
A Technical Proofs

Proof of Proposition 4.1. . Using the chain rule, (1), and the definitions of `x, φx, ψx, and Zx, it
follows that for any δ ∈ W we have

Dw̄h(x, w̄)[δ] = D(`x ◦ φx)(w̄)[δ] = D(`x ◦ ψx)(Zx(w̄)) ◦DZx(w̄)[δ]

=
〈
∇(`x ◦ ψx)(Zx(w̄)), DZx(w̄)[δ]

〉
= 〈gx,Axδ〉

= 〈A∗x gx, δ〉 .

The conclusion follows immediately from (2) with ψ = h(x, ·) and w0 = w̄.

B Efficient Implementation of Algorithm 2

This appendix presents the technical details of efficiently implementing Algorithm 2.

B.1 Computing Intermediate Quantities

We argue that in the setting of neural networks, Algorithm 2 can obtain the intermediate quantities

ζi ≡ ζi,x, gi ≡ gi,x
in a single forward and backward (or backpropagation) pass of the given network. For ease of
notation, let i ≥ 1 be fixed and denote

Φi(·) ≡ φi(·, . . . , φ1(w1, x)), Φ̃i(·) ≡ φi(wi, ·), Zi(·) ≡ Zx,i(·), ψi(·) = ψx,i(·),

for every i = 1, . . . , k and x ∈ B.

We start with the claim about ζi. As Zi(·) and φi(·, ·) are the only two functions in our setting that
depend on wi, it is straightforward to see that there exist functions αi(·) and βi(·) such that

Φi(wi) = αi ◦ Zi(wi), Zi(wi) = βi ◦ Φi−1(wi−1), (9)

which together yield the recursive expression

Φi(wi) = αi ◦ βi ◦ Φi−1(wi−1) ≡ Φ̃(Φi−1(wi−1)). (10)

Since a single forward pass obtains the values {Φi(wi)}ki=1 in sequence, it follows from (9) and (10)
that we also obtain ζi = Zi(wi) as part of the forward pass.

To show the claim about gi, we first notice that (9) and (10) imply

ψi(·) = αk ◦ βk ◦ αk−1 ◦ βk−1 ◦ · · · ◦ αi(·)

and, hence, the derivative of ψi(·) only depends on the derivatives of {αj}kj=i and {βj}kj=i+1. Since
a single backpropagation step (i) obtains the derivatives (or their adjoints) of `x, αi, and βi in the
reverse order of i = k, . . . , 1 and (ii) efficiently computes their sequential compositions, e.g.,

D(`k ◦ αk ◦ βk ◦ · · · ◦ αi)(·)(·),

it follows that the adjoint operators [D(`x ◦ψi)(·)]∗(·) are also obtained from a single backpagation
step. Assuming that ζi = Zi(wi) was already obtained in the first for-loop of Algorithm 2, we also
obtain from these operators the gradients gi = ∇(`x ◦ ψi)(ζi).

In the next section, we give some examples of layers where the representations of the functions Ωi
can also be obtained simultaneously with the outputs ζi.

B.2 Computing Batch Gradients

Suppose that (5) holds for every x ∈ B and i = 1, . . . , k, and define

Si(B) :=
∑
x∈B

`x ◦ ψi,x(ζi,x), ĝi,x := ∇ζi,xSi(B)
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Let us now show that gi,x = ĝi,x. First, observe that if x, x′ ∈ B and x 6= x′ then neither `x(·) nor
ψi,x(·) depend on the value of ζi,x′ (and vice versa) for any i = 1, . . . , k. Consequently,

ĝi,x = ∇ζi,xSi(B) = ∇ζi,x(`x ◦ ψi,x)(ζi,x) +
∑
x′ 6=x

∇ζi,x(`x ◦ ψi,x(ζi,x)︸ ︷︷ ︸
=0

)

= ∇ζi,x(`x ◦ ψi,x)(ζi,x) = gi,x.

Note that since each ζi,x is computed in a single forward pass of a batch B (see Appendix B.1),
the quantities ĝi,x, which are gradients taken with respect to ζi,x, are obtained in a single (batched)
backward pass.

C Additional Algorithms

Algorithm 3 gives a subroutine for computing the necessary scalars used in the efficient squared
norm function of the embedding layer.

Algorithm 3 Computing the Nonzero Values of nk(x)

Input: π(x) = [π1(x), . . . , πq(x)]
Create an empty binary search tree T , where T [k] denotes the value at key k
for i = 1, . . . , q do

If πi(x) is not in T , set T [πi(x)] = 1.
Otherwise, set T [πi(x)] = T [πi(x)] + 1

end for
For every key k in T , set nk(x) = T [k].
Return the nonzero values of nk(x).

D Decomposition Proofs

This appendix gives the derivation of the squared-normed functions Ωx(·) found in the main body
of the paper.

D.1 Fully-Connected Layer

Since Zx(·) is linear, the adjoint operator of DZx(V, b)(·) is clearly given by

[DZx(V, b)]∗(g) =

[
U∗x
Q∗

]
g

and, hence, that Ωx(g) = ‖U∗xg‖2 + ‖Q∗g‖2. It now follows from the definition of the adjoint that

‖U∗g‖2 = 〈U∗xg, U∗xg〉 = 〈UxU∗xg, g〉 = 〈UxU∗x , gg∗〉

which then implies
Ωx(g) = 〈UxU∗x , gg∗〉+ ‖Q∗g‖2.

D.2 Embedding Layer

Since Zx(·) is linear, the adjoint operator of DZx(W )(·) is clearly given by

[DZx(W )]∗(g) = Y ∗π(x)g

and, hence, that Ωi(g) = ‖Y ∗π(x)g‖
2. Now, denote Yπ = Yπ(x), π = π(x), and Rowk(M) to be the

k-th row of a matrix M . Recall that

YπW =

 Rowπ1
(W )

...
Rowπq

(W )

 .
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Hence, for every g ∈ Rq×d and W ∈ Rr×d, we have

〈YπW, g〉 =

q∑
i=1

〈
Rowπi(W ),Rowi(g)

〉
=

r∑
j=1

〈
Rowj(W ), νj(g)

〉
= 〈W,Y ∗π g〉

where
Rowj(Y

∗
π g) = νj(g) =

∑
i:πi=j

Rowi(g).

Using the fact that Rowi1(g) = Rowi2(g) for any i1 and i2 satisfying πi1 = πi2 = j, we have that

Rowj(Y
∗
π g) =

∑
i:πi=j

Rowi(g) = nj(x)g̃j

which clearly implies Ωx(g) = ‖Y ∗π g‖2 =
∑r
j=1 nj(x)g̃j .

D.3 Low Rank Approximation Layer

Since Zx(·) is quadratic, Zx(·) is Fréchet differentiable and, hence, Gateaux differentiable.
Consequently, the derivative DZx(V )(·) is given by the Gateaux differential

DZx(V )[∆] = lim
t↓0

Zx(V + t∆)− Zx(V )

t

= lim
t↓0

〈
Ux, (V + t∆)(V + t∆)∗ − V V ∗

〉
2t

=
1

2
〈Ux,∆V ∗ + V∆∗〉+ lim

t↓0

t

2
〈Ux,∆∆∗〉

=
1

2
〈Ux,∆V ∗ + V∆∗〉 .

Re-arranging terms, we have that

DZx(V )[∆] =
1

2
〈Ux,∆V ∗ + V∆〉 =

1

2

〈
(Ux + U∗x)V,∆

〉
and, hence, that [DZx(V )]∗(g) = g(UxV

∗ + V U∗x)/2 for every g ∈ R. Consequently, we have that

Ωx(g) = ‖[DZx(V )]∗(g)‖2 =
g2

4
‖(Ux + U∗x)V ‖2.

E Additional Squared-Norm Functions

This appendix discusses decompositions of more complicated layer functions.

E.1 Multi-Head Attention

Define the auxiliary functions Softmax : Rn 7→ Rn and

T : Rd1×n × Rd2×n × Rd3×n × Rd3×n 7→ Rd3×n

as given by [
Softmax(x)

]
j

=
exp(xj)∑n
i=1 exp(xi)

,

T (Q,K, V,M) = V

Softmax

(
KTQ√
d1

)
•MT

 ∈ Rd3×n,

where 1 is a vector of all ones and A •B denotes the Hadamard product between A and B.
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Given variables {WQ
i }hi=1 ⊆ Rdm×dq , {WK

i }hi=1 ⊆ Rdm×dq , {WV
i }hi=1 ⊆ Rdm×dv , and

{WO
i }hi=1 ⊆ Rdm×dv , input queries Qx ∈ Rdq×n, input keys Kx ∈ Rdq×n, input values

Vx ∈ Rdv×n, and mask Mx ∈ Rdv×n, the multi-head attention layer function φx(·) is given by

φx(W ) =

h∑
i=1

WO
i Ti(x),

Ti(x) := T (WQ
i Qx, W

K
i Kx, W

V
i Vx, Mx) ∈ Rdv×n

where W = (W1, . . . ,Wh) and Wi := (WQ
i ,W

K
i ,W

V
i ,W

O
i ).

We now consider the squared-norm function

Ωx : Rhdm×n × Rhdm×n × Rhdm×n × Rhdm×n 7→ R

generated by the choice of

Zx(W1, . . . ,Wh) =


ZQx (WQ

1 , . . . ,W
Q
h )

ZKx (WK
1 , . . . ,WK

h )
ZVx (WV

1 , . . . ,W
V
h )

ZOx (WO
1 , . . . ,W

O
h )

 ,
given by [

ZQx (WQ
1 , . . . ,W

Q
h )
]
j

= ZQx,j := WQ
j Qx,[

ZKx (WK
1 , . . . ,WK

h )
]
j

= ZKx,j := WK
j Kx,[

ZVx (WV
1 , . . . ,W

V
h )
]
j

= ZVx,j := WV
j Vx,[

ZOx (WO
1 , . . . ,W

O
h )
]
j

= ZOx,j := WO
j Tj(x),

for j = 1, . . . , h. Since each of the block functions that define Zx(·) are linear, we can apply the
same analysis as in the fully connected setting to obtain

‖[DZBx,j ]∗(gj)‖2 =
〈
BB∗, gjg

∗
j

〉
∀B ∈ {Qx,Kx, Vx},

‖[DZOx,j ]∗(gj)‖2 =
〈
Tj(x)[Tj(x)]∗, gjg

∗
j

〉
.

Hence, for appropriately sized gradients g = (g1, . . . , gh) where (gQx

j , gKx
j , gVx

j , gOj ), one has that

Ωx(g) =

h∑
j=1

〈Tj(x)[Tj(x)]∗, (gOj )(gOj )∗
〉

+
∑

B∈{Qx,Kx,Vx}

〈
BB∗, (gBj )(gBj )∗

〉 ,
and a representation of Ωx may be obtained through the matrices QxQ∗x, KxK

∗
x , VxV ∗x , and

{Tj(x)[Tj(x)]∗}hj=1, which only consumes Θ(d2
q + hd2

v) additional storage for a batch B.

Notice that this is exceedingly more efficient than the naive approach of materializing each
∇Wh(x,W ) for x ∈ B, which consumes Θ(|B|(dmdq + dmdv)) additional storage. Moreover,
the classic ghost clipping technique does not immediately apply to φx(W ) as there is not a simple
transform from φx(W ) to some linear function of W .

E.2 Layer Normalization

Given scaling variables γ ∈ Rc, offset variables β ∈ Rc, tolerance ε > 0, input ux ∈ Rd where
c|d, and a linear broadcasting operator Q : Rc 7→ Rd, the layer normalization layer function φx(·)
is given by

φx(γ, β) = (Qγ) •

[
ux −Mean(ux)√

Var(ux) + ε

]
+Qβ,
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where A • B denotes the Hadamard product between A and B and Mean(ux) (resp. Var(ux)) is a
vector in Rd (resp. scalar in R) whose entries are the mean (resp. variance) of the entries in ux.

We now consider the squared-norm function Ωx : Rc × Rc 7→ R generated by the choice of
Zx(γ, β) = (γ, β), i.e., Zx(·) is the identity function. Immediately, one has that Ωx(g) = ‖g‖2,
which incurs a compute (resp. storage) cost of Θ(|B|c) (resp. Θ(1)).

More interestingly, when 2c � d, this approach is strictly better than both the naive approach and
the ghost clipping technique when applied with Zx(γ, β) = φx(γ, β). In the former case, it is
straightforward to see that we incur a compute (resp. storage) cost of Θ(|B|c) (resp. Θ(|B|c)). To
analyze the latter case, let Dx ∈ Rd×d be a diagonal matrix given by

[Dx]ii =

[
ux −Mean(ux)√

Var(ux) + ε

]
i

i = 1, . . . , d,

and observe that

φx(γ, β) =
[
DxQ Q

]︸ ︷︷ ︸
=:Ux

[
γ
β

]
.

Consequently, the classic ghost clipping technique yields the decomposition

Ωx(g) = 〈UxU∗x , gg∗〉 = 〈DxQQ∗Dx +QQ∗, gg∗〉

for g ∈ Rd, which is incurs a steep compute (resp. storage) cost of Θ(d2c + d2|B|) (resp. Θ(d2))
for general Q and 2c� d.

F Additional Experiments

F.1 Effect of Batch Size on Fully-Connected Layers

Figure 4 presents numerical results for the same set of experiments as in Subsection 5.1 but for
different batch sizes |B| instead of the output dimension q.

Figure 4: Runtime and memory cost graphs for fully-connected layer computations with bias
dimensions m = {21, 22, . . . , 211} and batch sizes |B| = 250, 500, 1000.

Similar to Subsection 5.1, the results in Figure 4 are more favorable towards Adjoint compared to
GhostClip.
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