
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SYMDIFF: EQUIVARIANT DIFFUSION VIA
STOCHASTIC SYMMETRISATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose SYMDIFF, a novel method for constructing equivariant diffusion
models using the recently introduced framework of stochastic symmetrisation.
SYMDIFF resembles a learned data augmentation that is deployed at sampling
time, and is lightweight, computationally efficient, and easy to implement on
top of arbitrary off-the-shelf models. Notably, in contrast to previous work,
SYMDIFF typically does not require any neural network components that are
intrinsically equivariant, avoiding the need for complex parameterizations and the
use of higher-order geometric features. Instead, our method can leverage highly
scalable modern architectures as drop-in replacements for these more constrained
alternatives. We show that this additional flexibility yields significant empirical
benefit on E(3)-equivariant molecular generation. To the best of our knowledge,
this is the first application of symmetrisation to generative modelling, suggesting
its potential in this domain more generally.

1 INTRODUCTION

For geometrically structured data such as N -body systems of molecules or proteins, it is often of
interest to obtain a diffusion that is equivariant with respect to some group actions (Xu et al., 2022;
Hoogeboom et al., 2022; Watson et al., 2023; Yim et al., 2023). By accounting for the large number
of permutation and rotational symmetries within such systems, equivariant diffusion models aim
to improve the data efficiency (Batzner et al., 2022) and generalisation (Elesedy & Zaidi, 2021)
of the generative model. In previous work this has been achieved by the use of intrinsically
equivariant neural networks, which constrain each of their linear and nonlinear layers individually
to be equivariant, so that the overall model is also equivariant as a result (Bronstein et al., 2021).

There is a growing literature on the practical limitations of intrinsically equivariant neural networks
(Wang et al., 2024; Canez et al., 2024; Abramson et al., 2024; Pertigkiozoglou et al., 2024). It has
been observed that these models can suffer from degraded training dynamics due to their imposition
of architectural constraints, as well as increased computational cost and implementation complexity
(Duval et al., 2023a). To address these issues, there has been recent interest in symmetrisation
techniques for obtaining equivariance instead (Murphy et al., 2018; Puny et al., 2021; Duval et al.,
2023b; Kim et al., 2023; Kaba et al., 2023; Mondal et al., 2023; Dym et al., 2024; Gelberg et al.,
2024). These approaches offer a mechanism for constructing equivariant neural networks using
subcomponents that are not equivariant, which previous work has shown leads to better performing
models (Yarotsky, 2022; Kim et al., 2023). However, the advantages of symmetrisation-based
equivariance have not yet been explored for generative modelling. This is possibly in part because
previous work has solely focused on deterministic equivariance, rather than the more complex
condition of stochastic equivariance that is required in the context of generative models.

In this paper, we introduce SYMDIFF, a novel methodology for obtaining equivariant diffusion mod-
els through symmetrisation, rather than intrinsic equivariance. We build on the recent framework
of stochastic symmetrisation developed by Cornish (2024) using the theory of Markov categories
(Fritz, 2020). Unlike previous work on symmetrisation, which operates on deterministic functions,
stochastic symmetrisation can be applied to Markov kernels directly in distribution space. We show
that this leads naturally to a more flexible approach for constructing equivariant diffusion models
than is possible using intrinsic architectures. We apply this concretely to obtain an E(3)-equivariant
diffusion architecture for modelling N -body systems, where E(3) denotes the Euclidean group. For

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

this task, we formulate a novel reverse process that is allowed to be non-Gaussian, for which we de-
rive a tractable optimisation objective. Our model is stochastically E(3)-equivariant overall without
needing any intrinically E(3)-equivariant neural networks as subcomponents. We also sketch how to
extend SYMDIFF to score and flow-based generative models (Song et al., 2020; Lipman et al., 2022).

We implemented SYMDIFF for de novo molecular generation, using it as a drop-in replacement for
the E(3)-equivariant diffusion of Hoogeboom et al. (2022), which relies on intrinsically equivariant
neural networks. In contrast, our model is able to leverage highly scalable off-the-shelf architectures
such as Diffusion Transformers (Peebles & Xie, 2023) for all of its subcomponents. We demonstrate
this leads to significantly improved empirical performance for both the QM9 and GEOM-Drugs
datasets.

2 BACKGROUND

2.1 EQUIVARIANT MARKOV KERNELS

Markov kernels At a high level, a Markov kernel k : X → Y may be thought of as a conditional
distribution or stochastic map that, when given an input x ∈ X , produces a random output in Y with
distribution k(dy|x). For example, given a function f : X × E → Y and a random element η of E ,
there is a Markov kernel k : X → Y for which k(dy|x) is the distribution of f(x, η).1 As a special
case, every deterministic function f : X → Y may be thought of as a Markov kernel X → Y also.
When k(dy|x) has a density (or likelihood), we will denote this by k(y|x), although we note that
we can still reason about Markov kernels even when they do not admit a likelihood in this sense.

Stochastic equivariance Let G be a group acting on spaces X and Y . We will denote this using
“dot” notation, so that the action on X is a function (g,x) 7→ g ·x. Recall that a function f : X → Y
is then equivariant if

f(g · x) = g · f(x) for all x ∈ X and g ∈ G.

Here f is purely deterministic, and so this concept must be generalised in order to encompass models
whose outputs are stochastic (Bloem-Reddy & Teh, 2020). To this end, Cornish (2024) uses a notion
defined for Markov kernels: a Markov kernel k : X → Y is stochastically equivariant if

k(dy|g · x) = (g · k)(dy|x) for all x ∈ X and g ∈ G, (1)

where the right-hand side denotes the distribution of g · y when y ∼ k(dy|x), or in other words the
pushforward of k(dy|x) under g. When k is obtained from f and η as above, equation 1 holds iff

f(g · x, η) d
= g · f(x, η) for all x ∈ X and g ∈ G,

where d
= denotes equality in distribution.2 If η is constant, this says f is deterministically equivariant

in the usual sense. Likewise, when k has a conditional density k(y|x), equation 1 holds if

k(g · y|g · x) = k(y|x) for all x ∈ X , y ∈ Y , and g ∈ G,

provided the action of G on Y has unit Jacobian (Cornish, 2024, Proposition 3.1), as will be the case
for all the actions we consider. This latter condition recovers the usual formulation of stochastic
equivariance considered in the diffusion literature by e.g. Xu et al. (2022); Hoogeboom et al. (2022).

2.2 EQUIVARIANT DIFFUSION MODELS

Denoising diffusion models Diffusion models construct a generative model pθ(z0) of data
pdata(z0), living in a space Z , by learning to reverse an iterative forward noising process zt.
Following the notation of Kingma et al. (2021), the distribution of zt is defined by q(zt|z0) =
N (zt;αtz0, σ

2
t I) for some noise schedule αt, σt > 0 such that the signal-to-noise ration SNR(t) :=

1For “nice” choices of Y , the converse also holds by noise outsourcing (Kallenberg, 2002, Lemma 3.22).
2Note this is more general than the almost sure condition from equation (17) of Bloem-Reddy & Teh (2020).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

α2
t /σ

2
t is strictly monotonically decreasing. The joint distribution of the forward and reverse pro-

cesses respectively then have the forms:

q(z0:T) = q(z0)

T∏
t=1

q(zt|zt−1) pθ(z0:T) = p(zT)

T∏
t=1

pθ(zt−1|zt) (2)

with q(z0) := pdata(z0), and q(zt|zt−1) = N (zt;αt|t−1zt−1, σ
2
t|t−1I), with constants defined as

αt|t−1 := αt/αt−1 and σ2
t|t−1

:= σ2
t −α2

t|t−1σ
2
t−1. We take p(zT) to also be Gaussian. The reverse

process is then trained to maximise the ELBO of log pθ(z0), which can be obtained as follows
(Sohl-Dickstein et al., 2015):

log pθ(z0) ≥ Eq(z1|z0)[log pθ(z0|z1)]−DKL(q(zT |z0)||p(zT))

−
T∑

t=2

Eq(zt|z0)[DKL(q(zt−1|zt, z0)||pθ(zt−1|zt))]. (3)

This objective can be efficiently optimised when the reverse process is Gaussian. This is due to
the fact that the posterior distributions q(zt−1|zt, z0) = N (zt−1;µq(zt, z0), σ

2
q (t)I) are Gaussian,

and that the KL divergence between Gaussians can be expressed in closed form. To match these
posteriors, the reverse process is then typically defined in terms of a neural network µθ : Z → Z as

pθ(zt−1|zt) := N (zt−1;µθ(zt), σ
2
q (t)I). (4)

Invariant and equivariant diffusion It is often desirable for the model pθ(z0) to be invariant
with respect to the action of a group G. Invariance here means that

pθ(g · z0) = pθ(z0) for all g ∈ G.

Intuitively, this says that the density pθ(z0) is constant on the orbits of this action. For the model in
equation 2, invariance follows if pθ(zT) is itself invariant, and if each pθ(zt−1|zt) is stochastically
G-equivariant (Xu et al., 2022). All previous work we are aware of has approached this problem by
obtaining a deterministically equivariant µθ, which then implies that the reverse process is stochas-
tically equivariant (Le et al., 2023).

2.3 N-BODY SYSTEMS AND E(3)-EQUIVARIANT DIFFUSION

Equivariant diffusion models are often applied to model N -body systems such as molecules and
proteins (Xu et al., 2022; Hoogeboom et al., 2022; Yim et al., 2023). This is motivated by the
large number of symmetries present in these system. For example, intuitively speaking, neither the
coordinate system nor the ordering of bodies in the system should matter for sampling. We describe
the standard components of such models below.

N -body data In 3-dimensions, the state of an N -body system can be encoded as a pair z =
[x,h] ∈ RN×(3+d), where x ≡ (x(1), . . . ,x(N)) ∈ RN×3 describes a set of N points in 3D space,
and h ≡ (h(1), . . . ,h(N)) ∈ RN×d describes a set of N feature vectors of dimension d. Each
feature vector h(i) is associated with the point x(i). For example, Hoogeboom et al. (2022) encodes
molecules in this way, where each x(i) denotes the location of an atom, and h(i) some corresponding
properties such as atom type (represented as continuous quantities).

Center of mass free space Intuitively speaking, for many applications, the location of an N -body
system in space should not matter. For this reason, instead of defining a diffusion on the full
space of N -body systems directly, previous work (Garcia Satorras et al., 2021a; Xu et al., 2022;
Hoogeboom et al., 2022) has set Z := U , where U is the “center of mass (CoM) free” linear
subspace of RN×(3+d) consisting of [x,h] such that x̄ := 1

N

∑N
i=1 x

(i) = 0. In this way, samples
from their model are always guaranteed to be centered at the origin.

CoM-free diffusions To construct their forward and reverse processes to now live entirely on U
instead of RN×(3+d), Xu et al. (2022) defines the projected Gaussian distribution NU (µ, σ

2I), for
µ ∈ U and σ2 > 0, as the distribution of z obtained via the following process:

ϵ ∼ N (0, I) z := µ+ σ π(ϵ),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where π : RN×(3+d) → U centers its input at the origin, so that π([x,h]) := [x− (x̄, . . . , x̄),h]. By
construction, the projected Gaussian distribution is then supported on the linear subspace U . Xu et al.
(2022) shows that this distribution has a density with Gaussian form NU (z;µ, σ

2I) ∝ N (z;µ, σ2I)
defined for points z ∈ U living in this subspace. The forward and reverse processes q(zt−1|zt) and
pθ(zt−1|zt) in equation 2 can then be defined exactly as before, but now as projected Gaussians.
Since these are still Gaussian (albeit restricted to a linear subspace), the KL terms in equation 3
remain tractable, which permits optimising the ELBO in the usual way. This does require that
µθ : U → U is now constrained to take values in the subspace U . Prior work has enforced this by
taking µθ := π ◦ φθ, where φθ : U → RN×(3+d) is a neural network.

Invariance and equivariance Intuitively, the ordering of the N points and the orientation of the
overall system in 3D space should not matter. To formalise this, let SN denote the symmetric group
of permutations of the integers {1, . . . , N}, and O(3) denote the group of orthogonal 3×3 matrices.
Their product SN × O(3) acts on N -body systems by reordering and orthogonally transforming
points as follows:

(σ,R) · [x,h] := [Rx(σ(1)), . . . , Rx(σ(N)),h(σ(1)), . . . ,h(σ(N))], (5)

where σ ∈ SN and R ∈ O(3). Previous work (Xu et al., 2022; Hoogeboom et al., 2022) has then
chosen the model pθ(z0) to be invariant to this action. They enforce this via the approach described
in Section 2.2, by ensuring that µθ is deterministically (SN ×O(3))-equivariant, which implies that
the reverse process is stochastically equivariant also.

Following standard terminology in the literature (Garcia Satorras et al., 2021b; Xu et al., 2022;
Hoogeboom et al., 2022), we refer to a (SN ×O(3))-diffusion defined on the CoM-free space U as
an E(3)-equivariant diffusion.

3 EQUIVARIANT DIFFUSION VIA STOCHASTIC SYMMETRISATION

In this section, we introduce our methodology SYMDIFF, and apply this concretely to the problem
of obtaining E(3)-equivariant diffusion models for N -body systems. We also discuss extensions to
score and flow-based generative models (Song et al., 2020; Lipman et al., 2022) in Appendix D.

3.1 STOCHASTIC SYMMETRISATION

Recently, Cornish (2024) gave a general theory of symmetrisation using the framework of Markov
categories (Fritz, 2020). This work provides a characterisation of all possible symmetrisation
procedures, recovering previous examples in the deterministic setting as special cases (Murphy
et al., 2018; Puny et al., 2021; Kaba et al., 2023; Kim et al., 2023). The theory applies flexibly
and compositionally to general groups and actions, including in the non-compact case, and extends
beyond deterministic functions to provide a methodology for symmetrising Markov kernels, which
had not previously been considered.

In this work, we will consider a special case of the symmetrisation framework of Cornish (2024).
Concretely, for groups H and G, we will consider the problem of symmetrising an H-equivariant
Markov kernel so that it becomes both H-equivariant and G-equivariant. Intuitively, this allows
“upgrading” a “partially equivariant” Markov kernel to become “more equivariant”. By taking H
to be the trivial group consisting of just the identity element, this in particular allows converting
arbitrary unconstrained Markov kernels to ones that are G-equivariant. However, as we show later,
it is often more computationally efficient to symmetrise a Markov kernel that is already “partially
equivariant” as opposed to fully unconstrained, which motivates studying the case of generalH here.

General procedure Suppose the product group H × G acts on both the spaces X and Y . This
means we have an action (h, g) · x defined for (h, g) ∈ H × G and x ∈ X , and similarly for Y
(see equation 5 below for a concrete example involving N -body systems). This implies that bothH
and G act on both X and Y individually: for example, H acts on X via h · x := (h, eG) · x, where
eG ∈ G is the identity element. The following result, which is a special case of Example 6.3 of
Cornish (2024), then gives a procedure for symmetrising H-equivariant Markov kernels to become
(H× G)-equivariant ones. For the proof, see Appendix A.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition 1. Let γ : X → G be a Markov kernel that is H-invariant (so that γ(dg|h · x) =
γ(dg|x)) and G-equivariant, where G acts on itself by left multiplication, i.e. g · g′ := gg′. Then
everyH-equivariant Markov kernel k : X → Y gives rise to an (H×G)-equivariant Markov kernel
symγ(k) : X → Y , where symγ(k)(dy|x) is the distribution of y sampled as follows:

g ∼ γ(dg|x) y0 ∼ k(dy|g−1 · x) y := g · y0. (6)

Cornish (2024) shows that this is the only natural symmetrisation procedure that can be defined here
without further assumptions on the groups, spaces, or Markov kernels involved.

Recursive symmetrisation Notice that the symmetrisation procedure defined by Proposition 1
requires γ already to satisfy some equivariance constraints. In effect this pushes back the problem
of obtaining (H × G)-equivariant Markov kernels to the choice of γ, which mirrors the situation in
the deterministic setting also (Puny et al., 2021; Kim et al., 2023). To work around this, Cornish
(2024) proposes a recursive strategy for obtaining γ. Specifically, the idea is to set

γ := symγ0
(γ1) (7)

where γ0, γ1 : X → G are Markov kernels, and γ0 isH-invariant and G-equivariant, but where now
γ1 is only required to be H-invariant, and may behave arbitrarily with respect to G. For compact
G, a suitable choice of γ0 here is always available as γ0(dg|x) := λ(dg) (Cornish, 2024, Example
6.3), where λ denotes the Haar measure on G (Kallenberg, 1997).3 We note that this use of the Haar
measure exploits the stochastic nature of the procedure in Proposition 1 and would not be possible
using deterministic symmetrisation methods here instead.

3.2 SYMDIFF: SYMMETRISED DIFFUSION

We propose to use stochastic symmetrisation to obtain a diffusion process as in Section 2.2 whose
reverse kernels are stochastically equivariant. Specifically, suppose some product group H × G
acts on our state space Z . For each timestep t ∈ {1, . . . , T}, we will choose some H-equivariant
Markov kernel kθ : Z → Z that admits a conditional density kθ(zt−1|zt). Similarly, we will
choose some Markov kernel γθ : Z → G that satisfies the conditions of Proposition 1 when X = Z .
With these components, we will define our equivariant reverse process to be

pθ(zt−1|zt) := symγθ
(kθ)(zt−1|zt), (8)

which is guaranteed to be (H× G)-equivariant by Proposition 1. This defines a conditional density,
not just a Markov kernel, as a consequence of the next result. For the proof, see Appendix A.2.
Proposition 2. Under the setup of Proposition 1, let k(dy|g,x) be the distribution of y sampled via

y0 ∼ k(dy|g−1 · x) y := g · y0.

If k(dy|x) has a density k(y|x), then so do k(dy|g,x) and symγ(k)(dy|x), where the latter is
symγ(k)(y|x) = Eγ(dg|x)[k(y|g,x)].

When the action of G on Y has unit Jacobian, we also have k(y|g,x) = k(g−1 · y|g−1 · x).

Training objective We would like to learn the parameters θ using the ELBO from equation 3.
However, in general, we do not have access to the densities pθ(zt−1|zt) from equation 8 in closed
form, since this requires computing the expectation as in Proposition 2. As such, we cannot
compute the ELBO directly. However, since log is concave, Jensen’s inequality allows us to bound

log pθ(zt−1|zt) ≥ Eγθ(dg|zt)[log kθ(zt−1|g, zt)].
Since the ELBO in equation 3 depends linearly on log pθ(zt−1|zt), this allows us to also bound

log pθ(z0) ≥
−L0︷ ︸︸ ︷

Eq(z1|z0),γθ(dg|z1)[log kθ(z0|g, z1)]−DKL(q(zT |z0)||p(zT))

−
T∑

t=2

Lt︷ ︸︸ ︷
Eq(zt|z0),γθ(dg|zt)[DKL(q(zt−1|zt, z0)||kθ(zt−1|g, zt)], (9)

where the right-hand side is a tractable lower bound to the original ELBO in equation 3. We take
this new bound as our objective used to train our SYMDIFF model.

3We could use this γ0 directly in place of γ in Proposition 1, although we found it empirically better to use
the more expressive model form in equation 7 instead.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Comparison with deterministic symmetrisation An alternative approach to equation 8 would
be to obtain µθ in equation 4 via deterministic symmetrisation. An advantage of our method is that
we require only a single pass through γθ and kθ at sampling time. In contrast, many deterministic
techniques (Puny et al., 2021; Kim et al., 2023) involve a Monte Carlo averaging step that requires
multiple passes through the model instead, and then only return an approximation, which would
introduce sampling bias. The canonicalisation method of Kaba et al. (2023) avoids this Monte Carlo
step, but instead suffers from pathologies associated with its deterministic analogue of γθ, which
Dym et al. (2024) show must become discontinuous at certain inputs. Additionally, canonicalisation
requires an intrinsically G-equivariant architecture for its analogue of γθ. In contrast, whenever G is
compact, our recursive strategy in equation 7 requires no intrinsically G-equivariant neural network
components anywhere in the model at all.

3.3 SYMDIFF FOR N -BODY SYSTEMS

We now apply SYMDIFF in the setting of N -body systems considered in Section 2.3. Specifically,
we take Z := U , H := SN , and G := O(3), and consider the action on Z defined in equation 5.
This means that we start with kθ(zt−1|zt) in equation 8 that is already equivariant with respect
to reorderings of the N bodies, and then symmetrise this to obtain an (SN × O(3))-equivariant
reverse kernel overall. We choose to symmetrise in this way because highly scalable SN -equivariant
kernels based on Transformer architectures can be readily constructed for this purpose (Vaswani
et al., 2017; Lee et al., 2019; Peebles & Xie, 2023), whereas intrinsically O(3)-equivariant neural
networks have not shown the same degree of scalability to-date (Abramson et al., 2024).

Choice of unsymmetrised kernels It remains now to choose kθ(zt−1|zt). We now do so in a
way that equation 9 will resemble the standard diffusion objective in Ho et al. (2020), allowing for
the scalable training of SYMDIFF. Specifically, we take

kθ(zt−1|zt) := NU (zt−1;µθ(zt), σ
2
q (t)I), (10)

where µθ : Z → Z is an arbitrary SN -equivariant neural network, which in turn means kθ is
stochastically SN -equivariant. We highlight that µθ is otherwise unconstrained and can process
[x,h] jointly. In contrast, previous work using intrinsically (Sn × O(3))-equivariant components
(Satorras et al., 2021; Thölke & De Fabritiis, 2022; Hua et al., 2024) has required complex
parameterisations for µθ that handle the x and h inputs separately.

Form of KL terms We now show how our model yields a closed-form expression for the Lt terms
in equation 9. Standard arguments show that each q(zt−1|zt, z0) = NU (zt;µq(zt, z0), σ

2
q (t)I) is a

(projected) Gaussian. We claim that our model also gives a (projected) Gaussian

kθ(zt−1|R, zt) = NU (zt−1;R · µθ(R
T · zt), σ2

q (t)I). (11)

Indeed, by the definition of this kernel in Proposition 2 and the definition of NU in Section 2.3, and
since R−1 = RT for R ∈ O(3), for zt−1 ∼ kθ(zt−1|R, zt) we have

zt−1
d
= R ·

(
µθ(R

T · zt) + σq(t) ϵ
)
= R · µθ(R

T · zt) + σq(t)R · ϵ,

where ϵ ∼ NU (0, I). Since R · ϵ d
= ϵ for R ∈ O(3), equation 11 now follows. The same argument

as Hoogeboom et al. (2022) now yields the closed-form expression

Lt = Eq(zt|z0),γθ(dR|zt)

[
1

2σ2
q (t)

∥∥µq(zt, z0)−R · µθ(R
T · zt)

∥∥2] . (12)

We can obtain unbiased gradients of this quantity whenever γθ(dR|zt) is reparametrisable
(Kingma, 2013). In other words, we should define γθ(dR|zt) to be the distribution of φθ(zt, ξ),
where φθ is a deterministic neural network, and ξ is some noise variable whose distribution does not
depend on θ. For a discussion of how we can handle the L0 term in equation 9 in our framework,
we refer to Appendix C.1.

ϵ-parameterisation When µθ is taken to have the ϵ-form (Ho et al., 2020; Kingma et al., 2021)

µθ(zt) :=
1

αt|t−1
zt −

σ2
t|t−1

αt|t−1σt
ϵθ(zt), (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for some neural network ϵθ : Z → Z , the same argument given by Ho et al. (2020) now allows us
to rewrite equation 12 in a way that resembles the standard diffusion objective:

Lt = Eq(z0),ϵ∼NU (0,I),γθ(dR|zt)

[
1

2
w(t)

∥∥ϵ−R · ϵθ(RT · zt)
∥∥2] (14)

where zt = αtz0 + σtϵ, and w(t) = (1 − SNR(t − 1)/SNR(t)). Recall we require µθ to be
SN -equivariant, which straightforwardly follows here whenever ϵθ is. In practice, we set w(t) = 1
during training as is commonly done in the diffusion literature (Kingma & Gao, 2024).

Recursive choice of γθ Recall that to apply Proposition 1, we require γθ to be SN -invariant and
O(3)-equivariant. To obtain this, we apply the recursive procedure from equation 7, where γ0 : Z →
O(3) is obtained using the Haar measure on O(3) as described there, and γ1(dR|zt) is defined as
the distribution of fθ(zt, η), where fθ is some SN -invariant neural network, and η is sampled from
some noise distribution ν(dη). Since the Haar measure does not depend on θ, the overall γθ obtained
in this way remains reparametrisable. We emphasise that fθ is not required to be O(3)-equivariant,
thus allowing for highly flexible choices such as Set Transformers (Lee et al., 2019). At sampling
time, we use the procedure from Section 5 of Mezzadri (2006) to sample from the Haar measure on
O(3), which is a negligible overhead compared with the cost of evaluating fθ.

Algorithm 1 SYMDIFF training step

1: Sample z0 ∼ pdata(z0), t ∼ Unif({1, . . . , T}) and ϵ ∼ NU (0, I)
2: zt ← αtz0 + σtϵ
3: Sample R0 from the Haar measure on O(3) and η ∼ ν(dη)
4: R← R0 · fθ(RT

0 · zt, η)
5: Take gradient descent step with∇θ

1
2w(t)

∥∥ϵ−R · ϵθ(RT · zt)
∥∥2

Algorithm 2 SYMDIFF sampling process

1: Sample zT ∼ NU (0, I)
2: for s = T, . . . , 1 do
3: Sample R0 from the Haar measure on O(3), η ∼ ν(dη), and ϵ ∼ NU (0, I)
4: R← R0 · fθ(RT

0 · zt, η)
5: zt−1 ← 1

αt|t−1
zt −

σ2
t|t−1

αt|t−1σt
R · ϵθ(RT · zt) + σq(t)ϵ

6: return z0 ∼ pθ(z0|z1) ▷ See Appendix C.1 for an example of this output kernel

3.4 DATA AUGMENTATION IS A SPECIAL CASE OF SYMDIFF

Data augmentation is a popular method for incorporating “soft” inductive biases within neural
networks. Consider again our setup from the previous section, but suppose we now used the
unsymmetrised kernels kθ(zt−1|zt) from equation 10 in place of pθ(zt−1|zt) in our backwards
process directly. Suppose moreover that we trained our model using the standard diffusion objective,
applying a uniform random orthogonal transformation to the input of our ϵθ network before each
forward pass. This is equivalent to optimising the following objective:

Laug
t = Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)∥ϵ− ϵθ(αtR · z0 + σtϵ)∥2

]
, (15)

where λ is the Haar measure on O(3). (More general choices of λ could also be considered.) We
then have the following result, proven in Appendix A.3.
Proposition 3. When γθ(dR|zt) = λ(dR) for all zt ∈ Z , our SYMDIFF objective recovers the data
augmentation objective exactly, so that Lt = Laug

t .

In this way, SYMDIFF may be understood as a strict generalisation of data augmentation in
which a more flexible augmentation process γθ is learned during training. Moreover, our γθ
is then deployed at sampling time, which guarantees stochastic equivariance. In contrast, data
augmentation is usually only applied during training, and the model deployed at sampling time then
becomes only approximately equivariant.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

We evaluated our E(3)-equivariant SYMDIFF model as a drop-in replacement for the E(3)-
equivariant diffusion (EDM) of Hoogeboom et al. (2022) on both the QM9 and GEOM-Drugs
datasets for molecular generation. We implemented this by taking the code base of Hoogeboom
et al. (2022) and substituting our symmetrised reverse process for their one, which relies on intrin-
sically equivariant neural networks. We made minimal other changes to their codebase and exper-
imental setup otherwise. We found SYMDIFF led to significantly improved performance on both
tasks. We additionally compared against several other more sophisticated models than Hoogeboom
et al. (2022) that model more complex molecular structure. Despite the relative simplicity of our
approach, we obtained results that were on par or superior to these additional methods also. We give
an overview of these results now and provide full details in Appendix C.

4.1 QM9

Dataset QM9 (Ramakrishnan et al., 2014) is a common benchmark dataset used for evaluating
molecular generation. It consists of molecular properties and atom coordinates for 130k small
molecules with up to 9 heavy atoms and a total of 29 atoms including hydrogen. For our experi-
ments, we trained our SYMDIFF method to generate molecules with 3D coordinates, atom types,
and atom charges where we explicitly modeled hydrogen atoms. We used the same train-val-test
split of 100K-8K-13K as in Anderson et al. (2019).

Our model We took our model to be symγθ
(kθ)(zt−1|zt) from equation 8 above. We chose the

“backbone” neural network ϵθ to be a Diffusion Transformer (DiT) (Peebles & Xie, 2023). This
component had 29M parameters, matching the smallest model considered by Peebles & Xie (2023).
Likewise, we chose the “backbone” neural network fθ of the component γθ to be a DiT with 2.2M
parameters. In this way, our kθ was much larger than γθ, following a similar approach taken by
earlier work on deterministic symmetrisation (Kim et al., 2023; Kaba et al., 2023). By construction,
DiT architectures are SN -equivariant, and can be made SN -invariant using a Set Transformer (Lee
et al., 2019) approach, which allowed us to achieve the requirements for these components from
Section 3.3. However, DiTs are not required to be O(3)-equivariant, unlike the backbone E-GNN
components used by Hoogeboom et al. (2022). Overall, our model had 31.2M parameters in total.
To test its scalability, we also trained a larger version of our method with a backbone of 115.6M
parameters (SymDiff∗), matching the DiT-B model from Peebles & Xie (2023). For this model, γθ
had 2.2M parameters, giving 117.8M parameters total.

Metrics To measure the quality of generated molecules, we follow standard practice (Hoogeboom
et al., 2022; Garcia Satorras et al., 2021a) and report atom stability, molecular stability, validity
and uniqueness. We exclude results for the novelty metric for the same reasons as discussed in
Vignac & Frossard (2021) and refer the reader to these works for a more extensive discussion of
these metrics. For all of our metrics, we used 10,000 samples and report the mean and standard
deviation over three evaluation runs. To demonstrate the efficiency of our approach, we also report
the number of seconds per epoch, time taken to generate one sample and vRAM.

Baselines We compared our method with EDM (Hoogeboom et al., 2022), whose framework is
the most similar to ours. We also considered several other baselines that baked in more sophisticated
inductive biases related to molecular generation. These methods included END (Cornet et al.,
2024), GeoLDM (Xu et al., 2023) and MUDiff (Hua et al., 2024). For EDM, we trained their 5.3M
parameter model using their experimental setup and for the remaining methods we state the results
reported in the papers, noting that all the papers used the same train-val-test splits. In addition, we
trained an unsymmetrised reverse process with a 29M parameter DiT backbone (DiT), as well as
the same model using data augmentation as described in Section 3.4 (DiT-Aug). We also compared
our SymDiff model to the case where we simply let γθ be obtained using the Haar measure on
O(3), rather than learning this component (SymDiff-H).

Results From Table 3, we see that our SYMDIFF model comfortably beats its EDM counterpart
on all metrics, bar uniqueness. Additionally, we see that our model is also competitive with the
more recent, sophisticated baselines from the literature, outperforming all of them on validity. Im-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

portantly, it is significantly more memory and time efficient (see Table 2). We also see from Table 3
that our method scales significantly better than the EDM approach, both in terms of seconds/epoch,
sampling time and vRAM. This is not surprising since the intrinsically equivariant E-GNN used
by the EDM model uses message passing for training and inference, which is computationally very
costly. In contrast, our symmetrisation approach allows us to use computationally efficient DiT
components that parallelise and scale much more effectively (Fei et al., 2024).

Table 1: Test NLL, atom stability, molecular stability, validity and uniqueness on QM9 for 10,000
samples and 3 evaluation runs. We omit the results for NLL where not available.

Method NLL ↓ Atm. stability (%) ↑ Mol. stability (%) ↑ Val. (%) ↑ Uniq. (%) ↑
GeoLDM – 98.90 ±0.10 89.40 ±0.50 93.80 ±0.40 92.70 ±0.50

MUDiff -135.50±2.10 98.80±0.20 89.90±1.10 95.30±1.50 99.10±0.50

END – 98.90 ±0.00 89.10 ±0.10 94.80 ±0.10 92.60 ±0.20

EDM -110.70±1.50 98.70±0.10 82.00 ±0.40 91.90±0.50 90.70±0.60

SymDiff∗ -133.79±1.33 98.92±0.03 89.65±0.10 96.36±0.27 97.66±0.22

SymDiff -129.35 ±1.07 98.74±0.03 87.49 ±0.23 95.75 ±0.10 97.89 ±0.26

SymDiff-H -126.53±0.90 98.57±0.07 85.51±0.18 95.22±0.18 97.98±0.09

DiT-Aug -126.81±1.69 98.64±0.03 85.85±0.24 95.10±0.17 97.98±0.08

DiT -127.78±2.49 98.23±0.04 81.03±0.25 94.71±0.31 97.98±0.12

Data 99.00 95.20 97.8 100

We attribute the improved performance of our method to the extra architectural flexibility provided
by our approach to symmetrisation, enabling it to not only outperform its EDM counterpart but also
perform competitively with more sophisticated alternatives (see Tables 1, 2). Our largest model,
SymDiff∗, outperformed all our baselines on atom stability and validity, and is within variance for
molecular stability. By training the model for 500 more epochs, we further found that it surpassed all
our baselines on all metrics except uniqueness (see Appendix C.2.3). We conjecture that similar per-
formance improvements can be achieved by using our SYMDIFF approach as a drop-in replacement
for the reverse kernels in more sophisticated methods.

Moreover, from Table 1 we note that DiT-Aug performs notably better than the DiT model on all
metrics, highlighting its strength as a baseline. Moreover, we observe that our SymDiff model out-
performs both SymDiff-H and DiT-Aug on all metrics apart from uniqueness. This shows the benefit
of our approach as a more effective way of incorporating O(3) equivariance than data augmentation.

Table 2: Seconds per epoch, sampling time and vRAM for SymDiff and our baselines. Results for
END are omitted as their code was not publicly available.

Method # Parameters Sec./epoch (s) ↓ Sampling time (s) ↓ vRAM (GB) ↓
GeoLDM 11.4M 210.93 0.26 27
MuDiff 9.7M 230.87 0.89 36
END 9.4M – – –
EDM 5.4M 88.80 0.27 14

SymDiff∗ 117.8M 53.40 0.21 16
SymDiff 31.2M 27.20 0.09 7

Ablations As an ablation study, we also tested the effect of making SYMDIFF smaller, and EDM
larger. For SymDiff, we trained two models of 23.5M (SymDiff−) and 13.5M (SymDiff−−)
parameters respectively. For EDM, we trained two additional models with 9.5M (EDM+) and
12.4M (EDM++) parameters respectively. For full details see Appendix C.2.1. We found that
even our smaller SymDiff models remained competitive. In particular, SymDiff− gave comparable
molecular stability as the second largest EDM model, EDM+, while being approximately 5 times
faster in terms of seconds/epoch.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: NLL, molecular stability, seconds per epoch, sampling time and vRAM for different sizes
of SymDiff and EDM. For additional performance metrics see Appendix C.2.

Method NLL ↓ Mol. stability (%) ↑ Sec./epoch (s) ↓ Sampling time (s) ↓ vRAM (GB) ↓
EDM++ -119.12±1.41 85.68±0.83 160.60 0.56 23
EDM+ -110.97±1.42 84.63±0.16 192.60 0.46 23
EDM -110.70±1.50 82.00 ±0.40 88.80 0.27 14

SymDiff -129.35±1.07 87.49±0.23 27.20 0.09 7
SymDiff− -125.40±0.63 83.51±0.24 24.87 0.08 6
SymDiff−− -110.68 ±2.55 71.25 ±0.50 20.60 0.07 5

4.2 GEOM-DRUGS

Dataset, model and training GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022) is a larger
and more complicated dataset than QM9, containing 430,000 molecules with up to 181 atoms. We
processed the dataset in the same way as Hoogeboom et al. (2022), where we again model hydrogen
explicitly. We used the SymDiff model from earlier and trained our model for 40 epochs to match
the same total number of gradient steps as used by Hoogeboom et al. (2022).

Metrics and baselines We report the same metrics as for QM9 but exclude molecular stability and
uniqueness for the same reasons discussed in Hoogeboom et al. (2022). We compared our method to
the EDM model used by Hoogeboom et al. (2022) for GEOM-Drugs, as well as the other baseline ar-
chitectures reported for QM9. Due to the increased computational costs involved for GEOM-Drugs,
we restate the results reported in the original papers rather than retraining these models ourselves.

Results From Table 4 we again see that our approach comfortably outperforms its EDM
counterpart. It is also again competitive with the more sophisticated baselines. Like with QM9,
our SymDiff models were significantly less costly in terms of compute time and memory usage
compared with EDM (see Appendix C.3). In fact, when we tried to run the EDM model it resulted
in out-of-memory errors on our NVIDIA H100 80GB GPU. (Hoogeboom et al. (2022) avoid this
by training EDM on 3× NVIDIA RTX A6000 48GB GPUs.)

Table 4: Test NLL, atom stability and validity on GEOM-Drugs for 10,000 samples and 3 evaluation
runs. GeoLDM and EDM ran their results for just one evaluation run. We omit the results for NLL
and validity where not available.

Method NLL ↓ Atm. stability (%) ↑ Val. (%) ↑
GeoLDM – 84.4 99.3
END – 87.8±0.99 92.9±0.3

EDM -137.1 81.3 –
SymDiff -301.21±0.53 86.16±0.05 99.27±0.1

Data 86.50 99.9

5 CONCLUSION

We have introduced SYMDIFF: a novel, lightweight, and scalable framework for constructing
equivariant diffusion models based on stochastic symmetrisation. We applied this approach to
E(3)-equivariance for N -body data, obtaining an overall model that is stochastically equivariant
but that does not rely on any intrinsically equivariant neural network subcomponents. Our approach
leads to significantly greater modelling flexibility, which allows leveraging powerful off-the-shelf
architectures such as Transformers (Vaswani et al., 2017). We showed empirically that this leads
overall to improved performance on several relevant benchmarks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Ap-
plications, 12(3):313–326, 1982.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
for property prediction and molecular generation. Scientific Data, 9(1):185, 2022.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Ko-
rnbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature communications, 13(1):
2453, 2022.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
Journal of Machine Learning Research, 21(90):1–61, 2020.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Diego Canez, Nesta Midavaine, and Thijs Stessen. Effect of equivariance on
training dynamics. https://gram-blogposts.github.io/blog/2024/
relaxed-equivariance/, 2024. Accessed: 2024-09-30.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

François RJ Cornet, Grigory Bartosh, Mikkel N Schmidt, and Christian A Naesseth. Equivariant
neural diffusion for molecule generation. In ICML 2024 AI for Science Workshop, 2024.

Rob Cornish. Stochastic Neural Network Symmetrisation in Markov Categories. arXiv preprint
arXiv:2406.11814, 2024.

Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret,
Fragkiskos D Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, and Michael Bronstein. A
hitchhiker’s guide to geometric gnns for 3d atomic systems. arXiv preprint arXiv:2312.07511,
2023a.

Alexandre Agm Duval, Victor Schmidt, Alex Hernández-Garcıa, Santiago Miret, Fragkiskos D
Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for
materials modeling. In International Conference on Machine Learning, pp. 9013–9033. PMLR,
2023b.

Nadav Dym, Hannah Lawrence, and Jonathan W Siegel. Equivariant frames and the impossibility
of continuous canonicalization. arXiv preprint arXiv:2402.16077, 2024.

Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for equivariant models. In
International conference on machine learning, pp. 2959–2969. PMLR, 2021.

Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Junshi Huang. Scaling diffusion
transformers to 16 billion parameters. arXiv preprint arXiv:2407.11633, 2024.

Tobias Fritz. A synthetic approach to markov kernels, conditional independence and theorems on
sufficient statistics. Advances in Mathematics, 370:107239, 2020.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E(n)
equivariant normalizing flows. Advances in Neural Information Processing Systems, 34:4181–
4192, 2021a.

11

https://gram-blogposts.github.io/blog/2024/relaxed-equivariance/
https://gram-blogposts.github.io/blog/2024/relaxed-equivariance/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max
Welling. E(n) equivariant normalizing flows. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 4181–4192. Curran Associates, Inc.,
2021b. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/21b5680d80f75a616096f2e791affac6-Paper.pdf.

Yoav Gelberg, Tycho FA van der Ouderaa, Mark van der Wilk, and Yarin Gal. Variational inference
failures under model symmetries: Permutation invariant posteriors for bayesian neural networks.
In ICML 2024 Workshop on Geometry-grounded Representation Learning and Generative Mod-
eling, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d. In International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Chenqing Hua, Sitao Luan, Minkai Xu, Zhitao Ying, Jie Fu, Stefano Ermon, and Doina Precup.
Mudiff: Unified diffusion for complete molecule generation. In Learning on Graphs Conference,
pp. 33–1. PMLR, 2024.

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions. In International Conference on Machine
Learning, pp. 15546–15566. PMLR, 2023.

Olav Kallenberg. Foundations of modern probability, volume 2. Springer, 1997.

Olav Kallenberg. Foundations of Modern Probability. Springer, 2 edition, 2002.

Jinwoo Kim, Dat Nguyen, Ayhan Suleymanzade, Hyeokjun An, and Seunghoon Hong. Learning
probabilistic symmetrization for architecture agnostic equivariance. Advances in Neural Informa-
tion Processing Systems, 36:18582–18612, 2023.

Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36, 2024.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024.

Tuan Le, Julian Cremer, Frank Noé, Djork-Arné Clevert, and Kristof Schütt. Navigating the design
space of equivariant diffusion-based generative models for de novo 3d molecule generation. arXiv
preprint arXiv:2309.17296, 2023.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744–3753. PMLR, 2019.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations.

Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He.
One transformer can understand both 2d & 3d molecular data. In The Eleventh International
Conference on Learning Representations, 2022.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/21b5680d80f75a616096f2e791affac6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/21b5680d80f75a616096f2e791affac6-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Francesco Mezzadri. How to generate random matrices from the classical compact groups. arXiv
preprint math-ph/0609050, 2006.

Arnab Kumar Mondal, Siba Smarak Panigrahi, Oumar Kaba, Sai Rajeswar Mudumba, and Siamak
Ravanbakhsh. Equivariant adaptation of large pretrained models. Advances in Neural Information
Processing Systems, 36:50293–50309, 2023.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pool-
ing: Learning deep permutation-invariant functions for variable-size inputs. arXiv preprint
arXiv:1811.01900, 2018.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Stefanos Pertigkiozoglou, Evangelos Chatzipantazis, Shubhendu Trivedi, and Kostas Daniilidis. Im-
proving equivariant model training via constraint relaxation. arXiv preprint arXiv:2408.13242,
2024.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J Smith, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. arXiv preprint
arXiv:2110.03336, 2021.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

P. Selinger. A Survey of Graphical Languages for Monoidal Categories, pp. 289–355. Springer
Berlin Heidelberg, 2010. ISBN 9783642128219. doi: 10.1007/978-3-642-12821-9 4. URL
http://dx.doi.org/10.1007/978-3-642-12821-9_4.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Philipp Thölke and Gianni De Fabritiis. Torchmd-net: equivariant transformers for neural network
based molecular potentials. arXiv preprint arXiv:2202.02541, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Clement Vignac and Pascal Frossard. Top-n: Equivariant set and graph generation without ex-
changeability. arXiv preprint arXiv:2110.02096, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Yuyang Wang, Ahmed AA Elhag, Navdeep Jaitly, Joshua M Susskind, and Miguel Ángel Bautista.
Swallowing the bitter pill: Simplified scalable conformer generation. In Forty-first International
Conference on Machine Learning, 2024.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

13

http://dx.doi.org/10.1007/978-3-642-12821-9_4

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923,
2022.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
pp. 38592–38610. PMLR, 2023.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, 55(1):407–474, 2022.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se(3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. This follows by appropriately instantiating Example 6.3 of Cornish (2024), whose definitions
and notation we will import freely here. We will also make use of string diagrams (Selinger, 2010),
an introduction to which can be found in Section 2 of Cornish (2024). Intuitively, these diagrams
represent (possibly stochastic) computational processes that should be read up the page, with the
inputs applied at the bottom, and outputs produced at the top.

First, we will set ρ in Example 6.3 of Cornish (2024) to be the trivial action of H on N , so that the
semidirect product N ⋊ρ H becomes simply the product N ×H . As per Definition 3.7 of Cornish
(2024), the inversion operation for N ×H can then be written as

= (−)−1
H(−)−1

N

N H

HN

(−)−1

HN

HN

Similarly, by Remark 3.4 of Cornish (2024), we can write the action αX on X in the form

αX,H

αX,N

N H X

X

=αX

N H X

X

(16)

for some action αX,H of H on X , and some action αX,N of N and X . We can do similarly for αY .
In addition, as per Example 3.23 of Cornish (2024), the inclusion homomorphism iH , which plays
the role of the iN -coset map in Example 6.3, can be written as

=iH

N H

N

N H

eN

H

Finally, the coset action ∗/H of N ×H on H is just

∗H

N H H

H

=∗/N

N H H

H

where ∗H denotes the group multiplication operation for H . Notice that, like in equation 16, the
right-hand side here is decomposed into a pair of an N -action (namely the trivial action) and an
H-action (namely ∗H). By Remark 3.4 of Cornish (2024), it therefore follows that γ : X → H is
equivariant with respect to αX and ∗/H if and only if it is

• N -equivariant with respect to αX,N and the trivial action on H , and

• H-equivariant with respect to αX,H and the action ∗H

In other words, γ must be N -invariant and H-equivariant.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Now suppose we have such a γ. Substituting all the components above into the end-to-end procedure
from Section 5.4 of Cornish (2024), we obtain symγ(k) : X → Y as follows:

αX,H

(−)−1
H

k

αY,H

X

γeN

(−)−1
N

αX,N

αY,H

N
H

Y

Y

αX,H

(−)−1
H

k

αY,H

X

γ

Y

H

= (17)

where on the right-hand side we have simplified the operations involving the identity term eN via
the basic group axioms (e.g. (−)−1

N ◦ eN becomes simply eN). As shown by Cornish (2024), when
k : X → Y is H-equivariant with respect to αX,N and αY,N , it always holds that symγ(k) is
equivariant with respect to the (N ×H)-actions αX and αY .

To prove Proposition 1 here, we now simply instantiate the above discussion in the Markov category
C := Stoch, so that all the components involved become Markov kernels. Concretely, we take
X := X , Y := Y , N := H, and H := G. A procedure for sampling from the symmetrised kernel
sym(γ)(dy|x) may now be read off from equation 17 as follows:

g ∼ γ(dg|x) y0 ∼ k(dy|g−1 · x) y := g · y0,

as in the statement of this result.

A.2 PROOF OF PROPOSITION 2

Proof. For simplicity, we assume k(dy|x) has a density k(y|x) with respect to the Lebesgue mea-
sure µ on Y = Rn. To derive the density of k(dy|g,x) where g ∈ G is some fixed group element,
we note that for y ∼ k(dy|g,x), we have y = g · y0 where y0 ∼ k(y|g−1 · x). Hence, by the
change-of-variables formula, we can conclude that the density of k(y|g,x) exists and has the form:

k(y|g,x) = k(g−1 · y|g−1 · x)
∣∣∣∣∂(g−1 · y)

∂y

∣∣∣∣ .
Hence, we see that when the action of G has unit Jacobian, the density of k(y|g,x) =
k(g−1 · y|g−1 · x).
Further, suppose we have g ∼ γ(dg|x) and y ∼ k(y|g,x) - i.e. y ∼ symγ(k)(dy|x). It is the case
that for an arbitrary (Borel) measurable set A in Y , we have

symγ(k)(y ∈ A|x) =
∫
G
k(y ∈ A|g,x) γ(dg|x).

Since we have shown above that k(dy|g,x) has a density, we can express this as

symγ(k)(y ∈ A|x) =
∫
G

(∫
A

k(y|g,x) µ(dy)
)
γ(dg|x)

=

∫
A

Eγ(dg|x) [k(y|g,x)]µ(dy).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where we use Fubini’s theorem for the second line as all quantities are non-negative. Hence, we can
conclude that the density of symγ(k) exists and has the form symγ(k) = Eγ(dg|x)[k(y|g,x)].

A.3 PROOF OF PROPOSITION 3

Proof. The standard diffusion objective with data augmentation distributed according to the Haar
measure λ is given by

Laug
t = Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)∥ϵ− ϵθ(αtR · z0 + σtϵ)∥2

]
(18)

= Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)

∥∥ϵ− ϵθ(R · (αtz0 + σtR
T · ϵ))

∥∥2] (19)

= Eq(z0),ϵ′∼NU (0,I),λ(dR)

[
1

2
w(t)∥R · ϵ′ − ϵθ(R · (αtz0 + σtϵ

′))∥2
]

(20)

= Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)

∥∥ϵ−RT · ϵθ(R · (αtz0 + σtϵ))
∥∥2] , (21)

where we use the fact that ϵ′ = RT · ϵ is distributed according toNU (0, I) as R, ϵ are independent in
the expectation, and that the action of R ∈ O(3) preserves the L2 norm. To conclude, we note that
it is a standard result that if R ∼ λ, the inverse RT is also distributed according to the Haar measure
λ. Hence, we see that Laug

t coincides with

Lt = Eq(z0),ϵ∼NU (0,I),λ(dR)

[
1

2
w(t)

∥∥ϵ−R · ϵθ(RT · zt)
∥∥2] , (22)

where zt = αtz0 + σtϵ.

B MODEL ARCHITECTURE

Below, we outline the architectures used for ϵθ and γθ. Both components rely on Diffusion
Transformers (DiTs) (Peebles & Xie, 2023) using the official PyTorch implementation at https:
//github.com/facebookresearch/DiT. We also state the hyperparameters that we kept
fixed for both our QM9 and GEOM-Drugs experiments. Any hyperparameters that differed between
the datasets are discussed in their respective sections later in the Appendix.

We emphasise that our architecture choices were not extensively tuned as the main purpose of our
experiments was to show that we can use generic architectures for equivariant diffusion models. We
arrived at the below architecture through small adjustments from experimenting with DiT models in
the context of molecular generation, which we stuck with in our final experiments.

B.1 ARCHITECTURE OF ϵθ

As we need ϵθ to be an SN -equivariant architecture, we take ϵθ to be parametrised in terms of a DiT
model ϵ′θ with nlayers layers, nhead attention heads and hidden size nsize where to ensure the output lies
in U we project the output via π. For the MLP layers, we use SwiGLU activations Shazeer (2020)
instead of the standard GELU, where the ratio of the hidden size of the SwiGLU to the hidden
size of ϵ′θ is 2. We do not use the default Fourier embeddings for the inputs and instead use linear
layers to project our inputs to the correct size; for time embeddings, we use the default. We use
Gaussian positional embeddings from Luo et al. (2022) as additional features that we concatenate to
our inputs. To compute this, we let

ψk
(i,j) = −

1√
2π|σk|

exp

(
−1

2

(∥∥x(j) − x(j)
∥∥− µk

|σk|

))
,

where k = 1, . . . ,K is the number of basis kernels we use and µk, σk ∈ R are learnable parameters.
We define ψ(i,j) = (ψ1

(i,j), . . . , ψ
K
(i,j))

T ∈ RK×1. We then compute our positional embeddings by

Ψi =
1
N

∑N
j=1 ψ(i,j)WD where WD ∈ RK×nemb is a learnable matrix, and we concatenate these to

form our embeddings Ψ = [Ψ1, . . . ,ΨN] ∈ RN×nemb .

17

https://github.com/facebookresearch/DiT
https://github.com/facebookresearch/DiT

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To compute ϵθ, given the input z = [x,h] ∈ RN×(3+d), we use a learnable linear layer WI ∈
R(3+d)×nz to project z to z′ = RN×nz , and we compute the positional embeddings Ψ ∈ RN×nemb ,
as outlined above, where nemb = nsize − nz . We then pass [z′,Ψ] ∈ RN×nsize to our DiT model ϵ′θ.

B.2 ARCHITECTURE OF γθ

We construct γθ following the recursive setup in Section 3.3. We take fθ to be comprised of a
DiT model with mlayers layers, mhead attention heads and hidden size msize, and the same SwiGLU
setup as above. To ensure that the architecture is SN -invariant, we use the approach in Zaheer
et al. (2017), where we further take the token-wise average of the representations from the DiT
model (before the final output layer) to give a vector in Rmsize . We then pass this into a small MLP
x 7→ GELU(xW1)W2 where W1 ∈ Rmsize×m′

size ,W2 ∈ Rm′
size×(3×3) are learnable linear layers,

which produces a matrix R3×3. We apply the QR decomposition to convert this into an orthogonal
matrix which we then return.

To compute γθ given the input z = [x,h] ∈ RN×(3+d), we discard h and compute Ψ ∈ RN×nemb

with the same parameters used in ϵθ from x. We also sample η ∼ NU (0, I) of size RN×mnoise and
an orthogonal matrix R ∈ R3×3 from the Haar measure on O(3). We then project the concatenated
input [RT · x, η,Ψ] ∈ RN×(3+mnoise+nemb) by a learnable linear layer WG ∈ R(3+mnoise+nemb)×msize to
x′ = RN×msize (we note that Ψ is invariant to O(3)). We then pass x′ through fθ and apply R to the
output - i.e. we return R · fθ(x′).

B.3 HYPERPARAMETERS FOR γθ AND ϵθ

For both QM9 and GEOM-Drugs we fixed the following hyperparameters. For ϵθ, we set nsize =
K ≈ 1

2nsize. For γθ, we set mnoise = 3 and m′
size = 4msize.

C EXPERIMENTAL DETAILS

C.1 ZEROTH LIKELIHOOD TERM L0

We have a presented a framework for parametrising and optimising pθ(zt−1|zt) for t > 1 in Sec-
tion 3.3 where pθ is obtained via stochastic symmetrisation. This corresponds to the Lt terms
where t > 0 in our objective in equation 9. We note however that standard diffusion models
usually choose a different parametrisation for pθ(z0|z1) as this corresponds to the final genera-
tion step. Depending on the modelling task, this requires a different approach compared to the
other reverse kernels. For example, in Hoogeboom et al. (2022), pθ(z0|z1) is defined as the
product of densities pcont

θ (x0|z1)pdisc
θ (h0|z1) where pdisc

θ implements a quantisation step convert-
ing the continuous latent z1 to discrete values h0, while pcont

θ is still a Gaussian distribution gen-
erating continuous geometric features x0 from z1. In particular, we have that pcont

θ (x0|z1) =

NU (x0;x1/α1 − σ1/α1ϵ
(x)
θ (z1), σ

2
1/α

2
1I) where ϵθ : Z → Z is some SN -invariant neural net-

work and ϵ(x)θ denotes the x component of the output of ϵθ.

We note that our above methodology can still account for this case by defining the symmetrised
kernel in terms of

pθ(z0|z1) = symγθ
(kθ)(z0|z1), kθ(z0|z1) = pcont

θ (x0|z1)pdisc
θ (h0|z1)

We can follow the same discussion in Section 3.3 to conclude that

pθ(z0|z1) = Eγθ(dR|z1) [kθ(z0|R, z1)] , kθ(z0|R, z1) = kcont
θ (x0|R, z1)kdisc

θ (h0|R, z1),

where kcont
θ (z0|R, z1) = N (x0;x1/α1 − σ1/α1R · ϵθ(RT · z1), σ2

1/α
2
1I) and kdisc

θ (h0|R, z1) =
pdisc
θ (h0|RT · z1). This allows us to decompose L0 into the form in equation 9 and to tractably

optimise this objective since we have access to the density kθ(z0|R, z1).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.2 QM9

C.2.1 MODEL HYPERPARAMETERS

SymDiff Table 5 shows the hyperparameters for the ϵθ backbone of the kθ component of the
SYMDIFF models used for QM9. The remaining hyperparameters were kept the same as in Ap-
pendix B.3.

Table 5: Choice of nsize, nlayers, nheads for the ϵθ of the SYMDIFF models used for QM9.

Model # Parameters nsize nlayers nheads

SymDiff∗ 115.6M 768 12 12
SymDiff 29M 384 12 6
SymDiff− 21.3M 360 12 6
SymDiff−− 11.3M 294 12 6

For the fθ backbone of the γθ component, we set msize = 128, mlayers = 12, mheads = 6.

EDM Table 6 shows the hyperparameters for the EDM models that we used for our QM9 exper-
iments. The remaining model hyperparameters were kept the same as those in Hoogeboom et al.
(2022).

Table 6: Choices of the hyperparameters nf (# features per layer), nl (number of layers) for the
EDM models used for QM9.

Model # Parameters nf nl

EDM++ 12.4M 332 12
EDM+ 9.5M 256 16
EDM 5.3M 256 9

C.2.2 OPTIMISATION

For our optimisation, we followed Peebles & Xie (2023) and used AdamW (Loshchilov & Hutter)
with a batch size of 256. We chose a learning rate of 10−4 and weight decay of 10−12 for our 31.2M
parameter model by searching over a small grid of 3 values for each. To match the same number of
steps as in Hoogeboom et al. (2022), we trained our model for 4350 epochs.

We applied the same optimization hyperparameters from our 31.2M model to all other SYMDIFF
models. For the EDM models, we followed the default hyperparameters from Hoogeboom et al.
(2022). In our augmentation experiments, we first tuned the learning rate and weight decay for the
DiT model, keeping all other optimization hyperparameters unchanged. These tuned values were
then applied to DiT-Aug.

C.2.3 ADDITIONAL RESULTS

Here we restate the results from Table 7 but now include the results for SymDiff∗ when trained
for an additional 500 epochs (we refer to this as SymDiff-Long∗). We see that SymDiff-Long∗

outperforms all our baselines bar uniqueness. For NLL it is within variance with that of MUDiff.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Test NLL, atom stability, molecular stability, validity and uniqueness on QM9 for 10,000
samples and 3 evaluation runs. We omit the results for NLL where not available.

Method NLL ↓ Atm. stability (%) ↑ Mol. stability (%) ↑ Val. (%) ↑ Uniq. (%) ↑
GeoLDM – 98.90 ±0.10 89.40 ±0.50 93.80 ±0.40 92.70 ±0.50

MUDiff -135.50±2.10 98.80±0.20 89.90±1.10 95.30±1.50 99.10±0.50

END – 98.90 ±0.00 89.10 ±0.10 94.80 ±0.10 92.60 ±0.20

EDM -110.70±1.50 98.70±0.10 82.00 ±0.40 91.90±0.50 90.70±0.60

SymDiff-Long∗ -135.04±0.64 98.98±0.05 90.26±0.38 96.38±0.27 97.60±0.10

SymDiff∗ -133.79±1.33 98.92±0.03 89.65±0.10 96.36±0.27 97.66±0.22

Data 99.00 95.20 97.8 100

C.3 GEOM-DRUGS

Like with QM9, we report the seconds per epoch, sampling time (s) and vRAM for the models used
in Table 4. We exclude END as their code is not publicly available. We omit the results for EDM
and GeoLDM as were unable to run their code on our NVIDIA H100 80GB GPU.

Table 8: Total wall time, iterations per second sampling time for different sizes of SymDiff.

Method # Parameters Sec./epoch Sampling time (s) vRAM (GB)

GeoLM 5.5M – – –
EDM 2.4M – – –
SymDiff 31.2M 4336.82 0.39 63

C.4 PRETRAIN-FINETUNING

To further explore the flexibility of our approach, we experimented with using it in the pretrain-
finetune framework, similar to Mondal et al. (2023). Using QM9, we took the trained DiT model
from Table 1 and substituted it as the ϵθ for our SymDiff model, while keeping the same architecture
and hyperparameters for fθ. We tested two setups: finetuning both ϵθ and fθ (DiT-FT) and freezing
ϵθ while tuning only fθ (DiT-FT-Freeze). The same training procedure and optimization hyperpa-
rameters were used, except we now trained our models for 800 epochs and used a larger grid for
learning rate and weight decay tuning. Specifically, we searched first for the optimal learning rate
in [10−3, 8× 10−4, 2× 10−4, 10−4] and for the optimal weight decay in [0, 10−12, 2× 10−12]. We
found the optimal learning rate and weight decay to be 10−3 and 2× 10−12.

Table 9: Test NLL, atom stability, molecular stability, validity and uniqueness on QM9 for 10,000
samples and 3 evaluation runs.

Method NLL ↓ Atm. stability (%) ↑ Mol. stability (%) ↑ Val. (%) ↑ Uniq. (%) ↑
SymDiff -129.35±1.07 98.74±0.03 87.49±0.23 95.75±0.10 97.89±0.26

DiT-FT -111.66±1.22 98.43±0.03 83.27 ±0.39 94.19±0.16 98.17±0.26

DiT-FT-Freeze -43.29±3.73 95.68±0.02 55.02±0.38 90.48±0.24 99.06±0.13

DiT -127.78±2.49 98.23±0.04 81.03±0.25 94.71±0.31 97.98±0.12

From Table 9, we observe that finetuning both ϵθ and fθ improves performance over the DiT model,
even with our minimal optimization tuning. However, finetuning only fθ leads to worse results,
indicating that end-to-end training or finetuning the whole model is necessary. This underscores the
flexibility of our approach and its potential for easy and efficient symmetrisation of pretrained DiT
models with an unconstrained fθ.

D EXTENSION TO SCORE MATCHING AND FLOW MATCHING

In this section, we discuss how to extend stochastic symmetrisation to score and flow-based gener-
ative models to give an analogue of SYMDIFF to these paradigms. For clarity of presentation, we

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

consider all models to be defined for N -body systems living in the full space Z = RN×3 where we
wish to obtain a SN × O(3)-equivariant model - i.e. we do not consider non-geometric features or
translation invariance. Although, we note that the below discussion can be extended to such settings
in the natural way as presented for diffusion models above.

D.1 SCORE MATCHING

Score-based generative models (SGMs) (Song et al., 2020) are the continuous-time analogue of
diffusion models. SGMs consider the forward noising process xt ∼ pt for t ∈ [0, T] defined by the
following stochastic differential equation (SDE) with the initial condition x0 ∼ pdata:

dxt = f(xt, t)dt+ g(t)dw, (23)

for some choice of functions f : Z × [0, T] → Z and g : [0, T] → R, and where w is a standard
Weiner process.

The corresponding backward process is shown in Anderson (1982) to take the form:

dxt =
[
f(xt, t)− g(t)2∇x log pt(xt)

]
dt+ g(t)dw̄, (24)

where w̄ is a standard Weiner process and time runs backwards from T to 0. Hence, given samples
xT ∼ pT and access to the score of the marginal distributions∇x log pt(xt), we can obtain samples
from pdata by simulating the backward process in equation 24.

By considering the Euler–Maruyama discretisation of equation 24, we can represent the sampling
scheme of a SGM in terms of the Markov chain pT (xT)

∏n
i=1 p(xti−1

|xti), where the time-points
ti are uniformly spaced in [0, T] - i.e. ti = i∆t where ∆t = T/n - and the reverse transition kernels
are given by:

p(xti−1
|xti) = N

(
xti−1

;xti +∆t
{
f(xti , ti)− g(ti)2∇x log pti(xti)

}
, g(ti)

2∆tI
)
.

In what follows, we additionally assume that f(·, t) is SN × O(3)-equivariant for all t ∈ [0, T].
This is true for common choices of f which take f to be linear in xt.

Stochastic symmetrisation In order to learn an approximation to the transition kernels via
stochastic symmetrisation, we can parametrise the reverse transition kernels, in a similar fashion
as for diffusion models, by

pθ(xti−1 |xti) = symγθ
(kθ)(xti−1 |xti),

where we take kθ(xti−1 |xti) = N (xti−1 ;µθ(xti), g(ti)
2∆tI). We define µθ by the following

parametrisation4:

µθ(xti) = xti +∆t
{
f(xti , ti)− g(ti)2sθ(xti)

}
,

where we take sθ : Z → Z to be a SN -equivariant neural network which aims to learn an ap-
proximation to the true score ∇x log pt(xt). This ensures that kθ is SN -invariant. Additionally, we
assume that γθ : Z → O(3) is some choice of a SN -invariant and O(3)-equivariant Markov kernel.
Hence, we can conclude that pθ : Z → Z is a SN ×O(3)-equivariant Markov kernel by Proposition
1. We can also guarantee that pθ admits a density by Proposition 2.

Training To learn θ for pθ(xti−1
|xti), a natural objective is to minimise the KL divergence be-

tween the true reverse kernels and our parametrised reverse kernels

L(θ) =
n∑

i=1

λ0(ti)Li(θ), Li(θ) = Epti
(xti

)

[
DKL(p(xti−1

|xti)||pθ(xti−1
|xti))

]
,

where λ0 is some time weighting function. We note that we run into the same issue as with SYMDIFF
in that we do not have access to pθ(xti−1

|xti) in closed-form, since this is expressed in terms of
an expectation. However, as Li(θ) is a linear function of − log pθ(xti−1

|xti) and − log is a convex

4Similar to our discussion on diffusion models, we leave the time dependency implicit in here.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

function, we can apply Jensen’s inequality again to provide the following upper bound to our original
objective

L′(θ) =

n∑
i=1

λ0(ti)L′
i(θ), L′

i(θ) = Epti
(xti

),γθ(dR|xti
)

[
DKL(p(xti−1 |xti)||kθ(xti−1 |R,xti))

]
,

which we can now use to train θ. To further simplify L′
i(θ), we note that kθ(xti−1 |R,xti) =

N (xti−1 ;R ·µθ(R
T ·xti), g(ti)

2∆tI) with a similar derivation as before. This allows us to evaluate
the KL divergences in closed form since p, kθ are defined in terms of Gaussians. We can show that
this gives

L′
i(θ) = Epti

(xti
),γθ(dR|xti

)

[
1

2
g(ti)

2∆t
∥∥R · sθ(RT · xti)−∇x log pti(xti)

∥∥2] , (25)

where we use the fact that f(·, t) is SN × O(3)-equivariant. To express equation 25 in a tractable
form (as we do not have access to the true score), we can apply the standard technique of employing
the score matching identity (Vincent, 2011) to give

L′
i(θ) = Ep(x0),p(xti

|x0),γθ(dR|xti
)

[
1

2
g(ti)

2∆t
∥∥R · sθ(RT · xti)−∇x log pti(xti |x0)

∥∥2]+ Ci,

where p(xti |x0) denotes the conditional distribution of xti given x0 under the forward noising
process p, and Ci is some constant. In practice, the choice of forward noising SDE in equation 23 is
made to ensure that we have access to p(xti |x0) in closed-form and that the distribution is easy to
sample from.

By making the choice that λ0(t) = 2λ(t)/(g(ti)
2T) for some suitable time weighting function λ,

we can show as ∆t→ 0 that our objective L′(θ) will converge to (modulo some constant)

Ep(x0),t∼U(0,T),p(xt|x0),γθ(dR|xt)

[
λ(t)

∥∥R · sθ(RT · xt)−∇x log p(xt|x0)
∥∥2] , (26)

where U(0, T) denotes the uniform distribution on [0, T]. We see that our final objective in equa-
tion 26 now resembles the standard score matching objective.

D.2 FLOW MATCHING

Continuous normalising flows (CNFs) (Chen et al., 2018) construct a generative model of data x1 ∼
q = pdata by the pushforward of an ordinary differential equation (ODE) taking the form

d

dt
ϕt(x) = ut(ϕt(x)), ϕ0(x) = x, (27)

where ut : Z × [0, T]→ Z is the vector field function defining the ODE, and ϕt : Z × [0, T]→ Z
denotes the flow implicitly defined by solutions to the above ODE. By letting p0 be some simple
prior distribution, the above ODE defines a generative model xt ∼ pt by the pushforward of p0
through the flow ϕt

pt = [ϕt]#p0 (28)

If ut is chosen in such a way that p1 ≈ q = pdata, we can then generate samples from pdata
by sampling some x0 ∼ p0, then solving the ODE in equation 27 with this initial condition5.
Furthermore, as in previous work (Klein et al., 2024), we assume that ut is SN ×O(3)-equivariant.

By considering the Euler discretisation of equation 27, we can represent the generation process by
the Markov chain p0(x0)

∏T
i=1 p(dxti |xti−1

) where the time-points ti are uniformly spaced in [0, T]
- i.e. ti = i∆t where ∆t = T/n - and the transition kernels are given by the Markov kernels

p(dxti |xti−1
) = δ(xti−1

+ uti−1
(xti−1

)∆t), (29)

where δ(·) denotes the Dirac measure at some point.

5The use of time here reverse the convention used in the diffusion literature.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Stochastic symmetrisation To learn the transition kernels induced by the vector field ut via
stochastic symmetrisation, we parametrise our transition kernels by

pθ(dxti |xti−1
) = symγθ

(kθ)(xti |xti−1
), (30)

where we take kθ(dxti |xti−1) = δ(xti−1 + vθti−1
(xti−1)∆t) in which vθt : Z → Z is some SN -

equivariant neural network which aims to learn an approximation to the true vector field ut. We
further assume γθ : Z → O(3) is some SN -invariant and O(3)-equivariant Markov kernel. We can
again conclude that pθ : Z → Z is a SN ×O(3)-equivariant Markov kernel by Proposition 1.

Training A natural objective to learn pθ is to minimise the 2-Wasserstein distance W2 (Peyré
et al., 2019) between p(dxti |xti−1) and pθ(dxti |xti−1) since these are defined in terms of Dirac
measures. We can write our objective as

L(θ) =
T∑

i=1

λ0(ti−1)Li(θ), Li(θ) = Epti−1
(xti−1

)

[
W2

2 (p(dxti |xti−1), pθ(dxti |xti−1))
]

where λ0 is some time weighting function, and the 2-Wasserstein distance W2 is defined as
W2

2 (π1, π2) = infπ
∫
∥x− y∥2 dπ(x,y) where π is taken over the space of possible couplings

between the measures π1, π2. We note that as p(dxti |xti−1) is Dirac, there only exists a single cou-
pling between the two kernels given by the product of the Markov kernels. This allows us to evaluate
Li+1 as

Li+1(θ) = Epti
(xti

),γθ(dR|xti
)

[
∆t2

∥∥R · vθti(RT · xti)− uti(xti)
∥∥2] . (31)

To express equation 31 in a tractable form (as we do not have access to ut), we can take ut to be
constructed by the same setup used in Flow Matching (Lipman et al., 2022). This framework allows
us to express equation 31 in the now tractable form

Li+1(θ) = Eq(x1),pti
(xti

|x1),γθ(dR|xti
)

[
∆t2

∥∥R · vθti(R · xti)− uti(xti |x1)
∥∥]+ Ci+1, (32)

by the use of the Conditional Flow Matching objective, where Ci+1 is some constant. Here
pt(xt|x1) is a family of conditional distributions where p0(x0|x1) = p0(x0) equals our prior dis-
tribution and p1(x1|x1) ≈ δ(x1), and for which ut(xt|x1) is a vector field generating pt(xt|x1) by
an ODE of the form in equation 28. These are constructed to be easy to sample from and evaluate.
The true vector field ut, which provides a generative model of q = pdata, is then defined by some
expectation of the conditional vector fields ut(xt|x0) over pt(xt|x0) and q(x1).

Hence, by taking λ0(t) =
λ(t)
T∆t for some suitable time weighting function λ, we can show as ∆t→

0, our objective L(θ) will converge to (modulo some constant)

Eq(x1),t∼U(0,T),pt(xt|x1),γθ(dR|xt)

[
λ(t)

∥∥R · vθt (RT · xt)− ut(xt|x1)
∥∥2] . (33)

We see that our final objective in equation 33 now resembles the standard flow matching objective.

23

	Introduction
	Background
	Equivariant Markov Kernels
	Equivariant diffusion models
	N-body systems and E(3)-equivariant diffusion

	Equivariant Diffusion via Stochastic Symmetrisation
	Stochastic symmetrisation
	SymDiff: Symmetrised diffusion
	SymDiff for N-body systems
	Data Augmentation is a Special Case of SymDiff

	Experiments
	QM9
	GEOM-Drugs

	Conclusion
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Model Architecture
	Architecture of
	Architecture of
	Hyperparameters for and

	Experimental details
	Zeroth likelihood term L0
	QM9
	Model hyperparameters
	Optimisation
	Additional results

	GEOM-Drugs
	Pretrain-finetuning

	Extension to Score Matching and Flow Matching
	Score Matching
	Flow Matching

