
Published as a conference paper at ICLR 2025

SYMDIFF: EQUIVARIANT DIFFUSION VIA
STOCHASTIC SYMMETRISATION

Leo Zhang Kianoosh Ashouritaklimi Yee Whye Teh Rob Cornish
Department of Statistics, University of Oxford

ABSTRACT

We propose SYMDIFF, a method for constructing equivariant diffusion models
using the framework of stochastic symmetrisation. SYMDIFF resembles a learned
data augmentation that is deployed at sampling time, and is lightweight, computa-
tionally efficient, and easy to implement on top of arbitrary off-the-shelf models.
In contrast to previous work, SYMDIFF typically does not require any neural
network components that are intrinsically equivariant, avoiding the need for com-
plex parameterisations or the use of higher-order geometric features. Instead, our
method can leverage highly scalable modern architectures as drop-in replacements
for these more constrained alternatives. We show that this additional flexibility
yields significant empirical benefit for E(3)-equivariant molecular generation.
To the best of our knowledge, this is the first application of symmetrisation to
generative modelling, suggesting its potential in this domain more generally.

1 INTRODUCTION

For geometrically structured data such as N -body systems of molecules or proteins, it is often
of interest to obtain a diffusion model that is equivariant with respect to some group actions (Xu
et al., 2022; Hoogeboom et al., 2022; Watson et al., 2023; Yim et al., 2023). By accounting for the
large number of permutation and rotational symmetries within these systems, equivariant diffusion
models aim to improve data efficiency (Batzner et al., 2022) and generalisation (Elesedy & Zaidi,
2021). In previous work, equivariant diffusion models have been implemented using intrinsically
equivariant neural networks, each of whose linear and nonlinear layers are constrained individually
to be equivariant, so that the overall network is also equivariant as a result (Bronstein et al., 2021).

There is a growing literature on the practical limitations of intrinsically equivariant neural networks
(Wang et al., 2024; Canez et al., 2024; Abramson et al., 2024; Pertigkiozoglou et al., 2024). It has
been observed that these models can suffer from degraded training dynamics due to their imposition
of architectural constraints, as well as increased computational cost and implementation complexity
(Duval et al., 2023a). To address these issues, there has been recent interest in symmetrisation
techniques for obtaining equivariance instead (Murphy et al., 2018; Puny et al., 2021; Duval et al.,
2023b; Kim et al., 2023; Kaba et al., 2023; Mondal et al., 2023; Dym et al., 2024; Gelberg et al.,
2024). These approaches offer a mechanism for constructing equivariant neural networks using
subcomponents that are not equivariant, which previous work has shown leads to better performing
models (Yarotsky, 2022; Kim et al., 2023). However, the advantages of symmetrisation-based
equivariance have not yet been explored for generative modelling. This is possibly in part because
previous work has solely focused on deterministic equivariance, rather than the more complex
condition of stochastic equivariance that is required in the context of generative models.

In this paper, we introduce SYMDIFF, a novel methodology for obtaining equivariant diffusion mod-
els through symmetrisation, rather than intrinsic equivariance. We build on the recent framework of
stochastic symmetrisation developed by Cornish (2024) using the theory of Markov categories (Fritz,
2020). Unlike previous work on symmetrisation, which operates on deterministic functions, stochas-
tic symmetrisation can be applied to Markov kernels directly in distribution space. We show that this
leads naturally to a more flexible approach for constructing equivariant diffusion models than is pos-
sible using intrinsic architectures. We apply this concretely to obtain an E(3)-equivariant diffusion
architecture for modelling N -body systems, where E(3) denotes the Euclidean group. For this task,
we formulate a custom reverse process that is allowed to be non-Gaussian, for which we derive a

1

Published as a conference paper at ICLR 2025

tractable optimisation objective. Our model is stochastically E(3)-equivariant overall without need-
ing any intrinsically E(3)-equivariant neural networks as subcomponents. We also sketch how to
extend SYMDIFF to score and flow-based generative models (Song et al., 2020; Lipman et al., 2022).

To validate our framework, we implemented SYMDIFF for de novo molecular generation, and
evaluated it as a drop-in replacement for the E(3)-equivariant diffusion of Hoogeboom et al.
(2022), which relies on intrinsically equivariant neural networks. In contrast, our model is able to
leverage highly scalable off-the-shelf architectures such as Diffusion Transformers (Peebles & Xie,
2023) for all of its subcomponents. We demonstrate this leads to significantly improved empirical
performance for both the QM9 and GEOM-Drugs datasets.

2 BACKGROUND

We provide here an overview of the underlying theory behind equivariant diffusion modelling. This
theory is most conveniently developed in terms of Markov kernels, whose definition we recall first.

2.1 EQUIVARIANT MARKOV KERNELS

Markov kernels At a high level, a Markov kernel k : X → Y may be thought of as a conditional
distribution or stochastic map that, when given an input x ∈ X , produces a random output in Y with
distribution k(dy|x). For example, given a function f : X × E → Y and a random element η of E ,
there is a Markov kernel k : X → Y for which k(dy|x) is the distribution of f(x, η)1. As a special
case, every deterministic function f : X → Y may be thought of as a Markov kernel X → Y also.
When k(dy|x) has a density (or likelihood), we will denote this by k(y|x), although we note that
we can still reason about Markov kernels even when they do not admit a likelihood in this sense.

Stochastic equivariance Let G be a group acting on spaces X and Y . We will denote this using
“dot” notation, so that the action on X is a function (g,x) 7→ g ·x. Recall that a function f : X → Y
is then equivariant if

f(g · x) = g · f(x) for all x ∈ X and g ∈ G. (1)
Here f is purely deterministic, and so this concept must be generalised in order to encompass models
whose outputs are stochastic (Bloem-Reddy & Teh, 2020). To this end, Cornish (2024) uses a notion
defined for Markov kernels: a Markov kernel k : X → Y is stochastically equivariant (or simply
equivariant) if

k(dy|g · x) = g · k(dy|x) for all x ∈ X and g ∈ G, (2)
where the right-hand side denotes the distribution of g · y when y ∼ k(dy|x), or in other words the
pushforward of k(dy|x) under g. When k is obtained from f and η as above, equation 2 holds iff

f(g · x, η) d
= g · f(x, η) for all x ∈ X and g ∈ G,

where d
= denotes equality in distribution2. If η is constant, this says f is deterministically equivariant

in the usual sense. Likewise, when k has a conditional density, say k(y|x), equation 2 holds if
k(g · y|g · x) = k(y|x) for all x ∈ X , y ∈ Y , and g ∈ G,

provided the action of G on Y has unit Jacobian (Cornish, 2024, Proposition 3.18), as will be the
case for all the actions we consider. This latter condition recovers the usual formulation of stochastic
equivariance considered in the diffusion literature by e.g. Xu et al. (2022); Hoogeboom et al. (2022).

Stochastic invariance When the action of G on Y is trivial, the condition in equation 1 is re-
ferred to as invariance. This same idea carries over to Markov kernels also: we say that k above is
stochastically invariant (or simply invariant) if k(dy|g · x) = k(dy|x) for all g ∈ G and x ∈ X .
Importantly, this differs from another natural notion of invariance that also arises in the stochas-
tic context: we will say that a distribution p(dy) on Y is distributionally invariant if it holds that
g · p(dy) = p(dy) for all g ∈ G. Given a density p(y), this holds equivalently if

p(g · y) = p(y) for all g ∈ G,
again assuming the action on Y has unit Jacobian.

1For “nice” choices of Y , the converse also holds by noise outsourcing (Kallenberg, 2002, Lemma 3.22).
2Note this is more general than the almost sure condition from equation (17) of Bloem-Reddy & Teh (2020).

2

Published as a conference paper at ICLR 2025

2.2 EQUIVARIANT DIFFUSION MODELS

Denoising diffusion models Diffusion models construct a generative model pθ(z0) of an un-
known data distribution pdata(z0) on a space Z by learning to reverse an iterative forward noising
process zt. Following the notation of Kingma et al. (2021), the distribution of zt is defined by
q(zt|z0) = N (zt;αtz0, σ

2
t I) for some noise schedule αt, σt > 0 such that the signal-to-noise ration

SNR(t) := α2
t /σ

2
t is strictly monotonically decreasing. The joint distribution of the forward and

reverse processes respectively then have the forms:

q(z0:T) = q(z0)

T∏
t=1

q(zt|zt−1) pθ(z0:T) = p(zT)

T∏
t=1

pθ(zt−1|zt) (3)

with q(z0) := pdata(z0), and q(zt|zt−1) = N (zt;αt|t−1zt−1, σ
2
t|t−1I), with constants defined as

αt|t−1 := αt/αt−1 and σ2
t|t−1

:= σ2
t −α2

t|t−1σ
2
t−1. We take p(zT) to also be Gaussian. The reverse

process is then trained to maximise the ELBO of log pθ(z0), which can be obtained as follows
(Sohl-Dickstein et al., 2015):

log pθ(z0) ≥ Eq(z1|z0)[log pθ(z0|z1)]−DKL(q(zT |z0)||p(zT))

−
T∑

t=2

Eq(zt|z0)[DKL(q(zt−1|zt, z0)||pθ(zt−1|zt))]. (4)

This objective can be efficiently optimised when the reverse process is Gaussian. This is due to
the fact that the posterior distributions q(zt−1|zt, z0) = N (zt−1;µq(zt, z0), σ

2
q (t)I) are Gaussian,

and that the KL divergence between Gaussians can be expressed in closed form. To match these
posteriors, the reverse process is then typically defined in terms of a neural network µθ : Z → Z as

pθ(zt−1|zt) := N (zt−1;µθ(zt), σ
2
q (t)I). (5)

Invariant and equivariant diffusion It is often desirable for pθ(z0) to be distributionally invariant
with respect to the action of a group G. Intuitively, this says that the density pθ(z0) is constant on the
orbits of this action. For the model in equation 3, distributional invariance follows if pθ(zT) is itself
distributionally invariant, and if each pθ(zt−1|zt) is stochastically G-equivariant (Xu et al., 2022).
All previous work we are aware of has approached this by obtaining a deterministically equivariant
µθ, which then implies that the reverse process is stochastically equivariant (Le et al., 2023).

2.3 N-BODY SYSTEMS AND E(3)-EQUIVARIANT DIFFUSION

Equivariant diffusion models are often applied to model N -body systems such as molecules and
proteins (Xu et al., 2022; Hoogeboom et al., 2022; Yim et al., 2023). This is motivated by the
large number of symmetries present in these system. For example, intuitively speaking, neither the
coordinate system nor the ordering of bodies in the system should matter for sampling. We describe
the standard components of such models below.

N -body data In 3-dimensions, the state of an N -body system can be encoded as a pair z =
[x,h] ∈ RN×(3+d), where x ≡ (x(1), . . . ,x(N)) ∈ RN×3 describes a set of N points in 3D space,
and h ≡ (h(1), . . . ,h(N)) ∈ RN×d describes a set of N feature vectors of dimension d. Each
feature vector h(i) is associated with the point x(i). For example, Hoogeboom et al. (2022) encodes
molecules in this way, where each x(i) denotes the location of an atom, and h(i) some corresponding
properties such as atom type (represented as continuous quantities).

Center of mass free space Intuitively speaking, for many applications, the location of an N -body
system in space should not matter. For this reason, instead of defining a diffusion on the full
space of N -body systems directly, previous work (Garcia Satorras et al., 2021a; Xu et al., 2022;
Hoogeboom et al., 2022) has set Z := U , where U is the “center of mass (CoM) free” linear
subspace of RN×(3+d) consisting of [x,h] such that x̄ := 1

N

∑N
i=1 x

(i) = 0. In this way, samples
from their model are always guaranteed to be centered at the origin.

3

Published as a conference paper at ICLR 2025

CoM-free diffusions To construct their forward and reverse processes to now live entirely on U
instead of RN×(3+d), Xu et al. (2022) defines the projected Gaussian distribution NU (µ, σ

2I), for
µ ∈ U and σ2 > 0, as the distribution of z obtained via the following process:

ϵ ∼ N (0, I) z := µ+ σ projU (ϵ),

where projU centers its input in RN×(3+d) at the origin, i.e. projU ([x,h]) := [x−(x̄, . . . , x̄),h]. By
construction, the projected Gaussian distribution is then supported on the linear subspace U . Xu et al.
(2022) shows that this distribution has a density with Gaussian form NU (z;µ, σ

2I) ∝ N (z;µ, σ2I)
defined for all z living in the subspace U . This allows defining forward and reverse processes
q(zt−1|zt) and pθ(zt−1|zt) with exactly the same form as in Section 2.2 before, but with NU used
everywhere in place ofN . Since these processes are still Gaussian (albeit on a linear subspace), the
KL terms in equation 4 remain tractable, which allows optimising the ELBO in the usual way. This
approach does require µθ : U → U now to be constrained to produce outputs in the subspace U .
Prior work has achieved this simply by taking µθ to be a neural network with projU as its final layer.

Invariance and equivariance Intuitively, the ordering of the N points and the orientation of the
overall system in 3D space should not matter. To formalise this, let SN denote the symmetric group
of permutations of the integers {1, . . . , N}, and O(3) denote the group of orthogonal 3×3 matrices.
Their product SN × O(3) acts on N -body systems by reordering and orthogonally transforming
points as follows:

(σ,R) · [x,h] := [Rx(σ(1)), . . . , Rx(σ(N)),h(σ(1)), . . . ,h(σ(N))], (6)

where σ ∈ SN and R ∈ O(3). Previous work (Xu et al., 2022; Hoogeboom et al., 2022) has then
chosen the model pθ(z0) to be distributionally invariant to this action. They enforce this via the
approach described in Section 2.2, by ensuring that µθ is deterministically (SN ×O(3))-equivariant,
which implies that the reverse process is stochastically equivariant also.

Following standard terminology in the literature (Garcia Satorras et al., 2021b; Xu et al., 2022;
Hoogeboom et al., 2022), we refer to a (SN ×O(3))-equivariant diffusion defined on the CoM-free
space U as an E(3)-equivariant diffusion.

3 EQUIVARIANT DIFFUSION VIA STOCHASTIC SYMMETRISATION

In this section, we introduce SYMDIFF and apply it to the problem of obtaining E(3)-equivariant
diffusion models for N -body systems. We also discuss extensions to score and flow-based
generative models (Song et al., 2020; Lipman et al., 2022) in Appendix E.

3.1 STOCHASTIC SYMMETRISATION

Recently, Cornish (2024) gave a general theory of neural network symmetrisation in the framework
of Markov categories (Fritz, 2020), encompassing earlier approaches to symmetrisation based on
averaging or canonicalisation (Murphy et al., 2018; Puny et al., 2021; Kaba et al., 2023; Kim et al.,
2023). This theory applies flexibly and compositionally to general groups and actions, including
in the non-compact case, and extends to provide a methodology for symmetrising Markov kernels,
which had not previously been considered.

In this work, we will make use of a special case of Example 6.3 of Cornish (2024), which we state
now before providing intuition. We denote by H× G the direct product of groups G and H. Recall
that an action of H × G on a space X induces actions of both H and G on X also. For example, H
acts via h · x := (h, eG) · x, where eG is the identity element of G. We will also say that a Markov
kernel γ : X → G is an equivariant base case if it is both H-invariant and G-equivariant, where G
acts on the output space of γ by left multiplication, i.e. g′ · g := g′g. We then have the following
result (see Appendix A.1 for a proof).
Theorem 1. Suppose H × G acts on X and Y , and γ : X → G is an equivariant base case.
Then every Markov kernel k : X → Y that is equivariant with respect to the induced action of H
gives rise to a Markov kernel symγ(k) : X → Y that is equivariant with respect to H × G, where
symγ(k)(dy|x) may be sampled from as follows:

g ∼ γ(dg|x) y ∼ k(dy|g−1 · x) return g · y.

4

Published as a conference paper at ICLR 2025

Intuitively, this result allows us to start with a Markov kernel that is equivariant only with respect to
H, and then “upgrade” it to become equivariant with respect to both H and G. As a special case,
if H is the trivial group, then every Markov kernel k : X → Y is H-equivariant. Moreover, in this
case H × G ∼= G, and so Theorem 1 gives a procedure for obtaining G-equivariant Markov kernels
from ones that are completely unconstrained. However, as our N -body example will illustrate, it
can often be useful to symmetrise a Markov kernel that is already “partially equivariant”, which
motivates keepingH general here.

Beyond the existence of an equivariant base case, Theorem 1 is completely generic and requires no
assumptions on the groups and actions involved. As explained in Section 5.1 of Cornish (2024), this
is also the only natural procedure that can be defined in this way without further assumptions.

Recursive symmetrisation The symmetrisation procedure defined by Theorem 1 requires γ al-
ready to satisfy two equivariance constraints. In effect, this pushes back the problem of obtaining
(H × G)-equivariant Markov kernels to the choice of γ, which mirrors the situation in the deter-
ministic setting also (Puny et al., 2021; Kim et al., 2023). Whenever G is compact, Example 6.3 of
Cornish (2024) gives a suitable choice as γ(dg|x) := λ(dg) , where λ denotes the Haar measure on
G (Kallenberg, 1997). Other choices could also be made here on a case-by-case basis, such as using
intrinsically equivariant neural networks if desired. To obtain greater modelling flexibility, Cornish
(2024) also proposes a recursive approach to obtaining γ. Specifically, the idea is to set

γ := symγ0
(γ1) (7)

where γ0, γ1 : X → G are Markov kernels, and γ0 is an equivariant base case (e.g. the Haar
measure), but where now γ1 is only required to be H-invariant, and may behave arbitrarily with
respect to G. We note this recursive approach exploits the stochastic nature of the procedure in
Theorem 1 and would not be possible using deterministic symmetrisation methods here instead.

3.2 SYMDIFF: SYMMETRISED DIFFUSION

We propose to use stochastic symmetrisation to obtain a diffusion process as in Section 2.2 whose
reverse kernels are stochastically equivariant. Specifically, suppose some product group H × G
acts on our state space Z . For each timestep t ∈ {1, . . . , T}, we will choose some H-equivariant
Markov kernel kθ : Z → Z that admits a conditional density kθ(zt−1|zt). Similarly, we will
choose some Markov kernel γθ : Z → G that satisfies the conditions of Theorem 1 when X = Z .
With these components, we will define our equivariant reverse process to be

pθ(zt−1|zt) := symγθ
(kθ)(zt−1|zt), (8)

which is guaranteed to be (H × G)-equivariant by Theorem 1. This defines a conditional density,
not just a Markov kernel, as a consequence of the next result. For the proof, see Appendix A.2.
Proposition 1. Assume the same setup as Theorem 1, and for each fixed g ∈ G, let k(dy|g,x) be
the distribution of the following generative process:

y ∼ k(dy|g−1 · x) return g · y.
If k(dy|x) has a density k(y|x), then k(dy|g,x) has a density k(y|g,x), and symγ(k)(dy|x) has

symγ(k)(y|x) = Eγ(dg|x)[k(y|g,x)]
as a density. If the action on Y has unit Jacobian, then we may write k(y|g,x) = k(g−1 ·y|g−1 ·x).

Training objective We would like to learn the parameters θ using the ELBO from equation 4.
However, in general, we do not have access to the densities pθ(zt−1|zt) from equation 8 in closed
form, since this requires computing the expectation as in Proposition 1. As such, we cannot
compute the ELBO directly. However, since log is concave, Jensen’s inequality allows us to bound

log pθ(zt−1|zt) ≥ Eγθ(dg|zt)[log kθ(zt−1|g, zt)].
Since the ELBO in equation 4 depends linearly on log pθ(zt−1|zt), this allows us to also bound

log pθ(z0) ≥
−L1︷ ︸︸ ︷

Eq(z1|z0),γθ(dg|z1)[log kθ(z0|g, z1)]−DKL(q(zT |z0)||p(zT))

−
T∑

t=2

Lt︷ ︸︸ ︷
Eq(zt|z0),γθ(dg|zt)[DKL(q(zt−1|zt, z0)||kθ(zt−1|g, zt)], (9)

5

Published as a conference paper at ICLR 2025

where the right-hand side is a tractable lower bound to the original ELBO in equation 4. We take
this new bound as our objective used to train our SYMDIFF model. By a similar argument as in
Remark 7.1 of Cornish (2024), if the model is sufficiently expressive, then optimising this new
bound is equivalent to optimising the original ELBO (see Appendix D).

Comparison with deterministic symmetrisation An alternative approach to equation 8 would
be to obtain µθ in equation 5 via deterministic symmetrisation. However, many deterministic
techniques (Puny et al., 2021; Kim et al., 2023) involve a Monte Carlo averaging step that requires
multiple passes through the model instead, and then are only approximate, which would introduce
sampling bias here. In contrast, to sample from our method requires only a single pass through γθ
and kθ, and involves no bias. The canonicalisation method of Kaba et al. (2023) also avoids this
averaging step, but instead suffers from pathologies associated with its analogue of the equivariant
base case γθ, which Dym et al. (2024) show must become discontinuous at certain inputs. Addi-
tionally, canonicalisation requires an intrinsically G-equivariant architecture for its analogue of γθ.
In contrast, whenever G is compact, our stochastic approach allows γθ to be obtained using the
Haar measure in a way that does not suffer these pathologies, and may be implemented without any
intrinsically G-equivariant neural network components at all, as we show concretely next.

3.3 SYMDIFF FOR N -BODY SYSTEMS

We now apply SYMDIFF in the setting of N -body systems considered in Section 2.3. Specifically,
we take Z := U , H := SN , and G := O(3), and consider the action on Z defined in equation 6.
This means that we start with kθ(zt−1|zt) in equation 8 that is already equivariant with respect
to reorderings of the N bodies, and then symmetrise this to obtain an (SN × O(3))-equivariant
reverse kernel overall. We choose to symmetrise in this way because highly scalable SN -equivariant
kernels based on Transformer architectures can be readily constructed for this purpose (Vaswani
et al., 2017; Lee et al., 2019; Peebles & Xie, 2023), whereas intrinsically O(3)-equivariant neural
networks have not shown the same degree of scalability to-date (Abramson et al., 2024).

Choice of unsymmetrised kernels It remains now to choose kθ(zt−1|zt). We now do so in a
way that equation 9 will resemble the standard diffusion objective in Ho et al. (2020), allowing for
the scalable training of SYMDIFF. Specifically, we take

kθ(zt−1|zt) := NU (zt−1;µθ(zt), σ
2
q (t)I), (10)

where µθ : Z → Z3 is an arbitrary SN -equivariant neural network, which in turn means kθ is
stochastically SN -equivariant. We highlight that µθ is otherwise unconstrained and can process
[x,h] jointly. In contrast, previous work using intrinsically (Sn × O(3))-equivariant components
(Satorras et al., 2021; Thölke & De Fabritiis, 2022; Hua et al., 2024) has required complex
parameterisations for µθ that handle the x and h inputs separately.

Form of KL terms We now show how our model yields a closed-form expression for the Lt terms
in equation 9. Standard arguments show that each q(zt−1|zt, z0) = NU (zt;µq(zt, z0), σ

2
q (t)I) is a

(projected) Gaussian. We claim that our model also gives a (projected) Gaussian

kθ(zt−1|R, zt) = NU (zt−1;R · µθ(R
T · zt), σ2

q (t)I). (11)

Indeed, by the definition of this kernel in Proposition 1 and the definition of NU in Section 2.3, and
since R−1 = RT for R ∈ O(3), for zt−1 ∼ kθ(zt−1|R, zt) we have

zt−1
d
= R ·

(
µθ(R

T · zt) + σq(t) ϵ
)
= R · µθ(R

T · zt) + σq(t)R · ϵ,

where ϵ ∼ NU (0, I). Since R · ϵ d
= ϵ for R ∈ O(3), equation 11 now follows. The same argument

as Hoogeboom et al. (2022) now yields the closed-form expression

Lt = Eq(zt|z0),γθ(dR|zt)

[
1

2σ2
q (t)

∥∥µq(zt, z0)−R · µθ(R
T · zt)

∥∥2] . (12)

3We leave the dependence on t implicit in our notation throughout.

6

Published as a conference paper at ICLR 2025

We can obtain unbiased gradients of this quantity whenever γθ(dR|zt) is reparametrisable
(Kingma, 2013). In other words, we should define γθ(dR|zt) to be the distribution of φθ(zt, ξ),
where φθ is a deterministic neural network, and ξ is some noise variable whose distribution does not
depend on θ. For a discussion of how we can handle the L1 term in equation 9 in our framework,
we refer to Appendix C.1.

ϵ-parameterisation When µθ is taken to have the ϵ-form (Ho et al., 2020; Kingma et al., 2021)

µθ(zt) :=
1

αt|t−1
zt −

σ2
t|t−1

αt|t−1σt
ϵθ(zt), (13)

for some neural network ϵθ : Z → Z , the same argument given by Ho et al. (2020) now allows us
to rewrite equation 12 in a way that resembles the standard diffusion objective:

Lt = Eq(z0),ϵ∼NU (0,I),γθ(dR|zt)

[
1

2
w(t)

∥∥ϵ−R · ϵθ(RT · zt)
∥∥2] (14)

where zt = αtz0 + σtϵ, and w(t) = (1 − SNR(t − 1)/SNR(t)). Recall we require µθ to be
SN -equivariant, which straightforwardly follows here whenever ϵθ is. In practice, we set w(t) = 1
during training as is commonly done in the diffusion literature (Kingma & Gao, 2024).

Recursive choice of γθ To apply Theorem 1, we require an equivariant base case γθ that is SN -
invariant and O(3)-equivariant. To obtain this, we apply the recursive procedure from equation 7,
where γ0 : Z → O(3) is obtained using the Haar measure on O(3) as described there, and γ1(dR|zt)
is defined as the distribution of fθ(zt, η), where η is sampled from some noise distribution ν(dη)
and fθ(·, η) : Z → O(3) is a SN -invariant neural network for each fixed value of η. Both the
Haar measure and ν do not depend on θ, and so the overall γθ obtained in this way is always
reparametrisable by construction. We emphasise that fθ is not required to be O(3)-equivariant in
any sense, thus allowing for highly flexible choices such as Set Transformers (Lee et al., 2019). At
sampling time, we use the procedure from Section 5 of Mezzadri (2006) to sample from the Haar
measure on O(3), which is a negligible overhead compared with the cost of evaluating fθ.

Algorithm 1 SYMDIFF training step

1: Sample z0 ∼ pdata(z0), t ∼ Unif({1, . . . , T}) and ϵ ∼ NU (0, I)
2: zt ← αtz0 + σtϵ
3: Sample R0 from the Haar measure on O(3) and η ∼ ν(dη)
4: R← R0 · fθ(RT

0 · zt, η)
5: Take gradient descent step with∇θ

1
2w(t)

∥∥ϵ−R · ϵθ(RT · zt)
∥∥2

Algorithm 2 SYMDIFF sampling process

1: Sample zT ∼ NU (0, I)
2: for s = T, . . . , 2 do
3: Sample R0 from the Haar measure on O(3), η ∼ ν(dη), and ϵ ∼ NU (0, I)
4: R← R0 · fθ(RT

0 · zt, η)
5: zt−1 ← 1

αt|t−1
zt −

σ2
t|t−1

αt|t−1σt
R · ϵθ(RT · zt) + σq(t)ϵ

6: return z0 ∼ pθ(z0|z1) ▷ See Appendix C.1 for an example of this output kernel

3.4 DATA AUGMENTATION IS A SPECIAL CASE OF SYMDIFF

Data augmentation is a popular method for incorporating “soft” inductive biases within neural
networks. Consider again our setup from the previous section, but now using the unsymmetrised
kernels kθ(zt−1|zt) from equation 10 in place of pθ(zt−1|zt) in our backwards process. Suppose
this model is trained using the standard diffusion objective, applying a uniform random orthogonal
transformation to the input of ϵθ before each forward pass. This is equivalent to optimising the

7

Published as a conference paper at ICLR 2025

following objective:

Laug
t = Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)∥ϵ− ϵθ(αtR · z0 + σtϵ)∥2

]
, (15)

where λ is the Haar measure on O(3). (More general choices of λ could also be considered.) We
then have the following result, proven in Appendix A.3.

Proposition 2. When γθ(dR|zt) = λ(dR) for all zt ∈ Z , our SYMDIFF objective in equation 14
recovers the data augmentation objective exactly, so that Lt = Laug

t .

As a result, SYMDIFF may be understood as a strict generalisation of data augmentation in which
a more flexible augmentation process γθ is learned during training. Moreover, our γθ is then
also deployed at sampling time in a way that guarantees stochastic equivariance. In contrast, data
augmentation is usually only applied during training, and the model deployed at sampling time then
becomes only approximately equivariant.

4 EXPERIMENTS

We evaluated our E(3)-equivariant SYMDIFF model as a drop-in replacement for the E(3)-
equivariant diffusion (EDM) of Hoogeboom et al. (2022) on both the QM9 and GEOM-Drugs
datasets for molecular generation. We implemented this within the official codebase of Hoogeboom
et al. (2022)4 substituting our symmetrised reverse process for their one. We made minimal
other changes to their code and experimental setup otherwise, and performed minimal tuning
of our architecture. We found SYMDIFF led to significantly improved performance on both
tasks. Our results were also on par or better than GeoLDM (Xu et al., 2023), END (Cornet
et al., 2024), and MUDiff (Hua et al., 2024), which bake in more sophisticated inductive biases
related to molecular generation than EDM does. Our models were also more computationally
efficient than these baselines, which all rely on intrinsically equivariant subcomponents. We give
an overview of our setup now and provide full details in Appendix C. Our code is available at:
https://github.com/leozhangML/SymDiff.

4.1 QM9

Dataset QM9 (Ramakrishnan et al., 2014) is a common benchmark dataset used for evaluating
molecular generation. It consists of molecular properties and atom coordinates for 130k small
molecules with up to 9 heavy atoms and a total of 29 atoms including hydrogen. For our experi-
ments, we trained our SYMDIFF method to generate molecules with 3D coordinates, atom types,
and atom charges where we explicitly modeled hydrogen atoms. We used the same train-val-test
split of 100K-8K-13K as in Anderson et al. (2019).

Our model We took our core model (SymDiff) to be symγθ
(kθ)(zt−1|zt) from equation 8 above,

with kθ and γθ given as specified in Section 3.3. We chose the “backbone” neural network ϵθ to
be a Diffusion Transformer (DiT) (Peebles & Xie, 2023), which is SN -equivariant by construction.
Likewise, we chose the “backbone” neural network fθ of the component γθ to be a DiT. We made
this component Sn-invariant using a Set Transformer (Lee et al., 2019) approach, thereby achieving
the requirements described in Section 3.3. Our ϵθ had 29M parameters, matching the smallest
model considered by Peebles & Xie (2023), while our fθ had 2.2M parameters. In this way, our γθ
was much smaller than our kθ, following a similar approach taken by earlier work on deterministic
symmetrisation (Kim et al., 2023; Kaba et al., 2023). Overall, our model had 31.2M parameters
in total. To test its scalability, we also trained a larger version of our method with a backbone
kθ having 115.6M parameters (SymDiff∗), which matched the DiT-B model from Peebles & Xie
(2023). We trained all our models for 4350 epochs to match the same number of gradient steps as
Hoogeboom et al. (2022). For further details about our architecture, see Appendix B.

Metrics To measure the quality of generated molecules, we follow standard practice (Hoogeboom
et al., 2022; Garcia Satorras et al., 2021a) and report atom stability, molecular stability, validity

4https://github.com/ehoogeboom/e3_diffusion_for_molecules

8

https://github.com/leozhangML/SymDiff
https://github.com/ehoogeboom/e3_diffusion_for_molecules

Published as a conference paper at ICLR 2025

and uniqueness. We exclude results for the novelty metric for the same reasons as discussed in
Vignac & Frossard (2021) and refer the reader to these works for a more extensive discussion of
these metrics. For all of our metrics, we used 10,000 samples and report the mean and standard
deviation over three evaluation runs. To demonstrate the efficiency of our approach, we also report
the number of seconds per epoch, time taken to generate one sample and vRAM.

Baselines As a baseline, we trained the 5.3M parameter EDM model using the original exper-
imental setup of Hoogeboom et al. (2022). We also trained an unsymmetrised reverse process
with a 29M parameter DiT backbone (DiT), as well as the same model using data augmentation
as described in Section 3.4 (DiT-Aug). Additionally, we trained a SYMDIFF model with the same
backbone kθ as our SymDiff model above, but whose γθ was obtained using the Haar measure on
O(3), rather than learning this component (SymDiff-H).

Results From Table 1, we see that our SYMDIFF models comfortably outperformed EDM on
all metrics, bar uniqueness. Additionally, our model was also competitive with the more recent,
sophisticated baselines from the literature, outperforming all of them on validity. We attribute the
improved performance of our method to the extra architectural flexibility provided by our approach
to symmetrisation. Our largest model, SymDiff∗, outperformed all our baselines on atom stability
and validity, and is within variance for molecular stability. We conjecture that similar performance
improvements could be achieved by using our SYMDIFF approach as a drop-in replacement for the
reverse kernels in more sophisticated methods. Table 1 also shows that DiT-Aug performed notably
better than the DiT model on all metrics, highlighting its strength as a baseline. Despite this, our
SymDiff model outperformed both SymDiff-H and DiT-Aug on all metrics apart from uniqueness.
This shows that our approach has benefits that extend beyond merely performing data augmentation.

Computational efficiency Importantly, as Table 2 shows, our method was also more computation-
ally efficient than the alternative methods we considered, both in terms of seconds/epoch, sampling
time, and vRAM. This is not surprising since these alternative models rely on intrinsically equiv-
ariant graph neural networks that use message passing during training and inference, which is com-
putationally very costly. In contrast, our symmetrisation approach allows us to use computationally
efficient DiT components that parallelise and scale much more effectively (Fei et al., 2024).

Table 1: Test NLL, atom stability, molecular stability, validity and uniqueness on QM9 for 10,000
samples and 3 evaluation runs. We omit the results for NLL where not available.

Method NLL ↓ Atm. stability (%) ↑ Mol. stability (%) ↑ Val. (%) ↑ Uniq. (%) ↑
GeoLDM – 98.90 ±0.10 89.40 ±0.50 93.80 ±0.40 92.70 ±0.50

MUDiff -135.50±2.10 98.80±0.20 89.90±1.10 95.30±1.50 99.10±0.50

END – 98.90 ±0.00 89.10 ±0.10 94.80 ±0.10 92.60 ±0.20

EDM -110.70±1.50 98.70±0.10 82.00 ±0.40 91.90±0.50 90.70±0.60

SymDiff∗ -133.79±1.33 98.92±0.03 89.65±0.10 96.36±0.27 97.66±0.22

SymDiff -129.35 ±1.07 98.74±0.03 87.49 ±0.23 95.75 ±0.10 97.89 ±0.26

SymDiff-H -126.53±0.90 98.57±0.07 85.51±0.18 95.22±0.18 97.98±0.09

DiT-Aug -126.81±1.69 98.64±0.03 85.85±0.24 95.10±0.17 97.98±0.08

DiT -127.78±2.49 98.23±0.04 81.03±0.25 94.71±0.31 97.98±0.12

Data 99.00 95.20 97.8 100

Table 2: Seconds per epoch, sampling time and vRAM for SymDiff and our baselines on QM9.
Results for END are omitted as their code was not publicly available.

Method # Parameters Sec./epoch (s) ↓ Sampling time (s) ↓ vRAM (GB) ↓
GeoLDM 11.4M 210.93 0.26 27
MuDiff 9.7M 230.87 0.89 36
END 9.4M – – –
EDM 5.4M 88.80 0.27 14

SymDiff∗ 117.8M 53.40 0.21 16
SymDiff 31.2M 27.20 0.09 7

Ablations As an ablation study, we also tested the effect of making SYMDIFF smaller, and
EDM larger. For SymDiff, we trained two models of 23.5M (SymDiff−) and 13.5M (SymDiff−−)

9

Published as a conference paper at ICLR 2025

parameters respectively. For EDM, we trained two additional models with 9.5M (EDM+) and
12.4M (EDM++) parameters respectively. For full details see Appendix C.2.1. From Table 3,
we see that even our smaller SymDiff models remained competitive. In particular, SymDiff−
gave comparable molecular stability as the second largest EDM model, EDM+, while being
approximately 5 times faster in terms of seconds/epoch.

Table 3: NLL, molecular stability, seconds per epoch, sampling time and vRAM for different sizes
of SymDiff and EDM on QM9. For additional performance metrics see Appendix C.2.

Method NLL ↓ Mol. stability (%) ↑ Sec./epoch (s) ↓ Sampling time (s) ↓ vRAM (GB) ↓
EDM++ -119.12±1.41 85.68±0.83 160.60 0.56 23
EDM+ -110.97±1.42 84.63±0.16 192.60 0.46 23
EDM -110.70±1.50 82.00 ±0.40 88.80 0.27 14

SymDiff -129.35±1.07 87.49±0.23 27.20 0.09 7
SymDiff− -125.40±0.63 83.51±0.24 24.87 0.08 6
SymDiff−− -110.68 ±2.55 71.25 ±0.50 20.60 0.07 5

4.2 GEOM-DRUGS

Dataset, model and training GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022) is a larger
and more complicated dataset than QM9, containing 430,000 molecules with up to 181 atoms. We
processed the dataset in the same way as Hoogeboom et al. (2022), where we again model hydrogen
explicitly. We used the SymDiff model from earlier, which we trained for 55 epochs to match the
same number of gradient steps as Hoogeboom et al. (2022).

Metrics and baselines We report the same metrics as for QM9 but exclude molecular stability
and uniqueness for the same reasons discussed in Hoogeboom et al. (2022). We compared our
method to the EDM model used by Hoogeboom et al. (2022) for GEOM-Drugs, as well as the other
baseline architectures reported for QM9.

Results From Table 4 we again see that our approach comfortably outperformed its EDM
counterpart. It is also again competitive with the more sophisticated baselines, whose reported
results we restate here. Like with QM9, our SymDiff models were significantly less costly in terms
of compute time and memory usage compared with EDM (see Appendix C.3). In fact, when we
tried to run the EDM model it resulted in out-of-memory errors on our NVIDIA H100 80GB GPU
(Hoogeboom et al. (2022) avoid this by training EDM on 3× NVIDIA RTX A6000 48GB GPUs.)

Table 4: Test NLL, atom stability and validity on GEOM-Drugs for 10,000 samples and 3 evaluation
runs. GeoLDM and EDM ran their results for just one evaluation run. We omit the results for NLL
and validity where not available.

Method NLL ↓ Atm. stability (%) ↑ Val. (%) ↑
GeoLDM – 84.4 99.3
END – 87.8±0.99 92.9±0.3

EDM -137.1 81.3 –
SymDiff -301.21±0.53 86.16±0.05 99.27±0.1

Data 86.50 99.9

5 CONCLUSION

We have introduced SYMDIFF: a lightweight, and scalable framework for constructing equivariant
diffusion models based on stochastic symmetrisation. We applied this approach to E(3)-
equivariance for N -body data, obtaining an overall model that is stochastically equivariant but
that does not rely on any intrinsically equivariant neural network subcomponents. Our approach
leads to significantly greater modelling flexibility, which allows leveraging powerful off-the-shelf
architectures such as Transformers (Vaswani et al., 2017). We showed empirically that this leads
overall to improved performance on several relevant benchmarks.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

The authors are grateful to Tom Rainforth, Emile Mathieu, Saifuddin Syed and Ahmed Elhag for
helpful discussions. LZ and KA are supported by the EPSRC CDT in Modern Statistics and Statis-
tical Machine Learning (EP/S023151/1).

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Ap-
plications, 12(3):313–326, 1982.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
for property prediction and molecular generation. Scientific Data, 9(1):185, 2022.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Ko-
rnbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature communications, 13(1):
2453, 2022.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
Journal of Machine Learning Research, 21(90):1–61, 2020.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Diego Canez, Nesta Midavaine, and Thijs Stessen. Effect of equivariance on
training dynamics. https://gram-blogposts.github.io/blog/2024/
relaxed-equivariance/, 2024. Accessed: 2024-09-30.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

François RJ Cornet, Grigory Bartosh, Mikkel N Schmidt, and Christian A Naesseth. Equivariant
neural diffusion for molecule generation. In ICML 2024 AI for Science Workshop, 2024.

Rob Cornish. Stochastic Neural Network Symmetrisation in Markov Categories. arXiv preprint
arXiv:2406.11814, 2024.

Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret,
Fragkiskos D Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, and Michael Bronstein. A
hitchhiker’s guide to geometric gnns for 3d atomic systems. arXiv preprint arXiv:2312.07511,
2023a.

Alexandre Agm Duval, Victor Schmidt, Alex Hernández-Garcıa, Santiago Miret, Fragkiskos D
Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for
materials modeling. In International Conference on Machine Learning, pp. 9013–9033. PMLR,
2023b.

Nadav Dym, Hannah Lawrence, and Jonathan W Siegel. Equivariant frames and the impossibility
of continuous canonicalization. arXiv preprint arXiv:2402.16077, 2024.

Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for equivariant models. In
International conference on machine learning, pp. 2959–2969. PMLR, 2021.

Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Junshi Huang. Scaling diffusion
transformers to 16 billion parameters. arXiv preprint arXiv:2407.11633, 2024.

11

https://gram-blogposts.github.io/blog/2024/relaxed-equivariance/
https://gram-blogposts.github.io/blog/2024/relaxed-equivariance/

Published as a conference paper at ICLR 2025

Tobias Fritz. A synthetic approach to markov kernels, conditional independence and theorems on
sufficient statistics. Advances in Mathematics, 370:107239, 2020.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E(n)
equivariant normalizing flows. Advances in Neural Information Processing Systems, 34:4181–
4192, 2021a.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max
Welling. E(n) equivariant normalizing flows. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 4181–4192. Curran Associates, Inc.,
2021b. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/21b5680d80f75a616096f2e791affac6-Paper.pdf.

Yoav Gelberg, Tycho FA van der Ouderaa, Mark van der Wilk, and Yarin Gal. Variational inference
failures under model symmetries: Permutation invariant posteriors for bayesian neural networks.
In ICML 2024 Workshop on Geometry-grounded Representation Learning and Generative Mod-
eling, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d. In International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Chenqing Hua, Sitao Luan, Minkai Xu, Zhitao Ying, Jie Fu, Stefano Ermon, and Doina Precup.
Mudiff: Unified diffusion for complete molecule generation. In Learning on Graphs Conference,
pp. 33–1. PMLR, 2024.

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions. In International Conference on Machine
Learning, pp. 15546–15566. PMLR, 2023.

Olav Kallenberg. Foundations of modern probability, volume 2. Springer, 1997.

Olav Kallenberg. Foundations of Modern Probability. Springer, 2 edition, 2002.

Jinwoo Kim, Dat Nguyen, Ayhan Suleymanzade, Hyeokjun An, and Seunghoon Hong. Learning
probabilistic symmetrization for architecture agnostic equivariance. Advances in Neural Informa-
tion Processing Systems, 36:18582–18612, 2023.

Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36, 2024.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024.

Tuan Le, Julian Cremer, Frank Noé, Djork-Arné Clevert, and Kristof Schütt. Navigating the design
space of equivariant diffusion-based generative models for de novo 3d molecule generation. arXiv
preprint arXiv:2309.17296, 2023.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/21b5680d80f75a616096f2e791affac6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/21b5680d80f75a616096f2e791affac6-Paper.pdf

Published as a conference paper at ICLR 2025

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations.

Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He.
One transformer can understand both 2d & 3d molecular data. In The Eleventh International
Conference on Learning Representations, 2022.

Francesco Mezzadri. How to generate random matrices from the classical compact groups. arXiv
preprint math-ph/0609050, 2006.

Arnab Kumar Mondal, Siba Smarak Panigrahi, Oumar Kaba, Sai Rajeswar Mudumba, and Siamak
Ravanbakhsh. Equivariant adaptation of large pretrained models. Advances in Neural Information
Processing Systems, 36:50293–50309, 2023.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pool-
ing: Learning deep permutation-invariant functions for variable-size inputs. arXiv preprint
arXiv:1811.01900, 2018.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, and Kostas Daniilidis. Im-
proving equivariant model training via constraint relaxation. arXiv preprint arXiv:2408.13242,
2024.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J Smith, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. arXiv preprint
arXiv:2110.03336, 2021.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

P. Selinger. A Survey of Graphical Languages for Monoidal Categories, pp. 289–355. Springer
Berlin Heidelberg, 2010. ISBN 9783642128219. doi: 10.1007/978-3-642-12821-9 4. URL
http://dx.doi.org/10.1007/978-3-642-12821-9_4.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Philipp Thölke and Gianni De Fabritiis. Torchmd-net: equivariant transformers for neural network
based molecular potentials. arXiv preprint arXiv:2202.02541, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Clement Vignac and Pascal Frossard. Top-n: Equivariant set and graph generation without ex-
changeability. arXiv preprint arXiv:2110.02096, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

13

http://dx.doi.org/10.1007/978-3-642-12821-9_4

Published as a conference paper at ICLR 2025

Yuyang Wang, Ahmed AA Elhag, Navdeep Jaitly, Joshua M Susskind, and Miguel Ángel Bautista.
Swallowing the bitter pill: Simplified scalable conformer generation. In Forty-first International
Conference on Machine Learning, 2024.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923,
2022.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
pp. 38592–38610. PMLR, 2023.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, 55(1):407–474, 2022.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se(3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023.

14

Published as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF THEOREM 1

Proof. Theorem 1 is a special case of Example 6.3 of Cornish (2024), whose notation and setup
we will import freely here. Note that Example 6.3 makes use of string diagrams (Selinger, 2010),
an introduction to which can be found in Section 2 of Cornish (2024). Intuitively, a string diagram
represents a (possibly stochastic) computational processes that should be read up the page, with the
inputs applied at the bottom, and outputs produced at the top.

To proceed, we first let the action ρ be trivial, so that the semidirect productN⋊ρH becomes simply
the direct product N × H by Remark 3.29 of Cornish (2024). Now consider the following string
diagram:

αX,H

(−)−1
H

k

αY,H

X

γ

Y

H

X

Y

H (16)

The upshot of Example 6.3 of Cornish (2024) is that equation 16 is always equivariant with respect
to the (N ×H)-actions αX and αY whenever the following conditions all hold:

• γ : X → H is equivariant to the H-actions αX,H and ∗H ;

• γ : X → H is invariant to the N -action αX,N ;

• k : X → Y is equivariant with respect to the N -actions αX,N and αY,N .

Here, as in Example 6.3 of Cornish (2024):

• We have decomposed the (N × H)-action αX as an H-action αX,H followed by an N -
action αX,N using Remark 3.31 of Cornish (2024). In other words:

αX,H

αX,N

N H X

X

=αX

N H X

X

• We have decomposed αY similarly;

• We denote by ∗H and (−)−1
H the multiplication and inversion operations of the group H .

15

Published as a conference paper at ICLR 2025

To obtain our Theorem 1, we now simply instantiate things appropriately in the Markov category
C := Stoch, so that all the boxes appearing in equation 16 become Markov kernels. Concretely, we
take X := X , Y := Y , N := H, and H := G. A procedure for sampling from the symmetrised
Markov kernel in equation 16 may then be read off as follows:

g ∼ γ(dg|x) y ∼ k(dy|g−1 · x) return g · y,

exactly as in the statement of this result.

A.2 PROOF OF PROPOSITION 1

Proof. For simplicity, we assume k(dy|x) has a density k(y|x) with respect to the Lebesgue mea-
sure µ on Y = Rn. To derive the density of k(dy|g,x) where g ∈ G is some fixed group element,
we note that for y ∼ k(dy|g,x), we have y = g · y0 where y0 ∼ k(y|g−1 · x). Hence, by the
change-of-variables formula, we can conclude that the density of k(y|g,x) exists and has the form:

k(y|g,x) = k(g−1 · y|g−1 · x)
∣∣∣∣∂(g−1 · y)

∂y

∣∣∣∣ .
Hence, we see that when the action of G has unit Jacobian, the density of k(y|g,x) =
k(g−1 · y|g−1 · x).
Further, suppose we have g ∼ γ(dg|x) and y ∼ k(y|g,x) - i.e. y ∼ symγ(k)(dy|x). It is the case
that for an arbitrary (Borel) measurable set A in Y , we have

symγ(k)(y ∈ A|x) =
∫
G
k(y ∈ A|g,x) γ(dg|x).

Since we have shown above that k(dy|g,x) has a density, we can express this as

symγ(k)(y ∈ A|x) =
∫
G

(∫
A

k(y|g,x) µ(dy)
)
γ(dg|x)

=

∫
A

Eγ(dg|x) [k(y|g,x)]µ(dy).

where we use Fubini’s theorem for the second line as all quantities are non-negative. Hence, we can
conclude that the density of symγ(k) exists and has the form symγ(k) = Eγ(dg|x)[k(y|g,x)].

A.3 PROOF OF PROPOSITION 2

Proof. The standard diffusion objective with data augmentation distributed according to the Haar
measure λ is given by

Laug
t = Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)∥ϵ− ϵθ(αtR · z0 + σtϵ)∥2

]
(17)

= Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)

∥∥ϵ− ϵθ(R · (αtz0 + σtR
T · ϵ))

∥∥2] (18)

= Eq(z0),ϵ′∼NU (0,I),λ(dR)

[
1

2
w(t)∥R · ϵ′ − ϵθ(R · (αtz0 + σtϵ

′))∥2
]

(19)

= Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)

∥∥ϵ−RT · ϵθ(R · (αtz0 + σtϵ))
∥∥2] , (20)

where we use the fact that ϵ′ = RT · ϵ is distributed according toNU (0, I) as R, ϵ are independent in
the expectation, and that the action of R ∈ O(3) preserves the L2 norm. To conclude, we note that
it is a standard result that if R ∼ λ, the inverse RT is also distributed according to the Haar measure
λ. Hence, we see that Laug

t coincides with

Lt = Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)

∥∥ϵ−R · ϵθ(RT · zt)
∥∥2] , (21)

where zt = αtz0 + σtϵ.

16

Published as a conference paper at ICLR 2025

B MODEL ARCHITECTURE

Below, we outline the architectures used for ϵθ and γθ. Both components rely on Diffusion
Transformers (DiTs) (Peebles & Xie, 2023) using the official PyTorch implementation at https:
//github.com/facebookresearch/DiT. We also state the hyperparameters that we kept
fixed for both our QM9 and GEOM-Drugs experiments. Any hyperparameters that differed between
the datasets are discussed in their respective sections later in the Appendix.

We emphasise that our architecture choices were not extensively tuned as the main purpose of our
experiments was to show that we can use generic architectures for equivariant diffusion models. We
arrived at the below architecture through small adjustments from experimenting with DiT models in
the context of molecular generation, which we stuck with for our final experiments.

B.1 ARCHITECTURE OF ϵθ

As we need ϵθ to be an SN -equivariant architecture, we parametrise this in terms of a DiT model
which consists of nlayers (intermediate) layers, nhead attention heads, hidden size nsize and a final
output layer. We then project the outputs via projU to ensure the outputs lie in U . In addition,
for the MLP layers, we use SwiGLU activations (Shazeer, 2020) instead of the standard GELU,
where the ratio of the hidden size of the SwiGLU to nsize is 2, and we do not use the default Fourier
embeddings for the inputs - we pass our inputs directly into the model. We also use the default time
embeddings. We refer to this model setup as DiT.

We also use the Gaussian positional embeddings from Luo et al. (2022) as additional features that
we concatenate to the inputs of DiT. To compute this from x, we let

ψk
(i,j) = −

1√
2π|σk|

exp

(
−1

2

(∥∥x(j) − x(j)
∥∥− µk

|σk|

))
,

where k = 1, . . . ,K is the number of basis kernels we use and µk, σk ∈ R are learnable parameters.
We define ψ(i,j) = (ψ1

(i,j), . . . , ψ
K
(i,j))

T ∈ RK×1. We then compute our positional embeddings by

Ψi =
1
N

∑N
j=1 ψ(i,j)WD where WD ∈ RK×nemb is a learnable matrix, and we concatenate these to

form our embeddings Ψ = [Ψ1, . . . ,ΨN] ∈ RN×nemb . We note that Ψ is O(3)-invariant.

Finally, we provide pseudo-code for a single pass through ϵθ in Algorithm 3 where we note that WI

is a learnable linear layer.

Algorithm 3 Computation of ϵθ
Inputs: z = [x,h] where x ∈ RN×3, h ∈ RN×d; t ∈ R

1: Compute Ψ ∈ RN×nemb from x
2: z← [x,h]WI where WI ∈ R(3+d)×nz

3: z← DiT(t, [z,Ψ])
4: return z

B.2 ARCHITECTURE OF γθ

We construct γθ following the recursive setup in Section 3.3 where we take the noise distribution ν to
be NU (0, I) on RN×mnoise . We provide pseudo-code for a single pass through our fθ in Algorithm 4
where we note that WG,W1,W2 are learnable linear layers, we use the same embedding parameters
for Ψ as before and DiTWithoutFinalLayer is the same as a DiT with mlayers (intermediate)
layers, mhead attention heads, hidden size msize but where we do not apply the final layer.

B.3 HYPERPARAMETERS FOR γθ AND ϵθ

For both QM9 and GEOM-Drugs, we fixed the following hyperparameters. For ϵθ, we set K ≈
1
2nsize and nemb = nsize − nz . For γθ, we set mnoise = 3 and m′

size =
1
2msize.

17

https://github.com/facebookresearch/DiT
https://github.com/facebookresearch/DiT

Published as a conference paper at ICLR 2025

Algorithm 4 Computation of fθ
Inputs: z = [x,h] where x ∈ RN×3, h ∈ RN×d; η ∈ RN×mnoise ; t ∈ R

1: Compute Ψ ∈ RN×nemb from x
2: z← [x, η,Ψ]WG where WG ∈ R(3+mnoise+nemb)×msize

3: z← DiTWithoutFinalLayer(t, z)

4: z← 1⊤z
N where 1 ∈ RN is a vector of ones ▷ Ensures SN -invariance

5: z← GELU(zW1)W2 where W1 ∈ Rmsize×m′
size ,W2 ∈ Rm′

size×(3×3)

6: R← QRDecomposition(z)
7: return R

C EXPERIMENTAL DETAILS

C.1 FIRST LIKELIHOOD TERM L1

We have a presented a framework for parametrising and optimising pθ(zt−1|zt) for t > 1 in Section
3.3 where pθ is obtained via stochastic symmetrisation. This corresponds to the Lt terms where t >
1 from our objective in equation 9. However, we note that standard diffusion models usually choose
a different parametrisation for pθ(z0|z1) as this corresponds to the final generation step. Depending
on the modelling task, this requires a different approach compared to the other reverse kernels.

For example, in Hoogeboom et al. (2022), pθ(z0|z1) is defined as the product of densities
pcont
θ (x0|z1)pdisc

θ (h0|z1) where pdisc
θ implements a quantisation step converting the continuous latent

z1 to discrete values h0, while pcont
θ is still a Gaussian distribution generating continuous geometric

features x0 from z1. In particular, we have that

pcont
θ (x0|z1) = NU (x0;x1/α1 − σ1/α1ϵ

(x)
θ (z1), σ

2
1/α

2
1I)

where ϵθ : Z → Z is some SN -invariant neural network and ϵ(x)θ denotes the x component of the
output of ϵθ.

We note that our proposed methodology can still account for this case by defining the symmetrised
kernel by

pθ(z0|z1) = symγθ
(kθ)(z0|z1), kθ(z0|z1) = pcont

θ (x0|z1)pdisc
θ (h0|z1)

We can follow the same discussion in Section 3.3 to conclude that

pθ(z0|z1) = Eγθ(dR|z1) [kθ(z0|R, z1)] , kθ(z0|R, z1) = kcont
θ (x0|R, z1)kdisc

θ (h0|R, z1),

where kcont
θ (z0|R, z1) = N (x0;x1/α1 − σ1/α1R · ϵθ(RT · z1), σ2

1/α
2
1I) and kdisc

θ (h0|R, z1) =
pdisc
θ (h0|RT · z1). This allows us to decompose L1 into the form in equation 9 and to tractably

optimise this objective since we have access to the density kθ(z0|R, z1).

C.2 QM9 DETAILS

C.2.1 MODEL HYPERPARAMETERS

For all of our experiments, we retain the diffusion hyperparameters as EDM (Hoogeboom et al.,
2022) - i.e. we use the same noise schedule, discretisation steps etc.

SymDiff Table 5 shows the hyperparameters for the ϵθ backbone of the kθ component used in the
SYMDIFF models for QM9. The remaining hyperparameters were kept the same as in Appendix
B.3.

For the fθ backbone of the γθ component, we setmsize = 128,mlayers = 8,mheads = 4 for all models
bar SymDiff∗. For SymDiff∗, we set msize = 216, mlayers = 10, mheads = 8.

EDM Table 6 shows the hyperparameters for the EDM models that we used for our QM9 exper-
iments. The remaining model hyperparameters were kept the same as those in Hoogeboom et al.
(2022).

18

Published as a conference paper at ICLR 2025

Table 5: Choice of nsize, nlayers, nheads for the ϵθ of the SYMDIFF models used for QM9.

Model # Parameters nsize nlayers nheads

SymDiff∗ 115.6M 768 12 12
SymDiff 29M 384 12 6
SymDiff− 21.3M 360 10 6
SymDiff−− 11.3M 294 8 6

Table 6: Choices of the hyperparameters nf (# features per layer), nl (number of layers) for the
EDM models used for QM9.

Model # Parameters nf nl

EDM++ 12.4M 332 12
EDM+ 9.5M 256 16
EDM 5.3M 256 9

C.2.2 OPTIMISATION

For the optimisation of SYMDIFF models, we followed Peebles & Xie (2023) and used AdamW
(Loshchilov & Hutter) with a batch size of 256. We chose a learning rate of 2 × 10−4 and weight
decay of 10−12 for our 31.2M parameter model by searching over a small grid of 3 values for each.
To match the same number of steps as in Hoogeboom et al. (2022), we trained our model for 4350
epochs.

We applied the same optimization hyperparameters from our 31.2M model to all other SYMDIFF
models bar SymDiff∗, where we used a learning rate of 10−4. For the EDM models, we followed
the default hyperparameters from Hoogeboom et al. (2022). In our augmentation experiments, we
first tuned the learning rate and weight decay for the DiT model, keeping all other optimization
hyperparameters unchanged. These tuned values were then applied to DiT-Aug.

C.3 GEOM-DRUGS DETAILS

For all of our experiments, we retain the diffusion hyperparameters as EDM (Hoogeboom et al.,
2022) - i.e. we use the same noise schedule, discretisation steps etc.

Like with QM9, we report the seconds per epoch, sampling time (s) and vRAM for the models used
in Table 4. We exclude END as their code is not publicly available. We omit the results for EDM
and GeoLDM as were unable to run their code on our NVIDIA H100 80GB GPU.

Table 7: Seconds per epochs, sampling time, and vRAM for different models on GEOM-Drugs.

Method # Parameters Sec./epoch Sampling time (s) vRAM (GB)

GeoLM 5.5M – – –
EDM 2.4M – – –
SymDiff 31.2M 4336.82 0.39 63

For the SymDiff model, we used the same hyperparameters as for QM9 except for the learning
where we used 10−4 as we found this to result in a lower validation loss.

C.4 PRETRAIN-FINETUNING

To further explore the flexibility of our approach, we experimented with using it in the pretrain-
finetune framework, similar to Mondal et al. (2023). Using QM9, we took the trained DiT model
from Table 1 and substituted it as the ϵθ for our SymDiff model, while keeping the same architecture
and hyperparameters for fθ. We tested two setups: finetuning both ϵθ and fθ (DiT-FT) and freezing
ϵθ while tuning only fθ (DiT-FT-Freeze). The same training procedure and optimization hyperpa-
rameters were used, except we now trained our models for only 800 epochs and used a larger grid
for learning rate and weight decay tuning. Specifically, we searched first for the optimal learning

19

Published as a conference paper at ICLR 2025

rate in [10−3, 8× 10−4, 2× 10−4, 10−4] and for the optimal weight decay in [0, 10−12, 2× 10−12].
We found the optimal learning rate and weight decay to be 10−3 and 2× 10−12.

Table 8: Test NLL, atom stability, molecular stability, validity and uniqueness on QM9 for 10,000
samples and 3 evaluation runs.

Method NLL ↓ Atm. stability (%) ↑ Mol. stability (%) ↑ Val. (%) ↑ Uniq. (%) ↑
SymDiff -129.35±1.07 98.74±0.03 87.49±0.23 95.75±0.10 97.89±0.26

DiT-FT -111.66±1.22 98.43±0.03 83.27 ±0.39 94.19±0.16 98.17±0.26

DiT-FT-Freeze -43.29±3.73 95.68±0.02 55.02±0.38 90.48±0.24 99.06±0.13

DiT -127.78±2.49 98.23±0.04 81.03±0.25 94.71±0.31 97.98±0.12

From Table 8, we observe that finetuning both ϵθ and fθ improves performance over the DiT model,
even with our minimal tuning. However, finetuning only fθ leads to worse results, indicating that
end-to-end training or finetuning the whole model is necessary. This underscores the flexibility of
our approach and its potential for easy and efficient symmetrisation of pretrained DiT models with
an unconstrained fθ.

D DISCUSSION ABOUT THE SYMDIFF OBJECTIVE

We explain here why the SYMDIFF objective in equation 9 is reasonable to use as a surrogate for the
true ELBO in equation 4. The underlying idea is analogous to Remark 7.1 of Cornish (2024). First,
it is straightforward to check that our SYMDIFF objective recovers the ELBO exactly if either of the
following two conditions are met:

• γθ is deterministic, i.e. γθ(dg|z1) is a Dirac distribution for every z1 ∈ Z; or

• kθ is G-equivariant.

(For our model in Section 3.3, the latter holds if the function ϵθ : Z → Z is deterministically
O(3)-equivariant.) It follows that the result of optimising our SYMDIFF objective will achieve
at least as high an ELBO as the best performing θ for which either of these two conditions are
met. Accordingly, if our model is powerful enough to express (or approximate) a rich family of
deterministic γθ and G-equivariant kθ, then it is reasonable to expect good performance from our
surrogate objective. More generally, our model also has the ability to interpolate between these
two conditions, allowing for potentially better overall optima than could be achieved in either case
individually.

E EXTENSION TO SCORE MATCHING AND FLOW MATCHING

In this section, we discuss how to extend stochastic symmetrisation to score and flow-based gener-
ative models to give an analogue of SYMDIFF to these paradigms. For clarity of presentation, we
consider all models to be defined for N -body systems living in the full space Z = RN×3 where we
wish to obtain a SN × O(3)-equivariant model - i.e. we do not consider non-geometric features or
translation invariance. Although, we note that the below discussion can be extended to such settings
in the natural way as presented for diffusion models above.

E.1 SCORE MATCHING

Score-based generative models (SGMs) (Song et al., 2020) are the continuous-time analogue of
diffusion models. SGMs consider the forward noising process xt ∼ pt for t ∈ [0, T] defined by the
following stochastic differential equation (SDE) with the initial condition x0 ∼ pdata:

dxt = f(xt, t)dt+ g(t)dw, (22)

for some choice of functions f : Z × [0, T] → Z and g : [0, T] → R, and where w is a standard
Weiner process.

20

Published as a conference paper at ICLR 2025

The corresponding backward process is shown in Anderson (1982) to take the form:

dxt =
[
f(xt, t)− g(t)2∇x log pt(xt)

]
dt+ g(t)dw̄, (23)

where w̄ is a standard Weiner process and time runs backwards from T to 0. Hence, given samples
xT ∼ pT and access to the score of the marginal distributions∇x log pt(xt), we can obtain samples
from pdata by simulating the backward process in equation 23.

By considering the Euler–Maruyama discretisation of equation 23, we can represent the sampling
scheme of a SGM in terms of the Markov chain pT (xT)

∏n
i=1 p(xti−1 |xti), where the time-points

ti are uniformly spaced in [0, T] - i.e. ti = i∆t where ∆t = T/n - and the reverse transition kernels
are given by:

p(xti−1 |xti) = N
(
xti−1 ;xti +∆t

{
f(xti , ti)− g(ti)2∇x log pti(xti)

}
, g(ti)

2∆tI
)
.

In what follows, we additionally assume that f(·, t) is SN × O(3)-equivariant for all t ∈ [0, T].
This is true for common choices of f which take f to be linear in xt.

Stochastic symmetrisation In order to learn an approximation to the transition kernels via
stochastic symmetrisation, we can parametrise the reverse transition kernels, in a similar fashion
as for diffusion models, by

pθ(xti−1 |xti) = symγθ
(kθ)(xti−1 |xti),

where we take kθ(xti−1
|xti) = N (xti−1

;µθ(xti), g(ti)
2∆tI). We define µθ by the following

parametrisation5:

µθ(xti) = xti +∆t
{
f(xti , ti)− g(ti)2sθ(xti)

}
,

where we take sθ : Z → Z to be a SN -equivariant neural network which aims to learn an ap-
proximation to the true score ∇x log pt(xt). This ensures that kθ is SN -invariant. Additionally, we
assume that γθ : Z → O(3) is some choice of a SN -invariant and O(3)-equivariant Markov kernel.
Hence, we can conclude that pθ : Z → Z is a SN × O(3)-equivariant Markov kernel by Theorem
1. We can also guarantee that pθ admits a density by Proposition 1.

Training To learn θ for pθ(xti−1
|xti), a natural objective is to minimise the KL divergence be-

tween the true reverse kernels and our parametrised reverse kernels

L(θ) =
n∑

i=1

λ0(ti)Li(θ), Li(θ) = Epti
(xti

)

[
DKL(p(xti−1 |xti)||pθ(xti−1 |xti))

]
,

where λ0 is some time weighting function. We note that we run into the same issue as with SYMDIFF
in that we do not have access to pθ(xti−1

|xti) in closed-form, since this is expressed in terms of
an expectation. However, as Li(θ) is a linear function of − log pθ(xti−1

|xti) and − log is a convex
function, we can apply Jensen’s inequality again to provide the following upper bound to our original
objective

L′(θ) =

n∑
i=1

λ0(ti)L′
i(θ), L′

i(θ) = Epti
(xti

),γθ(dR|xti
)

[
DKL(p(xti−1 |xti)||kθ(xti−1 |R,xti))

]
,

which we can now use to train θ. To further simplify L′
i(θ), we note that kθ(xti−1 |R,xti) =

N (xti−1 ;R ·µθ(R
T ·xti), g(ti)

2∆tI) with a similar derivation as before. This allows us to evaluate
the KL divergences in closed form since p, kθ are defined in terms of Gaussians. We can show that
this gives

L′
i(θ) = Epti

(xti
),γθ(dR|xti

)

[
1

2
g(ti)

2∆t
∥∥R · sθ(RT · xti)−∇x log pti(xti)

∥∥2] , (24)

where we use the fact that f(·, t) is SN × O(3)-equivariant. To express equation 24 in a tractable
form (as we do not have access to the true score), we can apply the standard technique of employing
the score matching identity (Vincent, 2011) to give

L′
i(θ) = Ep(x0),p(xti

|x0),γθ(dR|xti
)

[
1

2
g(ti)

2∆t
∥∥R · sθ(RT · xti)−∇x log pti(xti |x0)

∥∥2]+ Ci,

5Similar to our discussion on diffusion models, we leave the time dependency implicit in here.

21

Published as a conference paper at ICLR 2025

where p(xti |x0) denotes the conditional distribution of xti given x0 under the forward noising
process p, and Ci is some constant. In practice, the choice of forward noising SDE in equation 22 is
made to ensure that we have access to p(xti |x0) in closed-form and that the distribution is easy to
sample from.

By making the choice that λ0(t) = 2λ(t)/(g(ti)
2T) for some suitable time weighting function λ,

we can show as ∆t→ 0 that our objective L′(θ) will converge to (modulo some constant)

Ep(x0),t∼U(0,T),p(xt|x0),γθ(dR|xt)

[
λ(t)

∥∥R · sθ(RT · xt)−∇x log p(xt|x0)
∥∥2] , (25)

where U(0, T) denotes the uniform distribution on [0, T]. We see that our final objective in equa-
tion 25 now resembles the standard score matching objective.

E.2 FLOW MATCHING

Continuous normalising flows (CNFs) (Chen et al., 2018) construct a generative model of data x1 ∼
q = pdata by the pushforward of an ordinary differential equation (ODE) taking the form

d

dt
ϕt(x) = ut(ϕt(x)), ϕ0(x) = x, (26)

where ut : Z × [0, T]→ Z is the vector field function defining the ODE, and ϕt : Z × [0, T]→ Z
denotes the flow implicitly defined by solutions to the above ODE. By letting p0 be some simple
prior distribution, the above ODE defines a generative model xt ∼ pt by the pushforward of p0
through the flow ϕt

pt = [ϕt]#p0 (27)

If ut is chosen in such a way that p1 ≈ q = pdata, we can then generate samples from pdata
by sampling some x0 ∼ p0, then solving the ODE in equation 26 with this initial condition6.
Furthermore, as in previous work (Klein et al., 2024), we assume that ut is SN ×O(3)-equivariant.

By considering the Euler discretisation of equation 26, we can represent the generation process by
the Markov chain p0(x0)

∏T
i=1 p(dxti |xti−1

) where the time-points ti are uniformly spaced in [0, T]
- i.e. ti = i∆t where ∆t = T/n - and the transition kernels are given by the Markov kernels

p(dxti |xti−1
) = δ(xti−1

+ uti−1
(xti−1

)∆t), (28)

where δ(·) denotes the Dirac measure at some point.

Stochastic symmetrisation To learn the transition kernels induced by the vector field ut via
stochastic symmetrisation, we parametrise our transition kernels by

pθ(dxti |xti−1
) = symγθ

(kθ)(xti |xti−1
), (29)

where we take kθ(dxti |xti−1
) = δ(xti−1

+ vθti−1
(xti−1

)∆t) in which vθt : Z → Z is some SN -
equivariant neural network which aims to learn an approximation to the true vector field ut. We
further assume γθ : Z → O(3) is some SN -invariant and O(3)-equivariant Markov kernel. We can
again conclude that pθ : Z → Z is a (SN ×O(3))-equivariant Markov kernel by Theorem 1.

Training A natural objective to learn pθ is to minimise the 2-Wasserstein distance W2 (Peyré
et al., 2019) between p(dxti |xti−1) and pθ(dxti |xti−1) since these are defined in terms of Dirac
measures. We can write our objective as

L(θ) =
T∑

i=1

λ0(ti−1)Li(θ), Li(θ) = Epti−1
(xti−1

)

[
W2

2 (p(dxti |xti−1), pθ(dxti |xti−1))
]

where λ0 is some time weighting function, and the 2-Wasserstein distance W2 is defined as
W2

2 (π1, π2) = infπ
∫
∥x− y∥2 dπ(x,y) where π is taken over the space of possible couplings

6The use of time here reverse the convention used in the diffusion literature.

22

Published as a conference paper at ICLR 2025

between the measures π1, π2. We note that as p(dxti |xti−1
) is Dirac, there only exists a single cou-

pling between the two kernels given by the product of the Markov kernels. This allows us to evaluate
Li+1 as

Li+1(θ) = Epti
(xti

),γθ(dR|xti
)

[
∆t2

∥∥R · vθti(RT · xti)− uti(xti)
∥∥2] . (30)

To express equation 30 in a tractable form (as we do not have access to ut), we can take ut to be
constructed by the same setup used in Flow Matching (Lipman et al., 2022). This framework allows
us to express equation 30 in the now tractable form

Li+1(θ) = Eq(x1),pti
(xti

|x1),γθ(dR|xti
)

[
∆t2

∥∥R · vθti(R · xti)− uti(xti |x1)
∥∥]+ Ci+1, (31)

by the use of the Conditional Flow Matching objective, where Ci+1 is some constant. Here
pt(xt|x1) is a family of conditional distributions where p0(x0|x1) = p0(x0) equals our prior dis-
tribution and p1(x1|x1) ≈ δ(x1), and for which ut(xt|x1) is a vector field generating pt(xt|x1) by
an ODE of the form in equation 27. These are constructed to be easy to sample from and evaluate.
The true vector field ut, which provides a generative model of q = pdata, is then defined by some
expectation of the conditional vector fields ut(xt|x0) over pt(xt|x0) and q(x1).

Hence, by taking λ0(t) =
λ(t)
T∆t for some suitable time weighting function λ, we can show as ∆t→

0, our objective L(θ) will converge to (modulo some constant)

Eq(x1),t∼U(0,T),pt(xt|x1),γθ(dR|xt)

[
λ(t)

∥∥R · vθt (RT · xt)− ut(xt|x1)
∥∥2] . (32)

We see that our final objective in equation 32 now resembles the standard flow matching objective.

23

	Introduction
	Background
	Equivariant Markov Kernels
	Equivariant diffusion models
	N-body systems and E(3)-equivariant diffusion

	Equivariant Diffusion via Stochastic Symmetrisation
	Stochastic symmetrisation
	SymDiff: Symmetrised diffusion
	SymDiff for N-body systems
	Data Augmentation is a Special Case of SymDiff

	Experiments
	QM9
	GEOM-Drugs

	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2

	Model Architecture
	Architecture of
	Architecture of
	Hyperparameters for and

	Experimental details
	First likelihood term L1
	QM9 Details
	Model hyperparameters
	Optimisation

	GEOM-Drugs Details
	Pretrain-finetuning

	Discussion about the SymDiff objective
	Extension to Score Matching and Flow Matching
	Score Matching
	Flow Matching

