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Supplement to “Transformer with a Mixture of Gaussian Keys”
In this supplementary material, we provide experimental details and additional experiments of
Transformer-MGK and Transformer-MLK.

A ADDITIONAL EXPERIMENTS

A.1 EXPERIMENT DETAILS

In this section, we provide model and training details for experiments in Section 3. All our experiments
are conducted on a server with 4 NVIDIA A100 GPUs.
A.1.1 LONG RANGE ARENA BENCHMARK

Datasets and metrics We consider the following tasks in the LRA benchmark: Listops (Nangia
& Bowman, 2018), byte-level IMDb reviews text classification (Maas et al., 2011), and byte-level
document retrieval (Radev et al., 2013). These tasks involve long sequences of length 2K, 4K, and
4K, respectively. We follow the setup/evaluation protocol in (Tay et al., 2021) and report the test
accuracy for individual task and the average result across all tasks.

Models and baselines We use the softmax transformer (Vaswani et al., 2017) and linear trans-
former (Katharopoulos et al., 2020) as our baselines. All models have 2 layers, 64 embedding
dimension, and 128 hidden dimension. The number of heads in each layer are set to 1, 2, 4, and 8.
For Transformer-MGK/MLKs and their shifted versions, we share ⇡jr for all position j and learn it
for each head. The initial value for each ⇡jr is set to 0.5. For Transformer-sMGK, we learn br and
initialize its elements from a standard normal distribution. Each �jr is a constant with value

p
D

where D is the dimension of each head, which is the same as in the baselines models

Details about the Long Range Arena (LRA) benchmarks can be found in the original pa-
per (Tay et al., 2021). Our implementation is based on the public code by (Xiong et al.,
2021), and we follow their training procedures. The training setting and additional baseline
model details are provided in the configuration file used in (Xiong et al., 2021) and available
at https://github.com/mlpen/Nystromformer/blob/main/LRA/code.
A.1.2 LANGUAGE MODELING ON WIKITEXT-103
Datasets and metrics WikiText-103 consists of articles from Wikipedia and is a dataset with long
contextual dependencies. The training set is made up of about 28K articles containing 103M running
words; this corresponds to text blocks of about 3600 words. The validation and test sets are composed
of 218K and 246K running words, respectively. Each of them contains 60 articles and about 268K
words. Our experiment follows the standard setting (Merity et al., 2017; Schlag et al., 2021) and
splits the training data into L-word independent long segments. For evaluation, we use a batch size
of 1, and go through the text sequence with a sliding window of size L. We consider only the last
position for computing perplexity (PPL) except in the first segment, where all positions are evaluated
as in (Al-Rfou et al., 2019; Schlag et al., 2021).

Models and baselines Our language modeling implementation is based on the public code
https://github.com/IDSIA/lmtool-fwp by (Schlag et al., 2021). We use their small and medium
model configurations for models in our experiments. In particular, for small models, we set the
key, value, and query dimension to 128, and the training and evaluation context length to 256. For
medium models, we set the key, value, and query dimension to 256, and the training and evaluation
context length to 384. In both configurations, we set the number of heads to 8, the feed-forward layer
dimension to 2048, and the number of layers to 16. For Transformer-MGK/MLK, we use our 4 and
8-head versions to compare with the 8-head baselines. ⇡ir, br and �jr for this task follow our setings
for LRA experiments. Other than those, our language modeling share the same configurations as the
baselines.

We train our models for language modeling on 2 A100, 40GB each with a batch size of 96, and each
model is trained for 120 epochs. We apply 10% dropout (Hanson, 1990; Srivastava et al., 2014) and
use the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate of 0.00025 and 2000 steps
for learning rate warm-up.
A.1.3 NEURAL MACHINE TRANSLATION ON IWSLT’14 GERMAN TO ENGLISH

Datasets and metrics The IWSLT14 German-English dataset (Cettolo et al., 2014) contains 153K
training, 7K validation, and 7K test TED-talks scripts German-English translated sentences. We
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follow the same preprocessing steps as in (Ott et al., 2019). We use the BiLingual Evaluation
Understudy (BLEU) score as our evaluation metric for this task. All trained models are evaluated
using the evaluation protocol in (Ott et al., 2019).

Models and baselines The baseline model we use in this machine translation task is an encoder-
decoder transformer with six encoder/decoder layers, four attention heads per layer. The embedding
dimension and the hidden size are 512 and 1024, respectively, for both encoder and decoder. These
architecture configurations are the same for Transformer-MGK/sMGK except for the number of
attention heads per layer, which is reduced by half. We share ⇡jr across all position j and learn it
for each head. The initial value for each ⇡jr is set to 0.5. For Transformer-sMGK, we learn br and
initialize its elements from a standard normal distribution. Each �jr is a constant with the value
p
D where D is the dimension of each head, which is the same as in the baselines models. Our

experiments follow the settings from (Ott et al., 2019), and our implementation is based on the public
code https://github.com/pytorch/fairseq/tree/main/examples/translation.
A.2 MORE EMPIRICAL ANALYSIS OF TRANSFORMER-MGKS/MLKS TRAINED FOR

LANGUAGE MODELING

In Table 3 in the main text, we show the improvements in valid and test perplexity of our Transformer-
MGKs/MLKs compared with the baseline softmax and linear transformers. In particular, Transformer-
MGK/MLKs with the same number of heads as the baselines, e.g. 8 heads, significantly improve
the baselines during training while Transformer-MGK/MLKs with 4 head achieve comparable or
better performance than the 8-head baselines. In this section, we provide more empirical analysis to
shed light on those results. Figure 4 shows the validation perplexity curve of our models versus the
softmax and linear transformers.

Figure 5 visualizes the attention matrices from a randomly selected sample for the trained softmax
transformer with 8 heads and Transformer-MGKs with 8 heads and 4 heads. These visualizations
show that Transformer-MGKs attend to more diverse positions in all heads and layers than the softmax
attention baseline. We also compare the rank distributions of these attention matrices computed from
1000 samples at each layer in the model. Figure 6 presents the rank histograms of the 8-head softmax
attention and 4-head and 8-head MGK attentions for the 1st and 5th layer. It is clear that attention
matrices from the Transformer-MGKs have higher ranks than those in the softmax transformer, which
implies that Transformer-MGK can attend to more diverse regions than the softmax transformer
without the need of using more attention heads.

Figure 4: Validation perplexity of Transformer-MGK vs. the softmax transformer (Left) and Transformer-MLK
vs. the linear transformer (Right) for language modeling on WikiText-103.

.

A.3 ADDITIONAL TRAINING RESULTS FOR LRA
In this section, we provide additional experimental results on the LRA benchmark. Figure 7 compares
the computational cost measured by FLOPs and model complexity in term of the number of parameters
of different inference and learning methods for Transformer-MGK. The computational costs of
Transformer-MGK/sMGK and Transformer-MGK Hard-E/Soft-E are on par with each other, while
Transformer-sMGK uses fewer parameters than the other without trade-off in performance 4 for all
tasks. The naming is as explained in Section 3.4 in the main text. In addition, Figure 8 visualizes the
attention matrices in the 4-head linear transformer baseline, 4-head Transformer-MLK, and 2-head
Transformer-MLK trained on the document retrieval task.
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Figure 5: Visualization of attention matrices from 8-head softmax transformer (Left), 8-head Transformer-MGK
(Middle), and 4-head Transformer-MGK (Right) trained on WikiText-103 language modeling. Here, we plot the
attention matrices for all heads and layers in the models. The sequence length is 256 and the size of each matrix
is 256⇥256.
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Figure 6: Rank distributions of attention matrices from 8-head softmax transformer (Left), 8-head Transformer-
MGK (Middle), and 4-head Transformer-MGK (Right) trained on WikiText-103 language modeling. The rank
histograms are computed from 1000 attention matrices at each layer. The attention matrices from Transformer-
MGKs have higher ranks than those from softmax transformers. This implies that Transformer-MGKs have
more diverse attention patterns, which allows us to reduce the number of heads in Transformer-MGKs.

A.4 ABLATION STUDY ON THE IMPACT OF THE MIXTURE OF KEYS, THE GAUSSIAN
DISTANCE, AND THE KEY SHIFTING

In this section, we conduct an ablation study of the Transformer-MGK on the LRA retrieval task to
investigate where the performance improvement is from. In particular, we would like to understand
the impact of the following factors on the performance of Transformer-MGK: 1) the mixture of keys,
2) the Gaussian distance, and 3) the key shifting. We summarize our empirical results in Table 5 and
discuss the impact of 1, 2 and 3 below.

Impact of the Mixture of Keys We apply our mixture of keys (MGK) approach to the softmax
transformer using the dot product between queries and keys instead of the Gaussian distance as in our
paper. We name this model Softmax MGK. We compare the Softmax MGK that has 1 head (Sofmax
MGK 1 head in Table 5) with the baseline softmax transformers that use 1 and 2 heads (Softmax
1 head and Softmax 2 heads in Table 5). Results in Table 5 show that the Softmax MGK 1 head
outperforms both the baseline softmax transformers of 1 and 2 heads. Note that our Softmax MGK
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Figure 7: Model complexity (Top) and computational cost (Bottom) of different inference and learning methods
for Transformer-MGK trained on the document retrieval task. While computational costs are almost the same,
Transformer-sMGK has more advantage in model size, comparing to Transformer-MGK, Transformer-MGK
Hard-E, and Soft-E. The naming is as explained in Section 3.4 in the main text.

Figure 8: Visualization of attention matrices in the 4-head linear transformer baseline (Left), 4-head Transformer-
MLK (Middle), and 2-head Transformer-MLK (Right) trained on the document retrieval task. Here, the sequence
length is 4000, and the size of each matrix is 4000⇥4000.

1 head is more efficient than the baseline of 2 heads in terms of the number of parameters and the
number of FLOPs. These results confirm the benefit of using MGK.

Impact of using the Gaussian distance Next, we compare the softmax MGK with the Gaussian
MGK. Here the Gaussian MGK is the Transformer-MGK proposed and discussed in our paper, which
computes the attention scores using the MGK approach and the Gaussian distance between the queries
and keys. Results in Table 5 suggest that the Gaussian MGK 1 head improves over the Softmax MGK
1 head (80.63% vs. 79.23%). This result justifies the advantage of using Gaussian distance over dot
product to compute the attention scores.

Impact of key shifting Finally, we apply key shifting to both Softmax MGK and Gaussian MGK
(Softmax sMGK and Gaussian sMGK in Table 5). From Table 5, we observe that the Softmax sMGK
1 head and Gaussian sMGK 1 head outperform the Softmax MGK 1 head and Gaussian MGK 1 head,
respectively. These results, again, corroborate the benefit of using key shifting.

We also include the result for the Gaussian 1 head model in Table 5. This Gaussian 1 head model is
similar to the Softmax 1 head model but uses the Gaussian distance to compute the attention scores.
Comparing the results of the Gaussian 1 head model, the Softmax 1 head model, and the Gaussian
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Table 5: Ablation study on the impact of the mixture of keys, the Gaussian distance, and the key shifting on the
LRA retrieval task. We denote the softmax Transformer by Softmax. All Softmax models (i.e., Softmax 2 heads,
Softmax 1 head, Softmax MGK 1 head, and Softmax sMGK 1 head) use dot product to compute the attention
scores. All Gaussian models (i.e., Gaussian MGK 1 head, Gaussian sMGK 1 head, and Gaussian 1 head) use
Gaussian distance to compute the attention scores. We denote MGK with key shifting by sMGK. Here MGK is
used to denote our approach of using a mixture of keys at each timestep.

Method Accuracy (%)
Softmax 2 heads 79.10
Softmax sMGK 1 head 79.81
Softmax MGK 1 head 79.23
Softmax 1 head 77.90
Gaussian sMGK 1 head 81.23
Gaussian MGK 1 head 80.63
Gaussian 1 head 80.38

Table 6: Comparing the GPU memory footprint and computational time overhead (seconds/iteration) between
our 4-head Transformer-MGKs/MLKs and the 8-head softmax/linear transformer baselines trained on the LRA
retrieval task at test time. Our Transformer-MGKs/MLKs save much more memory and have significantly
smaller wall-clock time compared to the baselines. Here we use a batch size of 32 for each iteration.

Method Memory (Gb) Time overhead (seconds/iteration)
Softmax 8 heads 58.00 0.357
Transformer-MGK 4 heads 53.58 0.278
Transformer-sMGK 4 heads 45.50 0.227
Linear 8 heads 3.38 0.055
Transformer-MLK 4 heads 2.90 0.043
Transformer-sMLK 4 heads 2.83 0.042

Figure 9: Training and test loss/accuracy of Transformer-MGK vs. softmax transformer (Left) and Transformer-
MLK vs. linear Transformer (Right) on the retrieval task, which has the longest average sequence-length and
attention span among the LRA tasks (Tay et al., 2021). In training, we apply early stopping to avoid overfitting.
That explains why the training loss and accuracy curves stop early. The test loss/accuracy curves already
converge. The impressive performance of Transformer-MGK/MLK on this challenging task validates the
capability of our models to capture long-range dependencies via learning a diversity of attention patterns.

MGK 1 head model reported in Table 5 further confirms the advantage of using MGK and Gaussian
distance.
A.5 TIME OVERHEAD AND MEMORY FOOTPRINT ANALYSIS

Table 6 compares the GPU memory footprint and computational time overhead (seconds/iteration) of
our 4-head Transformer-MGKs/MLKs with those of the 8-head softmax/linear transformer baselines
at test time. All models are trained on the LRA retrieval task, and we use a batch size of 32 for each
iteration. Our MGK/MLK models save memory and reduce wall-clock time significantly compared
to the baselines. Using key shifting in our models, i.e. Transformer-sMGKs/sMLKs, helps improve
the efficiency further.
A.6 LEARNING CURVES SHOWING CONVERGENCE

In this section, we replot Figure 1 and 4 to show the convergence of our trainings. In Figure 1, the
results do not seem to converge since we plot the loss and the accuracy in log-scale. In Figure 4, the
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Figure 10: Validation perplexity of the Transformer-MGK vs. the softmax transformer (Left) and the
Transformer-MLK vs. the linear transformer (Right) for language modeling on WikiText-103. Training converges
on this task after 500000 iterations, equivalent to 115 epochs .
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Figure 11: Weight matrices WK for computing the keys, for all heads and layers, in the 2-head softmax
transformer baseline (Left), the 1-head Transformer-MGK with 2 keys (Middle), and the 1-head Transformer-
sMGK with 2 keys (Right) trained on the LRA retrieval task. Here, the dimension of each head D = 32 and that
of input xi is Dx = 64. Hence, each weight matrix has the shape of (64, 32).

Table 7: The learned mixing coefficient ⇡jr of all heads and layers in the 1-head Transformer-MGKs trained on
the LRA retrieval task. Here we use the same ⇡j1,⇡j2 for all time step j = 1, . . . , N .

Method Layer 1 Layer 2
⇡j1 ⇡j2 ⇡j1 ⇡j2

Transformer-sMGK 1 heads 0.488 0.512 0.500 0.500
Transformer-MGK 1 heads 0.502 0.498 0.497 0.503

results do not seem to converge since we zoom into the specific range on the y and x-axes. Figure 9
and 10 are the replotted versions of Figure 1 and 4, respectively. In Figure 9, the training loss/accuracy
curves stop early because we use early stopping to avoid overfitting. The test loss/accuracy curves in
this figure already converge.

A.7 WEIGHT MATRICES OF THE KEYS, KEYS AND MIXING COEFFICIENT

In this section, we analyze the learned ⇡jr, kjr, and WKr , j = 1, . . . , N and r = 1, . . . ,M in
the Transformer-MGK trained on the LRA retrieval task. In all of our experiments, we set M = 2.
In Figure 11 and 12, we visualize the weight matrices WK that computes the keys and the keys
K, respectively, for all heads and layers in the 2-head softmax transformer baseline, the 1-head
Transformer-MGK with 2 keys, and the 1-head Transformer-sMGK with 2 keys trained on the LRA
retrieval task. Note that for the keys, we only plot the first 100 tokens. Also, Table 7 summarizes the
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Figure 12: Key embeddings K for all heads and layers of the 2-head softmax transformer baseline (Left), the
1-head Transformer-MGK with 2 keys (Middle), and the 1-head Transformer-sMGK with 2 keys (Right) trained
on the LRA retrieval task. Here the dimension D of each head is 32, and we plot the key embeddings of the first
100 tokens in a randomly chosen sequence. Hence, each key matrix has the shape of (100, 32).

Figure 13: Computational cost (FLOPs) for each training iteration of Transformer-MGK vs. the baseline
softmax transformer (Left) and Transformer-MLK vs. the baseline linear transformer (Right) on the LRA
retrieval task. The efficiency advantage of Transformer-MGK/MLK over the baselines grows with the number of
heads. Here, the batch size of each training iteration is 32.

learned mixing coefficient ⇡jr of all heads and layers in the 1-head Transformer-MGK trained on the
same retrieval task. Here we use the same ⇡j1,⇡j2 for all time step j = 1, . . . , N .

A.8 ADDITIONAL COMPUTATIONAL COMPLEXITY (FLOPS) ANALYSIS AT TRAINING TIME

Figure 13 demonstrates the computational cost (FLOPs) for each training iteration of the Transformer-
MGK vs. the baseline softmax transformer (Left) and the Transformer-MLK vs. the baseline linear
transformer (Right) on the LRA retrieval task. The efficiency advantage of Transformer-MGK/MLK
over the baselines grows with the number of heads.

Figure 14 shows the computational cost per training iteration (measured in FLOPs) of different infer-
ence and learning methods for Transformer-MGK trained on the document retrieval task. Transformer-
sMGK, Transformer-MGK, Transformer-MGK Hard-E, and Soft-E have similar computational costs.

A.9 SCALING TO 12-HEAD BASELINE MODELS FOR THE RETRIEVAL TASK.

To further study the scalability of our model, in this section, we investigate the performance of
our 6-head Transformer-MGKs/MLKs in comparison with the 12-head baseline softmax/linear
transformers on the retrieval task. Table 8 indicates that our 6-head Transform-MGKs/MLKs
significantly outperform 12-head softmax/linear transformers, respectively. Moreover, comparing
these results to those in Table 1 and Table 2, although the 12-head softmax/linear transformers
improve over the 8-head ones, their accuracies are still worse than or only equivalent to those of our
4-head and even 2-head Transformer-MGK/MLK models.

A.10 NEURAL MACHINE TRANSLATION ON IWSLT’14 GERMAN TO ENGLISH

Table 9 shows that the 2-head Transformer-MGK/sMGK models have comparable or better BLEU
scores than the 4-head softmax transformer baseline.
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Figure 14: Computational cost (measured in FLOPs) per training iteration of different inference and learning
methods for Transformer-MGK trained on the LRA retrieval task. Computational costs are almost the same for
Transformer-sMGK, Transformer-MGK, Transformer-MGK Hard-E, and Soft-E. The naming is as explained in
Section 3.4 in the main text.

Table 8: Test Accuracy (%) of 6-head Transformer-MGKs/MLKs compared with the baseline 12-head softmax
and linear transformers on the retrieval task. Our 6-head Transformer-MGKs/MLKs significantly outperform
softmax and linear transformers, respectively, while being more efficient in terms of computational cost, model
size, and memory usage.

Method Accuracy (%)
Softmax 12 heads 82.18
Transformer sMGK 6 head 83.31
Transformer MGK 6 head 83.05
Linear sMGK 12 head 81.97
Transformer sMLK 6 head 82.80
Transformer MLK 6 head 82.11

Table 9: Machine translation BLEU scores of 2-head Transformer-MGKs on the IWSLT14 De-En dataset is
better than or equivalent to that of the 4-head baseline.

Method BLEU score
Softmax 4 heads 34.42
Transformer sMGK 2 head 34.69
Transformer MGK 2 head 34.34

A.11 COMPARISON TO MULTI-QUERY ATTENTION

In this section, we compare our MGK approach to the multi-query attention (Shazeer, 2019). The
multi-query attention shares the same set of keys and values at different heads to reduce the memory-
bandwidth cost during incremental inference, which allows faster inference since the size of the
reloaded ”keys” and ”values” tensors are significantly reduced. On another hand, our Transformer-
MGK models the key at each head as a Gaussian mixture model, which leads to the use of multiple
keys at each head and allows us to decrease the number of attention heads. This helps reduce the
computations and parameters needed to calculate additional queries and values. If using key shifting
(see option (B) in paragraph Design Options for Keys in Section 2.3), the MGK approach also helps
reduce the computations and parameters needed to calculate additional keys. The advantages of
Transformer-MGK hold in both training and inference, including incremental inference. We have
provided a detailed analysis on the computational complexity and the number of parameters of
the Transformer-MGK in comparison with the corresponding softmax transformer in Appendix B.
Combining the multi-query attention and our MGK approach is interesting since each method has its
own advantage and they are complementary to each other. In particular, we can let the transformer
model share the same set of values and mixtures of keys at different heads. This approach can
potentially have the advantages of both multi-query attention and MGK.
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B AN ANALYSIS ON THE COMPUTATIONAL COMPLEXITY AND THE NUMBER
OF PARAMETERS IN TRANSFORMER-MGK AND THE SOFTMAX
TRANSFORMER

In this section, we compare the computational complexity and the number of parameters in
transformer-MGK with M keys at each timestep and H/M heads to the baseline softmax transformer
that has 1 key at each timestep and H heads. Here we choose M such that H is a multiple of
M and use keys design option (A) that make the key kjr a linear projection of the input xj , i.e.
kjr = xjW

>
Kr

, where xj 2 R1⇥Dx , WKr 2 RD⇥Dx and r = 1, 2, . . . ,M (see Design Options for
Keys in Section 2.3 for more details). To simplify notation and without loss of generalization, we
let M = 2 as in our experiments and assume that Dv = D, i.e., the values have the same feature
dimension as the queries and the keys. To simplify the computation, we also do not take the softmax
operator into account since this operator yields similar costs when applied in Transformer-MGK and
softmax transformer.

B.1 COMPUTATIONAL COMPLEXITY

(i) Softmax H-head attention: The number of computations in a softmax H-head attention is
N

2
H(4D � 1) +NHD(6Dx + 2HD � 5).

Explanation: To calculate the query matrix Q, the key matrix K, and the value matrix V in Step 1 in
Section 1.1 at each head, we need 3NDDx multiplications and 3ND(Dx�1) additions. In total, these
need 3ND(2Dx � 1) computations. Next, to compute the product QK

> in Eqn. (1), we need N
2
D

multiplications and N
2(D � 1) additions. Similarly, the product AV requires N2

D multiplications
and N(N � 1)D additions. In total, computing the output sequence H in Eqn. (1) at each head
requires 3ND(2Dx�1)+N

2
D+N

2(D�1)+N
2
D+N(N�1)D = N

2(4D�1)+ND(6Dx�4)
computations. The total computation for all H heads is then

H(N2(4D � 1) +ND(6Dx � 4)) +NHD(2HD � 1)

= N
2
H(4D � 1) +NHD(6Dx + 2HD � 5),

where the extra NHD(2HD � 1) is from the linear projection by W
O.

(ii) Mixture of 2 Gaussian keys attention with H/2-head: The number of computations in a
mixture of 2 Gaussian keys attention with H/2-head is N2

H(3D� 0.5) +NHD(4Dx +HD� 4).

Explanation: Similar to the above derivation, in a Mixture of M Gaussian keys attention, to compute
the output sequence H we need N

2((2M +2)D� 1)+ND((M +2)(2Dx � 1)� 1) computations.
Note that, to compute the Gaussian distances between the queries qi and the keys kj as in the mixture
of M Gaussian keys attention and to compute their dot product as in the softmax attention, we need
the similar number of computations. Therefore, the total computation for all H/M heads is then

(H/M)(N2((2M + 2)D � 1) +ND((M + 2)(2Dx � 1)� 1)) +NHD(2(H/M)D � 1)

= N
2
H

✓
2(M + 1)D � 1

M

◆
+NHD

✓
2(M + 2)

M
Dx +

2

M
HD �

3M + 2

M

◆
.

Let M = 2, then the total computation of the mixture of 2 Gaussian keys attention is given by
N

2
H(3D � 0.5) +NHD(4Dx +HD � 4).

Soft-max H-head attention versus mixture of 2 Gaussian keys attention with H/2-head: Given
the results in (i) and (ii), when compared to the baseline softmax H-head attention, our mixture of 2
Gaussian keys attention with H/2-head saves

N
2
H(D � 0.5) +NHD(2Dx +HD � 1)

computations. When N is large, this difference is significant. In conclusion, the mixture of 2 Gaussian
keys attention with H/2-heads has cheaper computational complexity than that of soft-max H-head
attention.

B.2 THE NUMBER OF PARAMETERS

(iii) Softmax H-head attention: The number of parameters in a softmax H-head attention is
3HDDx + (HD)2.
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Explanation: 3HDDx is from the linear projects to calculate the query matrix Q, the key matrix K,
and the value matrix V in Step 1 in Section 1.1. (HD)2 is from the linear project to compute the
final output as in Eqn. (3).

(iv) Mixture of 2 Gaussian Keys attention with H/2-head: The number of parameters in a Mixture
of 2 Gaussian Keys attention with H/2-head is 2HDDx + 0.5(HD)2 +H .

Explanation: The linear projections to calculate Q and V contribute HDDx/2 parameters each. The
linear projection to calculate K contributes HDDx. The linear project to compute the final output
has dimension (H/2)D ⇥HD, so it contributes 0.5(HD)2 parameters. H more parameters is from
the prior ⇡jr. These priors contribute 2 parameters at each head since we make {⇡j1,⇡j2} for all
j = 1, . . . , N the same.

Soft-max H-head attention versus mixture of 2 Gaussian keys attention with H/2-head: Given
the results in (iii) and (iv), when compared to the baseline softmax H-head attention, our mixture of
2 Gaussian keys attention with H/2-head saves HDDx + 0.5(HD)2 �H parameters. When H and
D are large, this saving is significant.

C PROOFS OF MAIN RESULTS

In this appendix, we provide proofs for the main results in the paper.

C.1 PROOF OF THEOREM 1

To ease the presentation of the proof, for any probability distribution G, we denote

pG(x) :=

Z
f(x� ✓)dG(✓) =

Z
�(x|✓,�2

I)dG(✓),

for all x 2 Rd where f(x) = 1
(
p
2⇡�)d

exp
⇣
�

kxk2

2�2

⌘
for given � > 0. It means that pG is the

convolution of f and the probability distribution G. Since the space of Gaussian mixtures is dense
in the space of continuous probability measures (Bacharoglou, 2010), it indicates that there exists
probability distribution G1 such that

sup
x2Rd

|p(x)� pG1(x)| 
✏

2
. (14)

Our next step is to prove that there exists a probability measure G2 with at most K supports where
K  (C log(1/✏))d for some universal constant C such that

sup
x2Rd

|pG1(x)� pG2(x)| 
✏

2
. (15)

Indeed, from Lemma A.1 in (Ghosal & van der Vaart, 2001), for any k � 1 there exists a probability
distribution G2 with at most (2k � 2)d supports such that

Z
✓
↵
d(G1 �G2)(✓) = 0, (16)

for any ↵ = (↵1,↵2, . . . ,↵d) 2 Nd such that 0  |↵| =
Pd

j=1 ↵j  2k � 2, Here, ✓↵ =
Qd

j=1 ✓
↵j

j .

Now, for any M � 2a
p
d, we have kx� ✓k � kxk�k✓k > M � a

p
d > M/2 as long as kxk > M

and ✓ 2 [�a, a]d. It indicates that

sup
kxk>M

|pG1(x)� pG2(x)| = sup
kxk>M

����
Z

f(x� ✓)d(G1 �G2)(✓)

����

 sup
kxk>M

Z
1

(
p
2⇡�)d

exp

✓
�
kx� ✓k

2

2�2

◆
d(G1 +G2)(✓)


2

(
p
2⇡�)d

exp

✓
�
M

2

8�2

◆
. (17)
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On the other hand, for any k � 1 we also have that

sup
kxkM

|pG1(x)� pG2(x)| = sup
kxkM

����
Z

f(x� ✓)d(G1 �G2)(✓)

����

 sup
kxkM

������

Z 0
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(
p
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(
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(18)
where the final equality is stems from

Z k�1X

j=0

(�1)jkx� ✓k
2j

(
p
2⇡)d�d+2jj!

d(G1 �G2)(✓) = 0,

which is due to Eqn. (16).

To further bound the right-hand-side (RHS) of Eqn. (18), we use the following inequality:
������
exp(y)�

k�1X

j=0

(y)j/j!

������
 |y|

k
/k!

for any y 2 R. Since k! � (k/e)k for any k � 1, the above bound can be rewritten as
������
exp(y)�
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|ye|
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. (19)

Further simplification of Eqn. (18) leads to

sup
kxkM

|pG1(x)� pG2(x)|  sup
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where the final inequality is based on an application of inequality (19) with y = �kx� ✓k
2
/(2�2).

For kxk  M and ✓ 2 [�a, a]d, we have kx� ✓k  kxk+ k✓k  M + a
p
d. Therefore, we further

have
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When M � 2a
p
d, we have M + a

p
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3M
2 and the above bound leads to

sup
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By choosing M
2 = 8�2 log(1/✏0) for some ✏

0
> 0, the bounds in Eqns. (17) and (20) become
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As long as we choose k = 9e2 log(1/✏0) and ✏
0
 1, we have
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By choosing ✏
0 = ✏

2max{ 2
(
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2⇡�)d
,1} , the results from Eqns. (21) and (22) indicate that
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have
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It indicates that we obtain the conclusion of claim (15) by choosing K = (2k � 2)d ✓
18e2 log
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. Combining the results from Eqns. (14) and (15), we have

sup
x2Rd

|p(x)� pG2(x)|  sup
x2Rd

|p(x)� pG1(x)|+ sup
x2Rd

|pG1(x)� pG2(x)|  ✏.

As a consequence, we obtain the conclusion of the theorem.

27


	Introduction
	Self-Attention
	Contribution

	Transformer with a Mixture of Gaussian Keys
	Attention Score as a Posterior Distribution
	Transformer with a Mixture of Gaussian Keys: Each Key is Again a Gaussian Mixture Model
	Inference and Learning via the Expectation Maximization Algorithm
	Transformer with a Mixture of Linear Keys 

	Experimental Results
	Long Range Arena (LRA) Benchmark
	Language Modeling on WikiText-103
	Neural Machine Translation on IWSLT'14 German to English
	Empirical Analysis

	Related Work
	Concluding Remarks
	Additional Experiments
	Experiment details
	Long Range Arena Benchmark
	Language Modeling on WikiText-103
	Neural Machine Translation on IWSLT'14 German to English

	More Empirical Analysis of Transformer-MGKs/MLKs trained for Language Modeling
	Additional training results for LRA
	Ablation Study on the Impact of the Mixture of Keys, the Gaussian Distance, and the Key Shifting
	Time Overhead and Memory Footprint Analysis
	Learning Curves Showing Convergence
	Weight Matrices of the Keys, Keys and Mixing Coefficient
	Additional Computational Complexity (FLOPs) Analysis at Training Time
	Scaling to 12-Head Baseline Models for the Retrieval task.
	Neural Machine Translation on IWSLT'14 German to English
	Comparison to Multi-query Attention

	An Analysis on the Computational Complexity and the Number of Parameters in Transformer-MGK and the Softmax Transformer
	Computational Complexity
	The Number of Parameters

	Proofs of main results
	Proof of Theorem 1


