A Technical Proofs

Proof of Proposition 4.1. . Using the chain rule, (1), and the definitions of ¢, ¢, ¥, and Z,, it
follows that for any § € VW we have

Dyh(z,w)[0] = D(ly © ¢2)(0)[0] = D(ly © ¢0)(Z(w)) 0 DZy(w)[0]

= (V(ly 092)(Zo()), DZo(w)[0]) = (g, Az)
= <~A; gz, 0) -

The conclusion follows immediately from (2) with ¢) = h(x,) and wy = @. O

B Efficient Implementation of Algorithm 2
This appendix presents the technical details of efficiently implementing Algorithm 2.

B.1 Computing Intermediate Quantities
We argue that in the setting of neural networks, Algorithm 2 can obtain the intermediate quantities

G =G 9 =Gix

in a single forward and backward (or backpropagation) pass of the given network. For ease of
notation, let 7 > 1 be fixed and denote

() = il dr(wi, 1), Ri() = di(wise), Zi() = Zai(), i) = ¥uil"),
foreveryi=1,...,kandz € B.

We start with the claim about (;. As Z;(-) and ¢;(-,-) are the only two functions in our setting that
depend on wy, it is straightforward to see that there exist functions «;(+) and §;(+) such that

Pi(wi) = a0 Zij(wi), Zi(w;) = B o Pi—1(wj—1), 9)
which together yield the recursive expression
D;(w;) = a0 B 0 Di_1(wi—1) = B(Bi—1(wi—1)). (10)

Since a single forward pass obtains the values {®; (w;)}%_, in sequence, it follows from (9) and (10)
that we also obtain (; = Z;(w;) as part of the forward pass.

To show the claim about g;, we first notice that (9) and (10) imply
VYi(-) =agofroag_10Pr_10---0a;)

and, hence, the derivative of v;(-) only depends on the derivatives of {c; } é?:i and {3; };?:i 41~ Since
a single backpropagation step (i) obtains the derivatives (or their adjoints) of /., a;, and (; in the
reverse order of i = k, ..., 1 and (ii) efficiently computes their sequential compositions, e.g.,

D(lpoapopBro---o0a;)()(),

it follows that the adjoint operators [D (£, o 1;)(-)]*(+) are also obtained from a single backpagation
step. Assuming that ; = Z;(w;) was already obtained in the first for-loop of Algorithm 2, we also
obtain from these operators the gradients g; = V (¢, 0 1;)((;).

In the next section, we give some examples of layers where the representations of the functions €2;
can also be obtained simultaneously with the outputs (;.

B.2 Computing Batch Gradients

Suppose that (5) holds for every z € Bandi = 1,...,k, and define

SZ(B) = Z £y 0 lbi,x(gi,x)a gi,ﬂf = v(i,msi(B)

zEB

13

Let us now show that g; , = §; . First, observe that if 2,2’ € B and « # 2’ then neither £, (-) nor

1 »(-) depend on the value of (; .+ (and vice versa) for any i = 1, ..., k. Consequently,
Giw = V¢, 8i(B) =V, (laothin)(Giw) + D> Ve, (la 0 i n(Gi))
z'#x
=0

= VCi,z (g0 1/)1,»L)(<z¢) = Yi,x-

Note that since each (; , is computed in a single forward pass of a batch B (see Appendix B.1),
the quantities g; ,,, which are gradients taken with respect to ¢; ., are obtained in a single (batched)
backward pass.

C Additional Algorithms

Algorithm 3 gives a subroutine for computing the necessary scalars used in the efficient squared
norm function of the embedding layer.

Algorithm 3 Computing the Nonzero Values of n ()

Input: 7(z) = [m1(z),...,me(z)]
Create an empty binary search tree 7', where T'[k] denotes the value at key k
fori=1,...,qdo
If m;(x) is not in T, set T'[m;(x)] = 1.
Otherwise, set T'[m;(z)] = T[m;(x)] + 1
end for
For every key k in T, set ny(z) = T[k].
Return the nonzero values of ny(z).

D Decomposition Proofs

This appendix gives the derivation of the squared-normed functions €2,.(-) found in the main body
of the paper.

D.1 Fully-Connected Layer

Since Z,(+) is linear, the adjoint operator of DZ,(V, b)(:) is clearly given by
% U
[DZ:(V,b)]"(g9) = { o* :| g

and, hence, that . (g) = ||Uzg||? + ||Q*g]|. It now follows from the definition of the adjoint that
1U*gl* = (Uzg, Uz g) = (UsUzg.9) = (UsUy, 99")

which then implies
Qu(9) = (VU7 99") + Q79>

D.2 Embedding Layer

Since Z,(-) is linear, the adjoint operator of DZ, (W)(-) is clearly given by
[DZ,(W)]"(g) = Y*(w)g

and, hence, that Q;(g) = HY;‘(w)gHQ. Now, denote Y = Yy (,), m = 7(z), and Rowy (M) to be the
k-th row of a matrix M. Recall that

Row, (W)

YW = :
Row (W)

14

Hence, for every g € R7*? and W € R"*¢, we have

(YzW,g) = Z Row,, (W), Row;(g)) = > _ (Row;(W),v;(g)) = (W,Y;g)

j=1
where

Row; (Y7 g) = vi(g) = > Rowi(g).
Using the fact that Row;, (g) = Rowy, (g) for any ¢; and 45 satisfying m;, = m;, = j, we have that

Row;(Y}g) Z Row;(g) = n;(z)g;

=]

which clearly implies Q,.(g) = ||Y.7g||*> = Z;Zl n;(x)g;.

D.3 Low Rank Approximation Layer

Since Z,(-) is quadratic, Z,(-) is Fréchet differentiable and, hence, Gateaux differentiable.
Consequently, the derivative DZ,(V')(-) is given by the Gateaux differential

Zo(V +tA) — Z, (V)

DZ,(V)[A] = lim

t10 t
. (U, (V 4+ tA)(V + tA)* — VV*)
=i %

1
= §<UJ,AV*—|—VA >—|—hm (Uy, AAT)

1
3¢

Uy, AV + VAY) .
Re-arranging terms, we have that
1 1
DZ,(V)[A] = 5 (Us, AV* + VA) = 2 (U +UZ)V. A)

and, hence, that [DZ,,(V)]*(g) = g(U,V* +VU})/2 for every g € R. Consequently, we have that

2
Qu(9) = I[DZ(V)]*(9)|I* = %I\(Uz + UV

E Additional Squared-Norm Functions
This appendix discusses decompositions of more complicated layer functions.

E.1 Multi-Head Attention
Define the auxiliary functions Softmax : R +— R"™ and

T . Rdlxn % RdQXn X]Rdg)(’n X RdsXTL — Rdg)(n
as given by

exp(z;)

[Softmax(z)]; = s S

T(Q,K,V,M) =V |Softmax K'Q o MT| e RExn
))) \/CTI)

where 1 is a vector of all ones and A e B denotes the Hadamard product between A and B.

15

Given variables {W2}r | C RIm*da (WK} = C RImxde {WVIh =~ C Rémxdv and

{WPY | C RImxdv input queries Q, € R%*" input keys K, € R%*", input values
V, € R%>" and mask M, € R%*", the multi-head attention layer function ¢, (-) is given by

h
Go(W) = Z WETi(z),

Ti(x) = T(W2Qu, WEK,, WYV,, M,) € R&*"
where W = (W1, ..., W) and W; := (WiQ, wWE WY wo).
We now consider the squared-norm function
Q . thmxn X thmxn X thmxn X thmxn — R
ot

generated by the choice of

Zy (WY, W) |
ZOWP,...,W2)
given by
ZowE,. W) =22 = WP,
[Zf(wf,...,w,{f)_j = 7K, = WKK,,
[ZY ol w)] =2l =W,
{Z:co(Wloa) Who)_ = Zmo,] = WJO'E((L'),
for j = 1,...,h. Since each of the block functions that define Z,(-) are linear, we can apply the

same analysis as in the fully connected setting to obtain
IDZE,) (9)I? = (BB".9,9;) VB € {Qu. Ku Va},
10225 (9)I1> = (T @) T3 (@)]" 9,5) -

Hence, for appropriately sized gradients g = (g1, . .., gn) Where (g;?” , gJK e gJV* , g?), one has that

Q:(9) =

M-

(T@IL@IEHE))+ > (BB6e)")|.

1 BE{Qq,Ku,Va}

J

and a representation of {2, may be obtained through the matrices Q),Q%, K, K}, V,V>, and
{T;(@)[T;()]* }2_,, which only consumes ©(d2 + hd?) additional storage for a batch B.

j=1’
Notice that this is exceedingly more efficient than the naive approach of materializing each
Vwh(z,W) for z € B, which consumes O(|B|(d,,d, + d;nd,)) additional storage. Moreover,
the classic ghost clipping technique does not immediately apply to ¢, (W) as there is not a simple
transform from ¢, (W) to some linear function of .

E.2 Layer Normalization

Given scaling variables v € R€, offset variables 8 € R€, tolerance ¢ > 0, input u, € R? where
c|d, and a linear broadcasting operator Q : R¢ — R?, the layer normalization layer function ¢, (-)
is given by

U, — Mean(uy,)

¢z(7,8) = (Qy) @ Var(ul) T ¢

+ 9B,

16

where A e B denotes the Hadamard product between A and B and Mean(u,,) (resp. Var(u;)) is a
vector in R¢ (resp. scalar in R) whose entries are the mean (resp. variance) of the entries in u,.

We now consider the squared-norm function €, : R x R® +— R generated by the choice of
Z:(v,8) = (v, B), i.e., Z,(-) is the identity function. Immediately, one has that ,(g) = ||g||%,
which incurs a compute (resp. storage) cost of O(|B|c) (resp. ©(1)).

More interestingly, when 2¢ < d, this approach is strictly better than both the naive approach and
the ghost clipping technique when applied with Z,(v,8) = ¢.(v,8). In the former case, it is
straightforward to see that we incur a compute (resp. storage) cost of ©(|B|c) (resp. ©(|B|c)). To
analyze the latter case, let D, € R9*? be a diagonal matrix given by

uge — Mean (uy)

i=1,....d,
Var(uy) + ¢

[Dy]ii =

i
and observe that
62(v,8)=[DaQ Q] [H
~———
=:U,

Consequently, the classic ghost clipping technique yields the decomposition

Qa(g) = (UaUy, 99%) = (D2 QQ" Dy + QQ%, 99”)
for g € R?, which is incurs a steep compute (resp. storage) cost of O(d?c + d?|B|) (resp. ©(d?))
for general Q and 2¢ < d.

F Additional Experiments

F.1 Effect of Batch Size on Fully-Connected Layers

Figure 4 presents numerical results for the same set of experiments as in Subsection 5.1 but for
different batch sizes | B| instead of the output dimension q.

Effect of Batch Size on Runtime Effect of Batch Size on Memory
3 e e et P T e el
g / el £ 6000
s / g
g21 / g
@ | 3 4000
w ! = -
E / g
€11 - TS - - £ 20004 ool
-4 - g R L T ———— X~
P e T ©
_____ o
&
01 r r r : : r
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Bias Dimension Bias Dimension
-== GhostClip, [B|=250 ==~ GhostClip, [B|=1000 —— Adjoint, |B|=500 --- GhostClip, |B|=250 --- GhostClip, [B|=1000 —— Adjoint, |B|=500
GhostClip, [B|=500 —— Adjoint, |B|=250 —— Adjoint, [B|=1000 GhostClip, [B|=500 —— Adjoint, |B|=250 —— Adjoint, |B|=1000

Figure 4: Runtime and memory cost graphs for fully-connected layer computations with bias
dimensions m = {21,22, ... 2!} and batch sizes | B| = 250, 500, 1000.

Similar to Subsection 5.1, the results in Figure 4 are more favorable towards Adjoint compared to
GhostClip.

17

