
Supplementary: Iterative Scene Graph Generation

Siddhesh Khandelwal1,2 and Leonid Sigal1,2,3
1Department of Computer Science, University of British Columbia

2Vector Institute for AI
3CIFAR AI Chair

{skhandel, lsigal}@cs.ubc.ca

The code for our approach is available at github.com/ubc-vision/IterativeSG.

A Augmenting Iterative Framework to MOTIF

As described in Section 3 of the main paper, our proposed iterative refinement formulation is model
agnostic and can be integrated to any existing architecture. We demonstrate this in Section 5.3
of the main paper by augmenting our proposed approach to an existing model in MOTIF [55],
showing improved scene graph generation performance. In this section we present the details of this
integration.

As is the case with most two-stage architectures, MOTIF [55] relies on a pre-trained detector (like
Faster R-CNN [41]) to generate bounding box proposals B “ tbiu and corresponding labels L “ tliu
for entities E “ teiu within a given image. For each of these bounding boxes, the model extracts
corresponding image features zi via a Region of Interest (ROI) Pooling [41] operation. Additionally,
as the task of scene graph prediction requires a pair of entities to associate a relation with, an IOU-
based thresholding is used to couple entities into candidate pairs tpei, ejqu. Subsequently, for each
of these entity pairs pei, ejq, features representing the union of their corresponding bounding boxes
pbi,bjq is extracted via a similar ROI pooling operation. We represent these union features as ui,j .

MOTIF [55] utilizes the set of features tziu and tui,ju, alongside the bounding box proposals tbiu

and entity label estimates tliu, to generate object/subject labels and the corresponding predicate
between them. MOTIF achieves this by instantiating entity fs,o and predicate fp networks, each
utilizing bidirectional LSTM. Note that, contrary to our transformer based formulation (Section 4 of
the main paper) that has separate decoders for the subject and object (namely fs and fo, MOTIF uses
a single network to predict both the subject and object labels.

Entity Network. To obtain subject/object labels, for each entity ei, MOTIF [55] uses a bidirectional
LSTM to obtain the set of contextual entity representations tcei u,

tcei u “ biLSTM ptzi, liuq (A1)

where cei is the concatenation of the final hidden states of the bidirectional LSTM. A decoder LSTM
then sequentially generates labels tplei u for each entity as follows,

hi “ LSTM

´
cei ,plei´1

¯

plei “ argmax pWehiq

(A2)

where We is a learned parameter.

Predicate Network. Similar to the entity network, the predicate network also uses a bidirectional
LSTM to obtain contextual predicate representations tcpi u as follows,

tcpi u “ biLSTM

´
tcei ,plei u

¯
. (A3)

1

https://github.com/ubc-vision/IterativeSG

For each candidate pair pei, ejq, the predicate label tplei,ju is then obtained as follows,

gi,j “ pWhc
p
i q d

`
Wbc

p
j

˘
d ui,j

plei,j “ argmax pWpgi,jq

(A4)

where Wh,Wb,Wp are learned parameters, and d is the element-wise product.

We refer the reader to [55] for a more detailed explanation of the entity and predicate networks. Our
iterative refinement augmented variant of MOTIF defines T entity and predicate networks, denoted
by f t

s,o and f t
p at layer t. Following our formulation described in Section 3 of the main paper, we

condition the inputs to the entity f t
s,o and predicate f t

p networks appropriately. The two types of
conditionings, namely conditioning within a step (CWS) and conditioning across steps (CAS) are
implemented as follows,

Conditioning Within a Step. Contrary to the transformer based model where we need to explicitly
condition with a step (Equation 3 of the main paper), this is already implemented in the default MOTIF
[55] architecture. This is evident from Equation A3 wherein the contextual predicate representations
tcpi u are obtained by using the entity contextual representations tcei u. This implicitly defines the
following conditioning ei Ñ pi.

Conditioning Across Steps. In accordance with Equation 2 of the main paper, we want to condition
the predictions at layer t on the graph estimate at layer t ´ 1. This is achieved by modifying the
inputs tziu and tui,ju. Specifically, for a particular step t, the input to the entity network tztiu is
obtained as follows,

tpztiu “ tzt´1
i u ` FFN

`
MultiHead

`
tzt´1

i u, tht´1
i u, tht´1

i u
˘˘

tsztiu “ tpztiu ` FFN

`
MultiHead

`
tpztiu, tgt´1

i,j u, tgt´1
i,j u

˘˘

tztiu “ tsztiu ` FFN

`
MultiHead

`
tsztiu, tut´1

i,j u, tut´1
i,j u

˘˘
(A5)

Similarly, for a particular step t, the input to the predicate network tut
iu is obtained as follows,

tput
i,ju “ tut´1

i,j u ` FFN

`
MultiHead

`
tut´1

i,j u, tht´1
i u, tht´1

i u
˘˘

tsut
i,ju “ tput

i,ju ` FFN

`
MultiHead

`
tput

i,ju, tgt´1
i,j u, tgt´1

i,j u
˘˘

tut
i,ju “ tsut´1

i,j u ` FFN

`
MultiHead

`
tsut´1

i,j u, tzt´1
i u, tzt´1

i u
˘˘

(A6)

Finally, to allow each layer t to refine the estimates of the previous layer t ´ 1, the representations
ht
i and gt

i,j are modelled as residual connections. Specifically, we modify Equations A2 and A4 as
follows,

ht
i “ ht´1

i ` LSTM

´
ct,ei ,plt,ei´1

¯

gt
i,j “ gt´1

i,j `
`
Wt

hc
t,p
i

˘
d

`
Wt

bc
t,p
j

˘
d ut

i,j

(A7)

B Additional Implementation Details

Number of Epochs and Model Selection. The transformer models are trained for 50 epochs on
Visual Genome [30] and 18 epochs on Action Genome [25]. The best model is selected by checking
the validation set performance in each of the datasets.

Hardware. The training is done on 4 Tesla T4 for the transformer models. For the MOTIF
augmentation, the training for both the baseline and our variant is done on 4 NVidia A100 GPUs.

Generating Graph from Triplets. As our transformer model generates relation triplets, we obtain
a graph by applying a non-maximum suppression (NMS) strategy [15, 41] to group the predicted
subjects and objects into entity instances. This NMS is applied separately per class, and each
predicted subject/object is then assigned to a post-NMS bounding box by checking the IoU overlap.

Data Splits. For the Visual Genome dataset [30], we follow the widely popular data
splits provided by [55], which can be found at the official release repository of [46]:

2

github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch. For the Action Genome dataset
[25], to facilitate fair comparison with the baselines, we contacted the authors of [16] and obtained
their data pre-processing code.

The code for our approach is available at github.com/ubc-vision/IterativeSG.

C Additional Results

C.1 Additional Ablations

Table A1: Refinement Across Steps. Results are shown for the model trained using ↵ “ 0.14,� “

0.75 on the Visual Genome test set. To measure the scene graph generation performance, we report
recall, mean recall, and harmonic recall. To measure the detection performance, we report the box
AP, AP50, and AP75 to analyze the detection performance. Finally, we report the relative model size
compared to the final model at each refinement layer.

t mR@20/50 R@20/50 hR@20/50 AP AP50 AP75
Model

Size
1 9.4 { 13.3 18.4 { 23.3 12.4 { 16.9 11.8 24.2 9.7 0.61ˆ

2 10.7 { 14.8 19.8 { 24.8 13.9 { 18.5 13.5 26.3 11.8 0.69ˆ

3 11.1 { 14.8 20.2 { 25.2 14.3 { 18.6 14.0 26.8 12.5 0.76ˆ

4 11.7 { 15.7 20.8 { 26.0 15.0 { 19.6 14.5 27.4 13.0 0.84ˆ

5 11.8 { 15.6 21.0 { 26.1 15.1 { 19.5 14.6 27.6 13.1 0.92ˆ

6 11.8 { 15.8 21.0 { 26.1 15.1 { 19.7 14.6 27.6 13.2 1ˆ

Refinement Across Steps. To further analyze the effectiveness of our refinement procedure, we
contrast the quality of scene graphs generated at each refinement step for a particular trained model
(↵ “ 0.14,� “ 0.75) in Table A1. From the improvements in recall, mean recall, and harmonic
recall at each t, it can be reasoned that the quality of the generated graphs steadily improves with
each refinement step, wherein the biggest gains are observed in the initial stages. Furthermore, the
improvement in the AP numbers indicate that the detection performance improves simultaneously
alongside the graph generation performance, highlighting the ability of our approach to jointly reason
over subjects, objects, and predicates. Additionally, as each layer t generates a valid scene graph, an
added benefit of our proposed formulation is its ability to allow model compression without the need
for re-training. One can simply select the first t refinement layers (and discard the rest) depending on
the desired accuracy-memory trade-off. For example, from Table A1, selecting the first 4 layers (and
discarding the last 2) gives a model that is 0.84 the size at the expense of a 0.1 drop in hR@50 and
hR@100.

Table A2: Number of Queries Ablation. We vary the number of queries used by our transformer
decoders and report recall, mean recall, and harmonic recall on the Visual Genome test set. This
ablation assume ↵ “ 0.14,� “ 0.75.

Queries mR@20/50 R@20/50 hR@20/50
150 11.7 { 15.0 21.0 { 25.6 15.0 { 18.9
300 11.8 { 15.8 21.0 { 26.1 15.1 { 19.7
450 11.6 { 15.7 20.7 { 26.2 14.9 { 19.6

Number of Queries. We additionally ablate the number of queries used by the decoders of our
transformer model. We report performance on recall, mean recall, and harmonic recall on the Visual
Genome [55] dataset in Table A2, assuming ↵ “ 0.14,� “ 0.75 for all models. It can be seen that
setting the number of queries to be too low or too high is detrimental to performance.

Zero Shot Recall. Introduced in [36], zero shot recall (zsR@K) measures recall@K for <subject,
object, predicate> that are absent from the training set. Therefore, this measure allows analysis
of a model performance on unseen relationships. We report zsR@50/100 for certain baselines
(including concurrent work in [31]) and our approach in Table A3. It can be seen that our approach in

3

https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://github.com/ubc-vision/IterativeSG

Table A3: Zero Shot Recall. We report zero shot recall for baselines and our approach. The baseline
numbers are borrowed from [31].

Model zR@50/100

1 BGNN [32] 0.4 { 0.9
2 DT2-ACBS [11] 0.3 { 0.5
3 VCTree-TDE [46] 2.6 { 3.2
4 SGTRM“3 [31] 2.4 { 5.8

5 Oursp↵“0.14,�“0.75q 2.8 { 3.7
6 Oursp↵“0.14,�“0.75q,M“3 3.9 { 5.6

5 provides the best zsR@50 (0.2 higher when compared to 3), which is a stricter metric. Although
SGTR [31] (4) has a higher performance on zsR@100, as described in Section 5.2 of the main
paper, it selects top-3 subjects and objects for each predicate, leading to more relationship triplets
being generated. Therefore, for a fairer comparison, we evaluate our model in 5 using a similar
top-k strategy, wherein we select the top-3 predicates for each subject-object pair. This is done by
getting the 3 most likely predicate classes from the distribution generated by the predicate decoder.
The resulting model (6) provides a much greater margin on zsR@50 (1.5 higher than SGTR [31])
while being comparable on zsR@100 (0.2 lower).

Per Class Recall. We show the per-class predicate recalls on Visual Genome [30] in Figure A1.
Additionally, we contrast the per class recalls between steps t “ 1 (which corresponds to the model
with no refinement) and t “ 6. It can be seen that with more refinement steps, the model is able
to perform considerably better across most classes. A similar observation can be made for Action
Genome [25], as shown in Figure A2.

Per Class AP. We show the per-class object APs on Visual Genome [30] in Figure A3. Additionally,
we contrast the per class APs between steps t “ 1 (which corresponds to the model with no
refinement) and t “ 6. It can be seen that with more refinement steps, the model is able to perform
considerably better across object classes. Note that, for brevity, we only show the top 50 object
classes, selected according to the difference between class AP at step t “ 1 and step t “ 6. Per-class
object APs for the Action Genome [25] dataset is shown in Figure A4.

C.2 Complementarity to Data Sampling Approaches

In Section 5.2 of the main paper, we briefly highlight that our proposed loss weighting strategy is
complementary to existing data sampling approaches by fine tuning our model in 20 (Table 1 of the
main paper) using BGNN [32]. This fine-tuning is done only on the final predicate softmax layer, and
all other parameters are freezed. For ease of readability, we copy relevant results from Table 1 of
the main paper into Table A4. We show our approach fine-tuned using BGNN [32] in 6 (Table A4)
provides a considerable improvement over our approach without BGNN (4 ; 1.3 mR@50 higher with
similar hR@50/100 numbers). In comparison to the baseline SGTR [31] with BGNN (3), our model
in 6 provides better mR@50 (1.3 higher), R@50/100 (2.3/0.7 higher), and hR 50 (1.6 higher). As
described in Section 5.2, the poorer performance on mR@100 and hR@100 is largely due to SGTR
[31] selecting top-3 subjects and objects for each predicate, leading to more relationship triplets being
generated. Therefore, for a fairer comparison, we evaluate our model in 6 using a similar top-k
strategy, wherein we select the top-3 predicates for each subject-object pair. The resulting model
in 7 outperforms the baseline in 3 by a significant margin on all metrics, leading to improved
recall on head, body, and tail classes. Therefore, our proposed loss weighting scheme can be used in
addition to existing data sampling strategies, making it more flexible.

C.3 Qualitative Results

We provide additional qualitative results for our transformer model at different steps in Figures
A5-A14. These highlight steady improvements in the graph quality over refinement steps.

4

Table A4: Complementarity to Data Sampling Approaches. Mean Recall (mR@K), Recall (R@K),
and Harmonic Recall (hR@K) shown for the baseline and our approach. B=Backbone, D=Detector.
Baseline results are borrowed from [31]. M indicates the number of top-k links used by the baseline
[31].

B D # Method mR@50/100 R@50/100 hR@50/100 Head Body Tail

R
es

N
et

-1
01

D
ET

R

1 SGTRM“1 [31] 12.0 { 14.6 25.1 { 26.6 16.2 { 18.8 27.1 17.2 6.9
2 SGTRM“3 [31] 12.0 { 15.2 24.6 { 28.4 16.1 { 19.8 28.2 18.6 7.1
3 SGTRM“3,BGNN [32] [31] 15.8 { 20.1 20.6 { 25.0 17.9 { 22.3 21.7 21.6 17.1

4 Oursp↵“0.14,�“0.75q 15.8 { 18.2 26.1 { 28.7 19.7 { 22.3 28.2 19.4 13.8
5 Oursp↵“0.14,�“0.75q,M“3 19.5 { 23.4 30.8 { 35.6 23.9 { 28.2 32.9 28.1 15.8
6 Oursp↵“0.14,�“0.75q,BGNN [32] 17.1 { 19.2 22.9 { 25.7 19.6 { 22.0 24.4 20.2 16.4
7 Oursp↵“0.14,�“0.75q,BGNN [32],M“3 20.2 { 24.1 29.0 { 34.2 23.8 { 28.3 27.7 30.1 18.5

5

Figure A1: Per Class Recall on Visual Genome. Plot shows the recall for the individual predicate
classes in Visual Genome [30] for our model trained with ↵ “ 0.14,� “ 0.75. The y-axis is sorted
in increasing order of predicate frequency in the training set, with the more popular (head) classes at
the bottom, and the less popular (tail) classes at the top. We additionally contrast the per class recalls
between steps t “ 1 (indicating no refinement; in red) and t “ 6 (in blue). The number next to each
bar indicates the difference between recall at t “ 6 and t “ 1 for a particular predicate class.

6

Figure A2: Per Class Recall on Action Genome. Plot shows the recall for the individual predicate
classes in Action Genome [25] for our model trained with ↵ “ 0.14,� “ 0.75. The y-axis is sorted
in increasing order of predicate frequency in the training set, with the more popular (head) classes at
the bottom, and the less popular (tail) classes at the top. We additionally contrast the per class recalls
between steps t “ 1 (indicating no refinement; in red) and t “ 6 (in blue). The number next to each
bar indicates the difference between recall at t “ 6 and t “ 1 for a particular predicate class.

7

Figure A3: Per Class AP on Visual Genome. Plot shows the AP for the top 50 individual
object classes in Visual Genome [30] (out of 150 total object classes) for our model trained with
↵ “ 0.14,� “ 0.75. We contrast the per class APs between steps t “ 1 (indicating no refinement; in
red) and t “ 6 (in blue). The number next to each bar indicates the difference between AP values at
t “ 6 and t “ 1 for a particular object class. The y-axis is sorted by this difference value.

8

Figure A4: Per Class AP on Action Genome. Plot shows the AP for the individual object classes in
Action Genome [25] for our model trained with ↵ “ 0.14,� “ 0.75. We contrast the per class APs
between steps t “ 1 (indicating no refinement; in red) and t “ 6 (in blue). The number next to each
bar indicates the difference between AP values at t “ 6 and t “ 1 for a particular object class. The
y-axis is sorted by this difference value.

9

Figure A5: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

10

Figure A6: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

11

Figure A7: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

12

Figure A8: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

13

Figure A9: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

14

Figure A10: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

15

Figure A11: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

16

Figure A12: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

17

Figure A13: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

18

Figure A14: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.

19

