes. Enabling only the edge
conditioning yields similar results, with the di�erence that the model attempts to locally match inner and
outer edges. Finally, the sole use of a mask allows to perform edits at the correct locations, but that are
semantically absurd once mapped back to the image space.

Input Video: "A small white car driving down a city street"

Mask HED Target Edit: "car" æ "a golden car"
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Input Video: "A black swan floating on top of a body of water"

Mask HED Target Edit: "bird" æ "a crystal swan sculpture"
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Figure 9: Ablation visualization.
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B Additional Results

B.1 VidEdit samples

Source Prompt: "A couple of people riding a motorcycle down a road"

Target Edit: "trees" + "mountains" æ "snowy trees"

Target Edit: "trees" æ "a mountain lake"

Target Edit: "potted plant" æ "a bouquet of roses"

Target Edit: "person" + "motorcycle" æ "two golden statues riding a motorbike"

Source Prompt: "A man riding a kiteboard on top of a wave in the ocean"

Target Edit: "sea" + "mountains" + "sky" æ "sea with mountains, Van Gogh style"

Target Edit: "person" æ "a santa"

Target Edit: "sea" + "mountain" + "sky" æ "a fire", "person" æ "a fireman"

Target Edit: "sea" + "mountain" + "sky" æ "the milky way", "person" æ "an astronaut"

Figure 10: Additional VidEdit sample results.
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B.2 Baselines Comparison

Fig. 11 shows additional baselines comparison examples. We can see on both videos that VidEdit renders
more realistic and higher quality textures than other methods while perfectly preserving the original content
outside the regions of interest. The flamingo has subtle grooves on its body that imitate feathers and
a fine light e�ect enhances the edit’s grain. On the contrary, Text2Live struggles to render a detailed
plastic appearance. The generated wooden boat also looks less natural and more tarnished than VidEdit’s.
Tune-a-Video and Pix2Video render unconvincing edits and completely alters the original content.

Input Video: "A flamingo standing on top of a body of water"

Target Edit: "bird" æ "a plastic flamingo"
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Input Video: "A white boat traveling down a body of water"

Target Edit: "boat" æ "a wooden boat"
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Figure 11: Additional qualitative comparison between baselines.
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C Blending E�ect

Fig. 12 shows the blending step’s importance in the editing pipeline (Fig. 3). When considering only the
RGB channels of a foreground atlas to infer an object’s mask, the segmentation network has to deal with low
contrasts between the background and the object, as well as duplicated representations within the overall
atlas representation. This might lead to partially detected objects or masks placed at an incorrect location.
In order to avoid these pitfalls, we leverage the atlas’ alpha channel which indicates which pixels contain
relevant information and must thus be visible. Therefore, we choose to blend the RGB channels with a fully
white image according to the alpha values:

ABlended = ARGB § – + I § (1 ≠ –)

with ARGB the RGB channels of an atlas representation, I a fully white image and – the atlas’ opacity values.

Partially detected object Fully detected object

White Blended AtlasNon Blended Atlas

Mask Generator

Figure 12: Alpha blending e�ect

D Atlas Construction

The atlas construction method takes as input a video and rough masks delineating the object(s) of interest.
The objective is to compute (1) a collection of 2D atlases, one for the background and one for each dynamic
object of interest; (2) a mapping from each pixel in the video to a 2D coordinate in each atlas; (3) opacity
values at each pixel concerning each atlas. Each component is represented via coordinate-based MLPs. For
the editing purpose, atlases are discretized into a fixed image grid (1000 ◊ 1000).

First, the mapping networks Mb,Mf receive a pixel location p = (x, y, t) œ R3 as input and output its
corresponding 2D point (u, v) œ R2 in each atlas

Mb(p) = (up
b , vp

b ), Mf (p) = (up
f , vp

f )

The predicted 2D coordinates are then fed to an atlas network A, that outputs the atlas’ RGB color at that
location. While separate networks Af , Ab could be learned to represent foreground and background, it is
su�cient to use a single atlas A, and restrict mapping networks Mb,Mf to point into separate pre-defined
quadrants in continuous [-1,1] space. The 2D atlas coordinates are then passed through a positional encoding
denoted by „(·), to represent high frequency appearance information. The predicted colors are provided by:

A(„(up
b), „(vp

b )) = cp
b , A(„(up

f ), „(vp
f )) = cp

f

In addition, each pixel location is also fed into the alpha MLP, M–(„(p)) = –p which outputs the opacity
of each atlas at that location. The decomposition of the foreground and background layers is achieved by
bootstrapping the alpha network using rough object masks that are computed with a pre-trained segmentor.
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Utilizing these networks, the reconstructed RGB color at each video pixel is estimated by alpha-blending the
corresponding atlas colors such that

cp = (1 ≠ –p)cp
b + –pcp

f

This framework is trained end-to-end, in a self-supervised manner, where the main loss is a reconstruction
loss to the original video. Additionally, regularization losses on the mapping and decomposition enforce the
learning of a meaningful and semantic atlas that can be used for editing:

1. Rigidity loss: The local structure of objects is preserved as they appear in the input video by
encouraging the mapping from video pixels to atlas to be locally rigid.

2. Consistency loss: Corresponding pixels in consecutive frames of the video are forced to be mapped
to the same atlas point; pixel correspondence is computed using an o�-the-shelf optical flow method.

3. Sparsity loss: Mapping networks are encouraged to recover the minimal content needed to recover
the video in atlases via a sparsity loss.

The total loss is given by:
L = Lcolor + Lrigid + Lflow + Lsparsity

Additional details about these loss terms can be found in (Kasten et al., 2021). We follow the implementation
setup described in this paper to obtain the discretized atlases that are used to perform editing.
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