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ABSTRACT

Classical wisdom in machine learning holds that the generalization error can
be decomposed into bias and variance, and these two terms exhibit a trade-off.
However, in this paper, we show that for an ensemble of deep learning based
classification models, bias and variance are aligned at a sample level, where
squared bias is approximately equal to variance for correctly classified sample
points. We present empirical evidence confirming this phenomenon in a variety of
deep learning models and datasets. Moreover, we study this phenomenon from two
theoretical perspectives: calibration and neural collapse. We first show theoretically
that under the assumption that the models are well calibrated, we can observe the
bias-variance alignment. Second, starting from the picture provided by the neural
collapse theory, we show an approximate correlation between bias and variance.

1 INTRODUCTION

The concepts of bias and variance, obtained from decomposing the generalization error, are of
fundamental importance in machine learning. Classical wisdom suggests that there is a trade-off
between bias and variance: models of low capacity have high bias and low variance, while models of
high capacity have low bias and high variance. This understanding served as an important guiding
principle for developing generalizable machine learning models, suggesting that they should be
neither too large nor too small (Bishop, 2006). Recently, a line of research found that deep models
defy this classical wisdom (Belkin et al., 2019): their variance curves exhibit a unimodal shape that
first increases with model size, then decreases beyond the point that the models can perfectly fit the
training data (Neal et al., 2018; Yang et al., 2020). While the unimodal variance curve explains why
over-parameterized deep models generalize well, there is a lack of understanding on why it occurs.
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(a) Illustration of B-V alignment in B-V space
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Figure 1: The bias-variance alignment phenomenon. (a) Given an input x and its associated label
y, bias-variance alignment refers to the phenomenon that the bias and variance of a deep model
satisfy log Bias2

hθ,(x,y) ≈ log Varihθ,(x,y) for correctly classified points, as illustrated as the dashed
line (see the left subfigure). In the right subfigure, each cross represents a prediction of the model
ensemble {hθ} on a sample x, and the center is the one-hot encoding ey of the corresponding label
y. Green, yellow, and red colored clusters of crosses correspond to the three groups also shown in
the left subplot, with small, medium, and large bias, respectively. Bias-variance alignment implies
that the three groups have small, medium, and large variance, respectively. (b) Per-example bias
and variance for ResNet-50 trained on ImageNet, where each dot corresponds to a test sample and
colored according to whether the sample is correctly classified by the model or not. Bias and variance
are estimated from 20 independently trained networks with different initial weights and over different
bootstrap samples from the train set, following methodology from Neal et al. (2018). (c) Per-example
bias-variance for BERT trained on TREC data (see Section E.7 in Appendix for details).
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This paper revisits the study of bias and variance to understand their behavior in deep models.
We perform a per-sample measurement of bias and variance in popular deep classification models.
Our study reveals a curious phenomenon, which is radically different from the classical tradeoff
perspective on bias-variance, while is concordant with more recent works (Belkin et al., 2019; Hastie
et al., 2022; Mei & Montanari, 2022). Given a sample x and its corresponding label y from a
dataset of test examples {(xi, yi)}i∈[n], let Biashθ,(x,y) and Varihθ,(x,y) be the bias and variance,
respectively, of an ensemble of deep models {hθ}. Here, the randomness in calculating the bias and
variance comes from θ, which depends on the randomness in parameter initialization, batching and
sampling of the training data (Neal et al., 2018; Yang et al., 2020).

Our key empirical observations can be summarized with the following two statements which we call
the Bias-Variance Alignment and the Upper Bounded Variance. As we explain in the remainder of
the paper, and as summarized in Table 1, these observations encapsulate our empirical observations,
and also capture the special cases we prove from the calibration and the neural collapse assumptions.

Bias-Variance Alignment. First, we find that for correctly classified points (x, y) ∈ {(xi, yi)}i∈[n]:

log Varihθ,(xi,yi) ≈ log Bias2
hθ,(xi,yi)

+Ehθ , (Ehθ is a constant independent of i)

or log Varihθ,(xi,yi) = log Bias2
hθ,(xi,yi)

+Ehθ + εi , (εi is noise s.t. Ei∼Unif([n])[εi] = 0)
(1)

where εi is random noise with mean vanishing across the dataset (i.e., Ei∼Unif([n])[εi] = 0). Specif-
ically, our quantitative results show that (1) a simple linear regression of log Varihθ,(xi,yi) on
log Bias2

hθ,(xi,yi)
yields a remarkably high coefficient of determination R2; (2) the residuals of

the simple linear regression exhibit an approximate normal distribution (we provide evidence for (1)
and (2) in Section 3.1).

Type Assumptions Finding (logarithmic scale) Finding (linear scale) Ref. Note

Empirical
Large model size log Varihθ,(xi,yi)

≈ log Bias2
hθ,(xi,yi)

+Ehθ

Varihθ,(xi,yi)

= Chθ Bias2
hθ,(xi,yi)

+ ξi
Sec. 3

+ Correctly classified data
Theoretical Perfect calibration Bias2

hθ,(xi,yi)
≈ Varihθ,(xi,yi) Sec. 4 a

Theoretical
Neural collapse log Bias2hθ,(xi,yi)

(k)

log Varihθ,(xi,yi)(k) ∈ (1.114, 4)
Bias2hθ,(xi,yi)
Varihθ,(xi,yi)

∈
(

(2s−1)2

exp(2s) , 3
)

Sec. 5 b
+ Binary classification

a The result Bias2
hθ,(x,y) ≈ Varihθ,(x,y) corresponds to C = 1 in our main empirical observation on the linear scale presented in

Eq. (2) and we bound ξi = Varihθ,(x,y)−Bias2
hθ,(x,y) by the calibration error in Section 4.

b Here, k ∈ {1, 2} is class index and s is (roughly speaking) the `2 norm of the prelogit of hθ(x) (i.e., before softmax).

Table 1: A summary of our findings on the bias-variance alignment.

In linear scale, we can represent Equation (1) as

Varihθ,(xi,yi) = Chθ Bias2
hθ,(xi,yi)

+ξi , (Chθ = eEhθEi∼Unif([n])[e
εi ] > 0 is a constant)

ξi = O(Bias2
hθ,(xi,yi)

)ηi , (ηi is noise s.t. Ei∼Unif([n])[ηi] = 0)
(2)

A formal statement of the above formulations can be found in Proposition E.1 in Appendix E.4. Note
that because the noise term ξi scales with squared bias, Equation (2) predicts that the sample-wise
bias-variance in linear scale has a cone-shaped distribution (i.e., as bias increases, an increasingly
wider range of variance is covered by examples). We discuss this in more detail in Appendix E.4.

Upper Bounded Variance. Second, we find that the following relation approximately holds for all
examples (i.e., for both correctly and incorrectly classified examples):

Bias2
hθ,(x,y) ≥ Chθ ·Varihθ,(x,y), ∀(x, y) ∈ {(xi, yi)}i∈[n] , (3)

where Chθ is the same constant as in Equation (2). In Figure 1, we illustrate these findings on
an illustrative example. Observe that for correctly classified sample points, the bias and variance
align closely along the line of Bias2

hθ,(x,y) = Varihθ,(x,y), i.e., the equality in (1) holds. We refer
to this phenomenon as the bias-variance alignment. For incorrectly classified samples, we observe
Bias2

hθ,(x,y) > Varihθ,(x,y), hence the inequality in (3) approximately holds for all examples. It is
worth noting that Eq. (3) provides an explanation for why deep models have limited variance, and in

2



Published as a conference paper at ICLR 2024

effect, good generalization, i.e., the variance of a model is always bounded from above by the squared
bias at every sample.

The paper provides both empirical and theoretical analyses of the bias-variance alignment phe-
nomenon. We organize the paper as follows. We begin with empirical investigations, in which we
observe the bias-variance alignment across architectures and datasets (Section 3). We then move
on to theoretical explanations of these phenomena. We start from a statistical perspective, where
we connect calibration and the bias-variance alignment (Section 4). In the process, we generalize
the theory from previous works on calibration implying the generalization-disagreement equality
(Jiang et al., 2022; Kirsch & Gal, 2022) (Section 4.1). Next, we show how starting from a separate
perspective of neural collapse (Papyan et al., 2020) can lead to the bias-variance approximate equality
result (Section 5). We conclude with the discussion of wider implications of our findings (Section 6).

Our main contributions are: (1) We conduct experiments to show that the bias-variance alignment
holds for a variety of model architectures and on different datasets. (2) We provide evidence that the
phenomenon does not occur if the model is small. This suggests that the bias-variance alignment is
specific to large neural networks and provides more evidence that there could be a sharp difference
between small and large models. (3) Theoretically, we prove the bias-variance alignment under the
assumption that the model is well-calibrated (i.e., the output of the softmax layer aligns with the
true conditional probability of each class given the data). As a side product, we provide a unified
definition for a variety of definitions of calibration introduced in previous works. (4) We show that
the neural collapse theory predicts the approximate bias-variance alignment.

2 BACKGROUND AND RELATED WORK

2.1 BACKGROUND ON BIAS-VARIANCE DECOMPOSITION

Consider the task of learning a multi-class classification model hθ : X → M([K]) ⊆ RK , where
X is the input domain,M([K]) is the set of distributions on [K], and K is the number of classes.
Let {hθ : X → M([K])} be an ensemble of trained models, where θ is a random variable taking
values from Θ1. For any input x ∈ X , we use hθ(· | x) to represent the corresponding distribution.
That is, hθ(· | x) , (hθ(1 | x), . . . , hθ(K | x)) is the vector of predictive probabilities from model
hθ. Given any sample (X,Y ) ∈ X × [K], the bias and variance of {hθ} with respect to the mean
squared error (MSE) loss are defined as follows.
Definition 2.1 (Bias and Variance). Let h(· | x) , Eθhθ(· | x) be the mean function of {hθ}. The
bias, variance, and bias-variance gap of the i-th entry on (X,Y ), for each i ∈ [K], are defined as

Biashθ,(X,Y )(i) = βhθ,(X,Y )(i) , |h(i | X)− 1{Y = i}| , (4)

Varihθ,(X,Y )(i) = ς2hθ,(X,Y )(i) , Eθ (hθ(i | X)− h(i | X))
2
, (5)

BVGhθ,(X,Y )(i) , Bias2
hθ,(X,Y )(i)−Varihθ,(X,Y )(i) . (6)

Throughout this paper, we use Biashθ,(X,Y )(i) and βhθ,(X,Y )(i) interchangeably as synonyms, and
we call ςhθ,(X,Y )(i) the standard deviation of the i-th entry. Moreover, the total bias, variance, and
bias-variance gap are defined as

Biashθ,(X,Y ) ,
√∑
i∈[K]

Bias2
hθ,(X,Y )(i) = ‖h(· | X)− eY ‖2 , (7)

Varihθ,(X,Y ) ,
∑
i∈[K]

Varihθ,(X,Y )(i) = Eθ ‖hθ(· | X)− h(· | X)‖22 , (8)

BVGhθ,(X,Y ) , Bias2
hθ,(X,Y )−Varihθ,(X,Y ) . (9)

where ei ∈ RK is a vector whose i-th entry is 1 and all other entries are 0.

It is well-known that bias and variance provide a decomposition of the expected risk with respect to
the MSE loss (Hastie et al., 2009, equation (2.25)). That is,

Riskhθ,(X,Y ) , Eθ‖hθ(· | X)− eY ‖22 = Bias2
hθ,(X,Y ) + Varihθ,(X,Y ) . (10)

1In all of our empirical results, the randomness comes from weight initialization and bootstrapping of training
set, following Neal et al. (2018). The effect of different sources of randomness is studied in Appendix E.6.
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Premise Finding Pointwise vs. Empirical vs. References
In aggregate? Theoretical?

Calibration Generalization error = Disagreement In aggregate Both (Jiang et al., 2022; Kirsch & Gal, 2022)
Generalization Calibration In aggregate Empirical (Carrell et al., 2022)
Multi-domain calibration Out-of-domain generalization In aggregate Empirical (Wald et al., 2021)

Calibration Bias2 ≈ Variance Pointwise Both This work
Neural collapse Bias2 ≈ Variance Pointwise Both This work

Table 2: Summary of findings about calibration, generalization and disagreements.

We focus on models trained using the cross-entropy (CE) loss throughout the paper. However, we
analyze the bias and variance of these models using a decomposition of the mean squared error (MSE)
loss. We present results for bias and variance from decomposing CE loss in Section E.2.

We now introduce several notations that will be used throughout the paper.

Definition 2.2. The prediction, confidence, and accuracy of h on x are defined by

predh(x) = arg max
j∈[K]

h(j | x) , confh(x) = h(predh(x) | x) , acch(x) = PY |X(predh(x) | x) .

The uncertainty of the ensemble {hθ} on x is Uncehθ (x) = 1− Eθ‖hθ(· | x)‖22.

2.2 RELATED WORK

Bias-variance decomposition in deep learning. In the classical statistical learning theory of bias-
variance tradeoff, increasing the model capacity beyond a certain point leads to overfitting (Geman
et al., 1992). However, deep neural networks in practice usually contain a large number of parameters
but still generalize well. Towards bridging the gap between theory and practice, one of the most
famous work is Belkin et al. (2019) which reveals a “double-descent” curve to subsume the U-shaped
tradeoff curve. This surprising observation motivates the work of Neal et al. (2018) to measure the bias
and variance in popular deep models, leading to a discovery of a “unimodal variance” phenomenon
(Yang et al., 2020). Subsequent work includes Adlam & Pennington (2020); Lin & Dobriban (2021)
that study variance under fine-grained decompositions, and Rocks & Mehta (2022a;b) that analyze
variance under simplified regression or random feature models.

Calibration. Calibration is a fundamental quantity in machine learning which informally speaking
measures the degree to which the output distribution from a model agrees with the Bayes probability
of the labels over the data (Guo et al., 2017). Previous works proposed a theory on calibration
implying the generalization-disagreement equality (Jiang et al., 2022; Kirsch & Gal, 2022). In Table 2
we summarize several related results connecting calibration with other fundamental concepts from
previous works. Our work can be viewed as extending these works as we connect calibration and the
bias-variance alignment.

Neural collapse. Towards understanding last layer features learned in deep network based classifica-
tion models, the work of Papyan et al. (2020) reveals the neural collapse phenomenon that offers
a clear mathematical characterization: Within-class features collapse to their corresponding class
means, and between-class separation of the class means is maximized. This observation motivates a
sequence of theoretical work on justifying its occurrence (Fang et al., 2021; Zhu et al., 2021; Tirer &
Bruna, 2022; Poggio & Liao, 2020; Thrampoulidis et al., 2022), and practical work on leveraging the
insights to improve model performance (Liang & Davis, 2023; Yang et al., 2023; Li et al., 2022).

3 EMPIRICAL ANALYSIS OF BIAS-VARIANCE ALIGNMENT

We begin by providing a quantitative measure in Section 3.1 on the alignment of bias and variance
illustrated in Figure 1b. Then, we provide empirical evidence in Section 3.2 that the bias-variance
alignment phenomenon occurs more prevalently for networks beyond ResNets, and for datasets other
than ImageNet. Finally, in Section 3.3 we study the effect of network size, showing that bias-variance
alignment is a phenomenon for over-parameterized models.
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3.1 QUANTITATIVE REGRESSION ANALYSIS OF BIAS-VARIANCE ALIGNMENT

Model name R2 Slope

ResNet-8 (CIFAR-10) 0.979 0.882
ResNet-56 (CIFAR-10) 0.996 0.964
ResNet-110 (CIFAR-100) 0.986 0.901
ResNet-50 (ImageNet) 0.977 0.897

Table 3: Coefficient of determi-
nation (R2) and slope for linear
regression of log Varihθ,(xi,yi)
on log Biashθ,(xi,yi).
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Figure 2: The Q-Q plots of the residuals of linear regression of
log Varihθ,(xi,yi) on log Biashθ,(xi,yi) of the four models.

We start by conducting a quantitative regression analysis of bias and variance on the logarithmic
scale for verifying the bias-variance alignment phenomenon in Eq. (1). First, in Table 3, we present
the coefficient of determination R2 and the slope of the linear regression of log Varihθ,(xi,yi) on
log Biashθ,(xi,yi) for the following models and datasets: ResNet-56 (on CIFAR-10), ResNet-8 (on
CIFAR-10), ResNet-50 (on ImageNet), and ResNet-110 (on CIFAR-100). Notice how the coefficient
of determination for all four settings is extremely close to 1 (at least 0.977) and the slope is also very
close to 1, demonstrating a very strong linear alignment of the two quantities. We next analyze the
normality of the residuals of the logarithmic linear regression. The Q-Q plots are shown in Figure 2.
We observe that the residuals of the linear regression on the four models are all approximately normal,
especially for the data points whose sample quantile is between −1.5 and 1.5.

3.2 PREVALENCE OF BIAS-VARIANCE ALIGNMENT ACROSS ARCHITECTURES AND DATASETS

In Figure 1b, we showed that the bias-variance alignment occurs for ResNet-50 trained on ImageNet.
Here, we provide additional evidence in Figure 3 that the bias-variance alignment occurs for other
model architectures and datasets.

In particular, Figure 3a and Figure 3b show the sample-wise bias-variance of EfficientNet-B0 (Tan &
Le, 2019) and MobileNet-V2 (Sandler et al., 2018), respectively, trained on the ImageNet dataset.
Figure 3c and Figure 3d show the sample-wise bias-variance of ResNet-110 trained on CIFAR-10
and CIFAR-100, respectively. In all cases, we observe a similar pattern, demonstrating the prevalence
of the bias-variance alignment with respect to network architectures and choice of dataset. Finally, in
Figure 12 we confirm the observation on the NLP benchmark, where we finetune BERT models on
TREC the dataset.

(a) ImageNet (b) ImageNet (c) CIFAR-10 (d) CIFAR-100

Figure 3: Sample-wise bias and variance for (a, b): Varying model architectures trained on the
ImageNet dataset, and (c, d): Two additional datasets, namely CIFAR-10 and CIFAR-100. For
ImageNet, CIFAR-10 and CIFAR-100, bias and variance are estimated from 10, 100 and 100
independently trained models, respectively.

3.3 ROLE OF OVER-PARAMETERIZATION

We investigate the impact of model size on the bias-variance alignment phenomenon, demonstrating
that it only occurs for large and over-parameterized models.

To vary the size of the model, we consider ResNets with depths of 8, 20, 56, and 110, which we
denote as ResNet-{8, 20, 56, 110}. To obtain even smaller models, we reduce the width of ResNet-8
from 16 to 8, 4, 2, and 1. Here, the width refers to the number of filters in the convolutional layers of
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ResNet-8. Specifically, the convolutional layers of ResNet-8 can be divided into three stages with 16,
32, and 64 filters, respectively. Therefore, ResNet-8 with width k, denoted as ResNet-8-W[k], refers
to a ResNet-8 with k, 2k, and 4k filters in the three stages, respectively.

Due to space limit, we choose three models, namely ResNet-8-W1, ResNet-8-W16, and ResNet-110-
W16 from the eight model sizes discussed above, and present their sample-wise bias and variance
evaluated on CIFAR-10 in Figures 4a to 4c. These three models represent a small, medium, and large
size model, respectively. Results for all the other model sizes are provided in Figure 5 (see Appendix).
We can see that bias-variance alignment becomes increasingly pronounced with larger models.

(a) ResNet-8-W1 (b) ResNet-8-W16 (c) ResNet-110-W16 (d) Varying model size

Figure 4: Figures 4a to 4c: Sample-wise bias and variance for networks of varying scale trained
on CIFAR-10. Here, ResNet-[p]-W[q] refers to ResNet with p layers and width q. The model size
monotonically increases from the leftmost figure to the rightmost figure. For all cases, the bias and
variance are estimated from 50 independently trained models. Figure 4d: Averaged bias and variance
over all test samples under varying model sizes.

The results in Figure 4 suggest that the emergence of bias-variance alignment is associated with
over-parameterization, which refers to large capacity deep models that can perfectly fit any training
data. Classical theory suggests that bias and variance exhibit a trade-off relation, where larger model
size reduces bias and increases variance. However, Yang et al. (2020) shows that this trade-off holds
only in the regime where the model size is relatively small. For over-parameterized models, the
variance does not continue to grow; rather, it exhibits a unimodal shape. To examine bias-variance
alignment in association with the unimodal variance phenomenon of Yang et al. (2020), we compute
the averaged bias and variance over all test samples for results reported in Figures 4a to 4c (and also
results of five additional models reported in Figure 5), and plot them as a function of model size in
Figure 4d. The result in Figure 4d aligns with the observation in Yang et al. (2020), namely, bias
is monotonically decreasing and variance curves is unimodal. Moreover, the model that exhibits
strong bias-variance alignment in Figure 4, namely ResNet-56-W16, clearly is outside of the classical
regime of bias-variance tradeoff shown in Figure 4d. Meanwhile, model in the classical trade-off
regime, e.g. ResNet-8-W1, does not have bias-variance alignment.

4 CALIBRATION IMPLIES BIAS-VARIANCE ALIGNMENT

In this section we show how model calibration can imply bias-variance alignment. We start from
unifying the different calibration views from previous work, and then show how each of these
assumptions implies a different version of the bias-variance correlation.

4.1 A UNIFIED VIEW OF CALIBRATION

In previous work, various definitions of calibration have been introduced. In the following, we
present a general definition that encompasses a wide range of these definitions. Suppose that there
is a collection of sub-σ-algebras {Σi}i∈[K] of σ(X), where σ(X) is the σ-algebra generated by the
random variable X . 2 In this section, we refer to the σ-algebra generated by a random variable or
event using the notation σ(·).

2In Definition 4.1, the σ-algebras Σi must be sub-σ-algebras of σ(X). This is because we want the random
variables and events we are conditioning on to be functions of X . Thus, the conditional expectation in the
definition of calibration averages over all data examples that have the same value of a function of X .
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ECE
{Σi}i∈[K]

P CWCE
{Σi}i∈[K]

P
Σsamp
i (Kirsch & Gal, 2022, Expectation of Eq. (6)) This work (Definition 4.2)

Σpre
i (Guo et al., 2017, Eq. (2)) (see our Appendix F.2) (Kirsch & Gal, 2022, Eq. (36))

Σbin
i (Guo et al., 2017, Eq. (3)) (Naeini et al., 2015) (Nixon et al., 2019) (see our Appendix F.3) This work (Definition 4.2)

Table 4: Summary of the various definitions of ECE
{Σi}i∈[K]

P and CWCE
{Σi}i∈[K]

P that have been
proposed in previous work. Our unified definition subsumes these previous definitions.

Definition 4.1 (Perfect (confidence) calibration). A function h : X →M([K]) has perfect calibra-
tion with respect to {Σi}i∈[K] if the following equation holds for all i ∈ [K]:

E[∆(i | X) | Σi] = 0 , ∆(i | x) , h(i | x)− PY |X(i | x) . (11)
The function has perfect confidence calibration if the following equation holds:

E[∆(predh(X) | X) | Σpredh(X)] = E[(confh(X)− acch(X)) | Σpredh(X)] = 0 . (12)

The sub-σ-algebras {Σi}i∈[K] control the granularity of perfect calibration. In other words, (11) in
Definition 4.1 says that ∆(i | X) vanishes on average, and {Σi}i∈[K] specifies the set of samples
that we average over. Here are examples of ways of choosing {Σi}i∈[K]:

• Sample-wise perfect calibration Σsamp
i = σ(X). In this case, Definition 4.1 is equivalent

to h(i | X) = PY |X(i | X) for every i ∈ [K]. In other words, perfect calibration holds for
every sample X .
• Pre-image perfect calibration Σpre

i = σ(h(i | X)). This may be the most widely used
definition of calibration (Guo et al., 2017; Kirsch & Gal, 2022) and characterizes the
calibration averaged over all samples that share a common prediction h(· | X).
• Bin-wise perfect confidence calibration Σbin

i = σ (1 {dMh(i | X)e}) whereM is a positive
integer (Guo et al., 2017). The map x 7→ dMh(i | x)e assigns x to M bins (if h(i | x) > 0
for all x): (0, 1

M ], ( 1
M , 2

M ], . . . , (M−1
M , 1] according to the value of h(i | x). Then the

samples that fall into the same bin are averaged over.
Definition 4.2 (Calibration Errors). If we define ∆(i | x) as in (11), the expected calibration
error (ECE

{Σi}i∈[K]

P ) and the class-wise calibration error (CWCE
{Σi}i∈[K]

P ) of a function h : X →
M([K]) with respect to {Σi}i∈[K] on the data distribution P ∈M(X × Y) are given by

ECE
{Σi}i∈[K]

P (h) , E
∣∣E[∆(predh(X) | X) | Σpredh(X)]

∣∣ ,
CWCE

{Σi}i∈[K]

P (h) ,
∑
i∈[K]

E |E[∆(i | X) | Σi]| .

We elucidate how our unified definition subsumes the various definitions in previous work, and we
summarize it in Table 4. In Appendix F.2 and Appendix F.3, we show concretely what ECE

{Σi}i∈[K]

P
looks like with respect to Σpre

i and Σbin
i , respectively.

4.2 CALIBRATION MEETS THE BIAS-VARIANCE DECOMPOSITION

In this subsection we then show that, under the model calibration assumption, there is a correlation
between squared bias and variance. Moreover, in the case of imperfect model calibration, the
discrepancy between the squared bias and variance can be bounded by the calibration error.

Recall the definitions of bias and variance in Section 2.1. Theorem 4.3 characterizes the discrepancy
between the squared bias and variance, and provides an upper bound for it by the class calibration
error. Corollary 4.4, which follows the theorem, shows that in the case of perfect calibration, the
variance is upper bounded by the squared bias. Moreover, if the model outputs a completely certain
prediction (outputs a one-hot vector), it is theoretically guaranteed that the squared bias equals
variance, i.e., the bias-variance correlation appears. If the model does not output a completely certain
prediction but a highly certain prediction, an approximate bias-variance correlation follows.
Theorem 4.3. If {hθ} is an ensemble whose mean function h(i | X) is Σi-measurable, then we have

EY |X
[
BVGhθ,(X,Y )(i)

]
= 2h(i | X)∆(i | X) + PY |X(i | X)− Eθhθ(i | X)2 ,

E
∣∣E [EY |X [BVGhθ,(X,Y )(i)]− PY |X(i | X) + Eθhθ(i | X)2 | Σi

]∣∣ ≤ 2 CCE
{Σi}i∈[K]

P (i) ,
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Width factor LHS of (13) RHS of (13) CWCE
{Σbin

i }
P

1/2 0.64 0.90 0.45
1/4 0.63 0.74 0.37
1/8 0.66 0.70 0.35
1/16 0.76 0.90 0.45

Table 5: Empirical summary of values for

CWCE
{Σbin

i }
P and the bias and variance, both

calculated w.r.t. Σbin
i (where we use 20

equally spaced bins) from ResNet-8 models
on CIFAR-10 across varying width.

where CCE
{Σi}i∈[K]

P (i) , E |E[∆(i | X) | Σi]| is the class calibration error for class i. If Σ =⋂
i∈[K] σ(Σi), for total squared bias and variance, the following equations holds

E
[
EY |X [BVGhθ,(X,Y )] | Σ

]
= E [Uncehθ (X) | Σ] + 2

∑
i∈[K]

E [E[∆(i | X) | Σi]h(i | X) | Σ] ,

∣∣E [EY |X [BVGhθ,(X,Y )]−Uncehθ (X) | Σ
]∣∣ ≤ 2 CWCE

{Σi}i∈[K]

P (13)

We observe that, without any additional assumptions, h(i|X) is automatically Σsamp
i - and Σpre

i -
measurable. If one chooses Σsamp

i = σ(X), then E[EY |X [·] | Σ] = EY |X [·]. In this case, Theo-
rem 4.3 holds for every example x ∈ X .
Corollary 4.4. If h has perfect calibration with respect to {Σi}i∈[K], then E[∆(i | X) | Σi] = 0
and therefore we have

E
[
EY |X [BVGhθ,(X,Y )(i)] | Σi

]
= E

[
PY |X(i | X)− Eθhθ(i | X)2 | Σi

]
= E

[
h(i | X)− Eθhθ(i | X)2 | Σi

]
= E [Eθ [hθ(i | X)(1− hθ(i | X))] | Σi] , (14)

E
[
EY |X [BVGhθ,(X,Y )] | Σ

]
= E [Uncehθ (X) | Σ] ≥ 0 . (15)

Moreover, if hθ outputs a one-hot vector, we have ‖hθ(· | X)‖22 = 1 and therefore
E
[
EY |X [BVGhθ,(X,Y )] | Σ

]
= 0. In other words, in expectation E[EY |X [·] | Σ], the squared

bias equals variance.

Corollary 4.4 shows that if h has perfect calibration, then in expectation E[EY |X [·] | Σ], the variance
is upper bounded by the bias and the gap between them is Uncehθ (X). If hθ(· | X) is highly
confident (i.e., maxi∈[K] hθ(· | X) ≈ 1), then Bias2

hθ,(X,Y ) ≈ Varihθ,(X,Y ). The extreme case is
that hθ outputs a one-hot vector.
Corollary 4.5. If h has perfect calibration with respect to {Σi}i∈[K] and hθ(i | X)→ a for every θ
(a is either 0 or 1), then E

[
EY |X

[
βhθ,(X,Y )(i)− ςhθ,(X,Y )(i)

]
| Σi

]
→ 0 .

Corollary 4.5 shows that when hθ(i | X) is highly confident (hθ(i | X) → a ∈ {0, 1}), then
βhθ,(X,Y )(i) − ςhθ,(X,Y )(i) → 0 in the mean E

[
EY |X [·] | Σi

]
, which is entrywise bias-variance

correlation. Moreover, since
E
[
EY |X

[
βhθ,(X,Y )(i)− ςhθ,(X,Y )(i)

]
| Σi

]
= E[EY |X [1{Y = i}(1− h(i | X)− ςhθ,(X,Y )(i)) + 1{Y 6= i}(h(i | X)− ςhθ,(X,Y )(i))] | Σi] ,

if PY |X(Y = i | Σi) ≈ 1, we have h(i | X) ≈ 1− ςhθ,(X,Y )(i); and if PY |X(Y = i | Σi) ≈ 0, we
have h(i | X) ≈ ςhθ,(X,Y )(i).

Experiments confirm our theory. We now present empirical results that support our theory. We em-
pirically verify the inequality (13) across models of varying widths when using Σbin

i (where we use 20
equally spaced bins) for the definitions of calibration, uncertainty, bias and variance. Note that calibra-
tion requires estimating the true probability distribution, and so direct computation for Σpred

i or Σsamp
i

is infeasible. In Table 5 we empirically verify the relationship between bias, variance, and uncertainty
when using Σbin

i . The left-hand side of (13), which is
∣∣E [EY |X [BVGhθ,(X,Y )]−Uncehθ (X) | Σ

]∣∣,
is computed from the bias and variance values. The right-hand side of (13) is 2 CWCE

{Σbin
i }i∈[K]

P .
We see that across architectures, Equation (13) of Theorem 4.3 holds.

5 NEURAL COLLAPSE IMPLIES APPROXIMATE BIAS-VARIANCE ALIGNMENT

Neural collapse (Papyan et al., 2020) is a phenomenon pertaining the last layer features and classifier
weights of a trained deep classification model. This section considers a statistical modeling of the

8
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prediction of the network ensemble {hθ} on an arbitrary test data (X,Y ) that is motivated from
neural collapse, upon which we derive a bound on the ratio between Bias2

hθ,(X,Y ) and Varihθ,(X,Y ).

Modeling assumption motivated by neural collapse. We assume that each model hθ in the en-
semble can be written as hθ(· | x) = softmax(Wψτ (x)), where θ = (τ,W ) denotes trainable
parameters. In the above, we refer to ψτ (x) ∈ Rd as the feature vector, and W as the classifier
weight. The neural collapse phenomenon states that during training, W converges to a rotated and
scaled version of the simplex equiangular tight frame (ETF) matrix WETF. That is,

W ∝WETFR> , where WETF =
(
wETF

1 , . . . , wETF
K

)
,

√
K

K − 1

(
IK −

1

K
1K1>K

)
, (16)

and R ∈ Rd×K is an orthogonal matrix (i.e., R>R = IK). In above, IK ∈ RK×K is an identity
matrix, and 1K ∈ RK is a column vector with all entries being 1. We summarize the properties of
WETF in Appendix G.1. Moreover, for any training data (xtrain, ytrain), neural collapse predicts
that the feature ψτ (xtrain) is aligned with its classifier weight, i.e., ψτ (xtrain) = sRwETF

ytrain for some
s > 0 independent of (xtrain, ytrain).

For a test sample (X,Y ), neural collapse does not predict the distribution of its feature ψτ (X).
However, it is reasonable to assume that it slightly deviates from the training feature of class Y . This
motivates us to assume that ψτ (X) = R

(
swETF

Y + v
)
, where v is the noise vector, which leads to

hθ(· | X) = softmax(WETF(swETF
Y + v)). Hence, the prediction of the network ensemble {hθ}

may be modeled as follows.
Assumption 5.1. We assume {hθ(· | X)} = {softmax

(
WETF(swETF

Y + v)
)
} for any test sample

(X,Y ), where v has i.i.d. entries drawn according to −β
√

K
K−1vi ∼ Gumbel(µ, β).

Appendix G.2 shows that the assumption on v aligns with the observation in practical networks.

Bias-variance analysis. Theorem 5.2 computes the entrywise bias and standard deviation under
Assumption 5.1, for entries corresponding to the true class.

Theorem 5.2. Consider the model ensemble in Assumption 5.1. Let K ′ = K − 1, c = esK/K
′

K′ and

φK′(c) ,
cK
′−1(c− 1

K′ )
−K′

(cK′−K′ log(cK′)−1)

cK′−1 +
(c− 1

K′ )
−K′−1

K′

∑K′−1
j=1

(K′−j)(c−1/K′)jc−j+K
′−1

j .

Then we have βhθ,(X,Y )(Y ) = |cφK′(c)− 1| and ςhθ,(X,Y )(Y ) = c

√
−
(
dφK′ (c)
dc + φK′(c)2

)
,

where βhθ,(X,Y )(·) and ςhθ,(X,Y )(·) are defined in (4) of Definition 2.1.

Due to technical difficulties, Theorem 5.2 does not provide bias and variance for entries other than
those corresponding to the true class. However, under the special case of binary classification, we are
able to provide bias and variance for all entries as follows.

Corollary 5.3. If K = 2, then for i ∈ {1, 2} we have βhθ,(X,Y )(i) = |log(c)c−c+1|
(c−1)2 , ςhθ,(X,Y )(i) =

√
c((c−1)2−c log2(c))

(c−1)2 , where c = e2s. Furthermore, we have: (1) on the linear scale,
βhθ,(X,Y )(i)

ςhθ,(X,Y )(i)
is

a decreasing function of s and 1.74 >
βhθ,(X,Y )(i)

ςhθ,(X,Y )(i)
≥ 2s−1

es , or equivalently,1.742 >
Bias2hθ,(X,Y )

Varihθ,(X,Y )
≥

(2s−1)2

e2s ; (2) on the logarithmic scale,
log Biashθ,(X,Y )(i)

log Varihθ,(X,Y )(i)
∈ (0.557, 2).

Corollary 5.3 illustrates the entrywise bias and standard deviation for binary classification. We prove
the approximate correlation between the entrywise bias and standard deviation by providing an upper
and lower bound for the ratio of the entrywise bias to the standard deviation.

6 CONCLUSION

We show that bias and variance align at a sample level for ensembles of deep learning models,
suggesting a more nuanced bias-variance relation in deep learning. We study this phenomenon
from two theoretical perspectives, calibration and neural collapse, and provide new insights into the
bias-variance alignment.

9



Published as a conference paper at ICLR 2024

7 ACKNOWLEDGEMENTS

We would like to acknowledge helpful comments from Aditya Krishna Menon (Google Research)
and Christina Baek (Carnegie Mellon University).

REFERENCES

Taiga Abe, E Kelly Buchanan, Geoff Pleiss, and John P Cunningham. Pathologies of predictive
diversity in deep ensembles. arXiv preprint arXiv:2302.00704, 2023.

Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-grained bias-
variance decomposition. Advances in neural information processing systems, 33:11022–11032,
2020.

Alexander Atanasov, Blake Bordelon, Sabarish Sainathan, and Cengiz Pehlevan. The onset
of variance-limited behavior for networks in the lazy and rich regimes. arXiv preprint
arXiv:2212.12147, 2022.

Christina Baek, Yiding Jiang, Aditi Raghunathan, and Zico Kolter. Agreement-on-the-line: Predicting
the performance of neural networks under distribution shift, 2023.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Gavin Brown, Jeremy L Wyatt, Peter Tino, and Yoshua Bengio. Managing diversity in regression
ensembles. Journal of machine learning research, 6(9), 2005.

A. Michael Carrell, Neil Mallinar, James Lucas, and Preetum Nakkiran. The calibration generalization
gap, 2022. URL https://arxiv.org/abs/2210.01964.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-peeled
model: Minority collapse in imbalanced training. Proceedings of the National Academy of Sciences,
118(43):e2103091118, 2021.
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A SOCIETAL IMPACT STATEMENT

This paper aims to expose a peculiar bias-variance alignment phenomenon and characterize it both
theoretically and empirically. We do not foresee any negative societal consequences from this work.

B LIMITATIONS

We identify the following limitations of our work:

• We only considered the squared loss and cross entropy loss functions. It would be interesting
to extend our results to other loss functions, such as the 0/1 loss.
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• Our theory is based on the binary classification assumption. We plan to extend it to multi-
class classification in future work.
• It would be interesting to study the bias-variance alignment theoretically in an end-to-end

manner, using tools such as the neural tangent kernel theory or a mean-field analysis.
• We conducted our experiments in the image classification domain. It would be interesting to

verify our findings in other domains, such as natural language processing (NLP).

We believe that these limitations do not detract from the overall significance of our work. Our findings
provide new insights into the bias-variance alignment phenomenon, and we hope that this paper will
stimulate further research on this important topic.

C FURTHER RELATED WORK.

It was shown that statistics such as accuracy (Miller et al., 2021) and disagreement (Baek et al., 2023)
are highly correlated when contrasted across in-distribution and out-distribution data. This points at a
potential extension to our work to consider how our findings translate to the out of domain data.

Gupta et al. (2022) investigate the theoretical underpinnings of ensemble methods for classification
tasks, extending the bias-variance decomposition to derive generalized laws of total expectation and
variance for nonsymmetric losses. Their work sheds light on the mechanisms by which ensembles
reduce variance and potentially bias, providing valuable insights for improving the performance
of ensemble classifiers. Ortega et al. (2022) provide a comprehensive theoretical framework for
understanding the relationship between diversity and generalization error in neural network ensembles.
They analyze the impact of diversity on ensemble performance for various loss functions and
model combination strategies, offering valuable insights for designing effective ensemble learning
algorithms. Brown et al. (2005) focus on managing diversity in regression ensembles. They introduce
a control mechanism through the error function, demonstrating its effectiveness in improving ensemble
performance over traditional methods. This work provides insights into systematic control of the
bias-variance-covariance trade-off in regression ensembles. Abe et al. (2023) challenge conventional
wisdom on predictive diversity in deep neural network ensembles. While diversity benefits small
models, the authors find that encouraging diversity harms high-capacity deep ensembles used for
classification. Their experiments show that diversity-encouraging regularizers hinder performance,
suggesting that the best strategy for deep ensembles may involve using more accurate but less
diverse component models. In contrast to traditional ensemble methods, deep ensembles of neural
networks offer the potential for direct optimization of overall performance. However, Jeffares et al.
(2023) reveal that jointly minimizing ensemble loss induces base learners to collude, inflating artificial
diversity. This pseudo-diversity fails to generalize, highlighting limitations in direct joint optimization
and its impact on generalization gaps.

D PRACTICAL APPLICATIONS.

We believe that our findings on the bias-variance alignment can be used to develop new methods
for validating deep learning models and selecting generalizable models in practice. One practical
application is estimating the test error of a deep learning model using variance. This is possible
because our finding is that bias and variance are aligned, and so we can estimate bias from variance.
This means that even when the true labels of the test data are unavailable, we can still get a good
estimate of the test error by measuring variance over multiple models on the test data. Compared to
Jiang et al. (2022) which analyzed the alignment between disagreement and test error across the entire
dataset, our method is a per-example approach and thus enables example-level validation of deep
learning models. This is a novel way of validating deep learning models and selecting generalizable
models in practice even when the true labels of the test data are unavailable. Additionally, our
method is simple to implement, so it could be easily adopted by practitioners. Moreover, inspired by
our result, one could consider practical algorithms leveraging the observation of bias and variance
alignment. As one example, one can consider routing between ensembles of models. Given two
ensembles of models, one could dynamically route between such two ensembles, depending which
one yields lower variance. Given the above possible applications, we believe that our work has the
potential to make a significant contribution to the field of deep learning.
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E MORE EMPIRICAL ANALYSIS OF BIAS-VARIANCE ALIGNMENT

E.1 ADDITIONAL RESULTS ON ROLE OF OVER-PARAMETERIZATION

In Section 3.3 we showed that the bias-variance alignment phenomenon becomes more pronounced
for over-parameterized models, by plotting sample-wise bias-variance for three models of varying
sizes in Figure 4. Here we present results on five additional models of varying size Figure 5 that
complement the results in Figure 4.

Figure 5: Sample-wise bias and variance for networks of varying scale trained on CIFAR-10.

E.2 BIAS-VARIANCE DECOMPOSITION OF CROSS-ENTROPY LOSS

Deep neural networks for classification tasks are typically trained with the cross-entropy (CE) loss.
Here, we investigate whether the bias and variance from decomposing the CE loss also exhibit the
alignment phenomenon. The risk with respect to the CE loss can be decomposed as follows (Pfau,
2013):

Eθ〈eY , log(hθ(· | X))〉︸ ︷︷ ︸
Risk

= DKL(eY ‖ h̄(· | X))︸ ︷︷ ︸
Bias2

+EθDKL(h̄(· | X)) ‖ hθ(· | X)))︸ ︷︷ ︸
Variance

, (17)

where DKL denotes the KL divergence. In the above equation, h̄(·|X) is obtained by taking the
expectation of the log-probabilities and then applying a softmax function. In other words,

h̄(i | X)) =
expEθ log(hθ(i | X)))∑
i′ expEθ log(hθ(i′ | X)))

(18)

Intuitively, h̄(·|X) represents the average prediction under the KL divergence, assigning a probability
proportional to expEθ log(hθ(i | X)) to each class i. The bias term measures the KL divergence
between the true distribution eY and the average prediction h̄(·|X), quantifying the deviation of the
ensemble’s mean prediction from the actual class distribution. The variance term, on the other hand,
captures the average KL divergence between the individual predictions in the ensemble and the mean
prediction h̄(·|X), reflecting the overall variability of the ensemble’s predictions.

In Figure 7 we present the sample-wise bias and variance from decomposing the CE loss under the
same setup as that in Figure 1b. In other words, the only difference between Figure 7 and Figure 1b
is that the bias and variance are computed from decomposing the CE and MSE loss, respectively. It
can be seen that the bias no longer aligns well with the variance. In Appendix F.6, we theoretically
explain this phenomenon.

E.3 PERMUTATION TEST FOR THE RESIDUAL AND THE LOG-BIAS

We perform linear regression of log Varihθ,(xi,yi) on log Biashθ,(xi,yi) for the following models
and datasets: ResNet-56 (on CIFAR-10), ResNet-8 (on CIFAR-10), ResNet-50 (on ImageNet), and
ResNet-110 (on CIFAR-100). We would like to test whether the residual is linearly correlated of the
exogenous variable log Biashθ,(xi,yi). To this end, we perform permutation tests with the Pearson’s
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Figure 6: Null distribution, the statistic and the p-value of the permutation test results for the residual
against log Bias2

hθ,(xi,yi)
in linear regression of log Varihθ,(xi,yi) on log Biashθ,(xi,yi).

Figure 7: Sample-wise bias and variance
of the CE loss.

Figure 8: Sample-wise bias and variance
plotted in linear scale (with correctly
classified samples only).

correlation coefficient on the residuals and their corresponding log Biashθ,(xi,yi) values. The null
hypothesis is that the residual and log Biashθ,(xi,yi) are not correlated. We plot the null distribution,
the statistic, and the p-value of the test results on the four models in Figure 6. The results show that
the null hypothesis is not rejected, suggesting that it may be true.

E.4 LINEAR VS LOGARITHMIC SCALE

In Section 1, the bias-variance alignment is presented first in the logarithmic scale (see Eq. (1)) and
subsequently in the linear scale (see Eq. 2). Here, we provide a rigorous analysis on their connections.
In addition, we explain the implication of the bias-variance alignment when plotted in the linear scale,
which is complemented by empirical results.

Connection between bias-variance alignment in linear vs logarithmic scale. First, we provide a
formal statement on the connection between the linear and log scale of the bias-variance alignment.

Proposition E.1. If log Varihθ,(xi,yi) = log Bias2
hθ,(xi,yi)

+Ehθ + εi where εi is independent of
Bias2

hθ,(xi,yi)
and Ei∼Unif([n])[εi] = 0, we have

Varihθ,(xi,yi) = Chθ Bias2
hθ,(xi,yi)

+Dhθ Bias2
hθ,(xi,yi)

ηi ,

where Chθ = eEhθEi∼Unif([n])[e
εi ] > 0, Dhθ = eEhθ > 0, ηi = eεi −E[eεi ] and Ei∼Unif([n])[ηi] =

0.

Proof. We exponentiate both sides of log Varihθ,(xi,yi) = log Bias2
hθ,(xi,yi)

+Ehθ + εi where
Ei∼Unif([n])[εi] = 0 and obtain

Varihθ,(xi,yi) = eEhθ Bias2
hθ,(xi,yi)

eεi = eEhθ Bias2
hθ,(xi,yi)

(ηi + E[eεi ])

= Chθ Bias2
hθ,(xi,yi)

+Dhθ Bias2
hθ,(xi,yi)

ηi ,

where ηi has mean 0 by definition.
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(a) ResNet-8-W1 (b) ResNet-8-W16 (c) ResNet-110-W16

Figure 9: Same as Figure 4(a-c) but plotted in linear scale and with correctly classified samples only.

Sample-wise bias and variance plotted in linear scale. Unlike in the log scale where the noise term
εi (see Eq. (1)) is independent of the bias and variance, in linear scale the noise term ξi is multiplied
by a factor that scales with the squared bias (see Eq. 2). This implies that instead of aligning along a
straight line, sample-wise bias and vairance in linear scale has a cone-shaped distribution. That is, as
bias increases, an increasingly wider range of variance is covered by the samples and such a range
forms a cone. To illustrate this, we regenerate the plot of Figure 1b but with linear (instead of log)
scale in both the x and y axis, and the result is shown in Figure 8 (we also removed the incorrectly
classified data points from the plot). Furthermore, to observe the effect of model size on bias-variance
alignment in linear scale, we regenerate the Figure 4(a-c) with x and y axis switched to linear scale
and present the result in Figure 9.

E.5 CORRELATION TO PREDICTION UNCERTAINTY AND LOGIT NORM

Figure 1b demonstrates that the bias and variance of varying sample points exhibit the alignment
phenomenon for points that are correctly classified. Here, in addition to the correctness of prediction,
we also examine the relation between the alignment phenomenon with the prediction uncertainty and
the logit norm.

(a) Correctness (b) Uncertainty (c) Norm of Logit Vector

Figure 10: Same as Figure 1b, but with each sample colored according to (a): Correctness of model
prediction, (b): Uncertainty of model prediction, and (c): `2 norm of the logit vector.

Figure 10a is the same as the one in Figure 1b for the reader’s reference. In Figure 10b, we show how
the uncertainty in model predictive distribution, i.e., Unceh(x) (see Definition 2.2), correlates with
bias and variance. It can be seen that samples with large variance are those with large uncertainty
scores. We give a formal relation between bias, variance, and uncertainty in Theorem 4.3. Finally,
Figure 10c shows the lack of correlation between bias/variance and the `2 norm of the logit vector.

E.6 EFFECT ON THE SOURCES OF RANDOMNESS

The decomposition of the generalization into the summation of bias and variance requires one to
specify a source of randomness in obtaining a collection of models. In classical bias-variance tradeoff,
this source of randomness is usually taken to be the sampling of the training dataset. Correspondingly,
the numerical estimation of bias and variance can be achieved by sampling a given dataset via
bootstrap (see e.g. Neal et al. (2018)). This is the approach that we adopt in all numerical experiments
in this paper, other than those in this section. On the other hand, modern deep networks often have
other sources of randomness as well, such as the initialization of the model parameters, random
sampling of the batches in the training process.
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In this section, we study whether the emergence of bias-variance alignment is due purely to the
randomness in sampling the training dataset, or other sources of randomness may also give rise to a
similar phenomenon. Towards that, we conduct experiments to train multiple deep neural networks
without data bootstrapping. In such cases, the randomness in the collection of networks comes only
from random initialization and data batching. The result is shown in Figure 11. Comparing it with
Figure 4, where the only difference lies in the bootstrapping of training dataset, it can be seen that the
source of randomness have a very small impact on the bias-variance alignment phenomenon.

(a) ResNet-8-W1 (b) ResNet-8-W16 (c) ResNet-110-W16 (d) Varying model size

Figure 11: Same as Figure 4 but without bootstrapping of training dataset. Hence, the randomness in
computing the bias and variance comes from random initialization and data batching, and there is no
randomness in sampling of training dataset.

E.7 TREC EXPERIMENTS WITH BERT

We next show that on NLP datasets with a Transformer-based model (Vaswani et al., 2017), more
specifically BERT (Devlin et al., 2019), the bias-variance alignment observation holds. This is shown
in Figure 12 where we consider the TREC dataset (Hovy et al., 2001; Li & Roth, 2002) with its
fine-grained labels (i.e., 47 classes) and vary the number of layers in the BERT model.

In this experiment, each of the two ensembles consists of 20 BERT models. In each case, each of
these models was initialized from the same pre-trained checkpoint, and trained for 20 epochs with
learning rate of 2× 10−5 using Adam. We use a polynomial decay learning rate schedule with the
number of warm-up steps set to be 10% of the number of total update steps. Training batch size was
set to 8.
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(a) BERT with 2 layers
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(b) BERT with 8 layers

Figure 12: Sample-wise bias and variance of BERT fine-tuned on TREC. We confirm the bias-variance
alignment phenomenon.

F FURTHER RESULTS ON CALIBRATION AND THE BIAS-VARIANCE
CORRELATION

F.1 PERFECT CALIBRATION DOES NOT NECESSARILY IMPLY PERFECT CONFIDENCE
CALIBRATION

Perfect calibration does not necessarily imply perfect confidence calibration. To illustrate this,
consider the following example: let X = Y = {1, 2}, and let X be a uniformly random variable on
{1, 2}. Let the probability of Y = i given X be P(i | X) = 1{X 6= i}, and let the classifier h be
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defined as h(i | X) = 1{X = i}. In addition, let Σi represent the trivial σ-algebra for all i in the
set 1, 2. In this case, we have E[∆(i | X) | Σi] = E[∆(i | X)] = E[2 · 1{X = i} − 1] = 0, which
means that h has perfect calibration with respect to {Σi}i=1,2. However, since predh(x) = x, we
have E[∆(predh(X) | X) | Σpredh(X)] = E[∆(predh(X) | X)] = E[∆(X | X)] = 1. Therefore,
h does not have perfect confidence calibration.

This is not true even for preimage perfect calibration Σprei . Consider the following counterexample

h(i | x) =
x

i
1 2 3 4

1 0.3 0.25 0.2 0.25
2 0.3 0.5 0.2 0

,

PY |X(i | x) =
x

i
1 2 3 4

1 0.4 0.25 0.1 0.25
2 0.2 0.5 0.3 0

.

We set P(X = 1) = P(X = 2) = 1/2. It is clear that

E
[
h(i | X)− PY |X(i | X) | h(i | X)

]
= 0 (19)

holds for for i = 2, 4. If i = 1, we have h(i | X) = 0.3. Therefore,
E
[
h(1 | X)− PY |X(1 | X) | h(1 | X) = 0.3

]
= 0.3−E

[
PY |X(1 | X) | h(1 | X) = 0.3

]
= 0.3−

0.4+0.2
2 = 0. Similarly, we can show that (19) holds for i = 4. For Σ

(2)
i , Σ

(2)
predh(X) =

σ(h(predh(X) | X)) = confh(X). Note that in this example, confh(X) can take only two values
0.3 and 0.5. Since

E[(confh(X)− acch(X)) | confh(X) = 0.3] (20)
= E[(confh(X)− acch(X)) | X = 1] = −0.1 6= 0 , (21)

perfect confidence calibration is not satisfied.

F.2 PRE-IMAGE EXPECTED CALIBRATION ERROR

The expected calibration error (ECE) with respect to {Σpre
i }i∈[K] recovers the ECE from Equation

(2) in (Guo et al., 2017). Recall the definition of conf and acc in Section 2.1. The ECE with respect
to {Σpre

i }i∈[K] is

ECE
{Σi}i∈[K]

P (22)

= E
∣∣∣E[∆(predh(X) | X) | Σpre

predh(X)]
∣∣∣ (23)

= E |E[∆(predh(X) | X) | h(predh(X) | X)]| (24)
= E |E[(confh(X)− acch(X)) | confh(X)]| . (25)

Equation (25) follows from ∆(predh(X) | X) = confh(X) − acch(X) and h(predh(X) | X) =
confh(X). This recovers the definition of the ECE in (Guo et al., 2017, Equation (2)).

F.3 BIN-WISE EXPECTED CALIBRATION ERROR

The expected calibration error (ECE) with respect to {Σbin
i }i∈[K] recovers the ECE from Equation (3)

in (Guo et al., 2017). Let Ej represent the event
{
j−1
M < confh(X) ≤ j

M

}
= {dM confh(X)e =

j}.
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The ECE with respect to {Σbin
i }i∈[K] is

ECE
{Σi}i∈[K]

P (26)

=
∑
j∈[M ]

P(Ej)E
[∣∣∣E[∆(predh(X) | X) | Σbin

predh(X)]
∣∣∣ | Ej] (27)

=
∑
j∈[M ]

P(Ej)E [|E[(confh(X)− acch(X)) | dM confh(X)e]| | Ej ] (28)

=
∑
j∈[M ]

P(Ej) |E[(confh(X)− acch(X)) | Ej ]| . (29)

Equation (28) follows from ∆(predh(X) | X) = confh(X) − acch(X) and dMh(predh(X) |
X)e = dM confh(X)e. Equation (29) is the ECE with respect to {Σbin

i }i∈[K] on the population
P(X,Y ). If one wants to estimate the ECE from an empirical distribution formed by sampling n i.i.d.
samples {(xi, yi)}i∈[n] from P(X,Y ), then P(Ej) is |Bj |n , where Bj denotes the set of the indices of
the samples whose confidence falls into the bin

(
j−1
M , jM

]
. Under the empirical distribution, we have

E[acch(X) | Ej ] =
1

|Bj |
∑
i∈Bj

1{predh(xi) = yi} . (30)

E[confh(X) | Ej ] =
1

|Bj |
∑
i∈Bj

confh(xi) . (31)

We recover the definition of the ECE in (Naeini et al., 2015) and (Guo et al., 2017, Equation (3)).

F.4 PROOF OF COROLLARY 4.5

Proof of Corollary 4.5. By (14) and the bounded convergence theorem, we have

E
[
EY |X [β(i)2 − σ(i)2] | Σi

]
(32)

= E [Eθ [hθ(i | X)(1− hθ(i | X))] | Σi]→ 0 . (33)

Let us write δ(i) = β(i)− σ(i). It follows that

E
[
EY |X [β(i)2 − σ(i)2] | Σi

]
(34)

= E
[
EY |X [(σ(i) + δ(i))2 − σ(i)2] | Σi

]
(35)

= E
[
EY |X [δ(i)(δ(i) + 2σ(i))] | Σi

]
(36)

≥ E
[
EY |X [2δ(i)2] | Σi

]
≥ 0 . (37)

As a result, we obtain E
[
EY |X [δ(i)2] | Σi

]
→ 0, which implies E

[
EY |X [δ(i)] | Σi

]
→ 0 since L2

convergence of random variables implies L1 convergence.

F.5 PROOF OF THEOREM 4.3

Proof of Theorem 4.3. We have

Bias2
hθ,(X,Y )(i) = h(i | X)2 + 1{Y = i} − 2 · 1{Y = i}h(i | X) , (38)

Varihθ,(X,Y )(i) = Eθhθ(i | X)2 − h(i | X)2 . (39)

Therefore we get

Bias2
hθ,(X,Y )(i)−Varihθ,(X,Y )(i) = 2

(
h(i | X)2 − 1{Y = i}h(i | X)

)
(40)

+ 1{Y = i} − Eθhθ(i | X)2 . (41)

Taking the expectation over the conditional distribution of Y | X yields

EY |X
[
Bias2

hθ,(X,Y )(i)−Varihθ,(X,Y )(i)
]

= 2h(i | X)∆(i | X) + PY |X(i | X)− Eθhθ(i | X)2 .
(42)
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Then we further take the conditional expectation E[· | Σi] and re-arrange the terms, and obtain

E
[
EY |X [Bias2

hθ,(X,Y )(i)−Varihθ,(X,Y )(i)]− PY |X(i | X) + Eθhθ(i | X)2 | Σi
]

= 2h(i | X)E [∆(i | X) | Σi] .
(43)

Taking the absolute value and then the outer expectation gives

E
∣∣∣E [EY |X [Bias2

hθ,(X,Y )(i)−Varihθ,(X,Y )(i)]− PY |X(i | X) + Eθhθ(i | X)2 | Σi
]∣∣∣

= 2E [h(i | X) |E [∆(i | X) | Σi]|]
≤ 2E [|E [∆(i | X) | Σi]|]

(44)

Summing (43) over i ∈ [K] and taking the outer conditional expectation E[· | Σ] gives

E
[
EY |X [Bias2

hθ,(X,Y )−Varihθ,(X,Y )] | Σ
]

(45)

= 1− E
[
EY |XEθ‖hθ(· | X)‖22 | Σ

]
+ 2

∑
i∈[K]

E [E[∆(i | X) | Σi]h(i | X) | Σ] . (46)

Re-arranging the terms and taking the absolute value yields

E
∣∣∣E [EY |X [Bias2

hθ,(X,Y )−Varihθ,(X,Y )]− 1 + EY |XEθ‖hθ(· | X)‖22 | Σ
]∣∣∣ (47)

≤ 2
∑
i∈[K]

E [|E[∆(i | X) | Σi]|h(i | X)] ≤ 2 CWCE
{Σi}i∈[K]

P . (48)

F.6 NO BIAS-VARIANCE CORRELATION IN KULLBACK-LEIBLER CONVERGENCE.

The expected Kullback-Leibler (KL) divergence EθDKL(eY ‖ hθ(· | X)) can also be decomposed
(Heskes, 1998; Zhou et al., 2021; Yang et al., 2020) into the bias Bias2

hθ,(X,Y ) and the variance
Varihθ,(X,Y )

Bias2
hθ,(X,Y ) = DKL(eY ‖ h(· | X)) ,

Varihθ,(X,Y ) = EθDKL(eY ‖ hθ(· | X))− Bias2
hθ,(X,Y ) ,

where the mean function h and the partition function Z thereof are defined by

h(i | X) =
1

Z
exp(Eθ log hθ(i | X)) , (49)

Z =
∑
i∈[K]

exp(Eθ log hθ(i | X)). (50)

We can see Varihθ,(X,Y ) = − logZ.

The following Proposition F.1 demonstrates that there is no correlation between bias and variance in
KL divergence, unlike in mean squared error. Specifically, we prove that the ratio of expected bias to
expected variance in the decomposition of KL divergence can take any value in the range of (0,∞).
Proposition F.1. There exists a data distribution P(X,Y ) such that for any value r ∈ (0,∞), there
is an ensemble {hθ}θ such that its mean function Eθhθ has samplewise perfect calibration, and the

ratio of expected bias to expected variance under the KL divergence
EY |X Bias2hθ,(X,Y )

EY |X Varihθ,(X,Y )
= r .

Proof. Suppose that there are K = 2 classes and for every x, P(i | x) = 1/2 (i = 1, 2). Moreover,
define h1(1 | x) = h2(2 | x) = ε and h1(2 | x) = h2(1 | x) = 1 − ε, and set θ to a uniformly
random variable on {1, 2}. Then the mean function h satisfies h(1 | x) = h(2 | x) = 1/2, which
does not depend on ε. The expected bias EY |X Bias2

hθ,(X,Y ) is log 2. The partition function Z
equals 2 exp((log ε + log(1 − ε))/2), from which we obtain the variance EY |X Varihθ,(X,Y ) =

Varihθ,(X,Y ) = − log 2 − 1
2 log ε(1 − ε). As ε → 0+, the variance Varihθ,(X,Y ) tends to∞. As

ε→ 1/2, the variance Varihθ,(X,Y ) vanishes. Therefore the ratio
EY |X Bias2hθ,(X,Y )

EY |X Varihθ,(X,Y )
can be any value

in the range of (0,∞).
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In Proposition F.1, we can let r approach 0. In this limit, there exists a collection of ensembles {hθ}θ
(which depends on r, hence the term ”collection”) such that

EY |X Bias2hθ,(X,Y )

EY |X Varihθ,(X,Y )
→ 0. Conversely, we

can let r approach infinity, in which case
EY |X Bias2hθ,(X,Y )

EY |X Varihθ,(X,Y )
→∞. Therefore, either bias or variance

can be arbitrarily large relative to the other, implying that there is no alignment of bias and variance
under the KL divergence.

F.7 THEOREM 4.3 IMPLIES GENERALIZATION DISAGREEMENT EQUALITY (GDE)

In this section, we show that Theorem 4.3 implies the generalization disagreement equality (GDE),
which is the main result of (Jiang et al., 2022; Kirsch & Gal, 2022). We first recap the GDE using
the notation of this paper. We begin with defining the test error, disagreement, and class aggregated
calibration error (CACE) originally defined in (Jiang et al., 2022; Kirsch & Gal, 2022).

Definition F.2 (Test error, disagreement, and class aggregated calibration error (Jiang et al., 2022;
Kirsch & Gal, 2022)). Let {hθ : X →M([K])} be an ensemble of trained models, each of which has
a deterministic prediction, i.e., hθ(· | x) is a one-hot vector for ∀x ∈ X . Let h(· | x) , Eθhθ(· | x)
be the mean function of {hθ}. Then, the test error, disagreement, and class aggregated calibration
error (CACE) of h are defined as follows:

TestErrP(hθ) = E(X,Y )∼P[1{hθ(· | X) 6= eY }] ,
DisP(hθ, hθ′) = E(X,Y )∼P[1{hθ(X) 6= hθ′(X)}] ,

CACEP,h =

∫ 1

0

∣∣∣∣∣∣
∑
i∈[K]

P(Y = i, h(i | X) = q)− q
∑
i∈[K]

P(h(i | X) = q)

∣∣∣∣∣∣ dq .
Note that while the test error TestErrP(hθ) and disagreement DisP(hθ, hθ′) are expected values over
P, they still have randomness due to θ.

Moreover, note that Jiang et al. (2022) use an integer i ∈ [K] to denote the prediction of hθ. However,
we use a one-hot vector ei ∈ RK . We will see the mathematical convenience of representing the
prediction with a one-hot vector in our proof of Theorem F.3. In particular, our proof of Theorem F.3
shows that in expectation, the disagreement is equal to the variance (defined in Equation 8) and the
test error equals half the risk (defined in Equation 10).

Theorem F.3 (Theorem 4.2 of (Jiang et al., 2022)). If hθ outputs an one-hot vector (as assumed in
(Jiang et al., 2022)) and θ, θ′ are i.i.d., The following inequality holds:

|Eθ,θ′ [DisP(hθ, hθ′)]− Eθ[TestErrP(hθ)]| ≤ CACEP,h .

If the ensemble {hθ} satisfies the pre-image perfect calibration (E[∆(i | X) | Σpre
i ] = 0, for

∀i ∈ [K]), the following generalization disagreement equality (GDE) holds:

Eθ,θ′ [DisP(hθ, hθ′)] = Eθ[TestErrP(hθ)] .

Proof. We first show that the disagreement is equal to variance in expectation:

Eθ,θ′ [DisP(hθ, hθ′)] = Eθ,θ′E(X,Y )∼P

[
‖hθ(X)− h′θ(X)‖22

2

]
= E(X,Y )∼P

[
Eθ[‖hθ(X)‖22]− ‖Eθ[hθ(X)]‖22

]
= E(X,Y )∼P

[
Varihθ,(X,Y )

]
.

Next, we show that the test error is equal to half the risk in expectation:

Eθ [TestErrP(hθ)] = EθE(X,Y )∼P

[
‖hθ(· | X)− eY ‖22

2

]

= E(X,Y )∼P

[
Riskhθ,(X,Y )

2

]
= E(X,Y )∼P

[
Bias2

hθ,(X,Y )

2
+

Varihθ,(X,Y )

2

]
.
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We can obtain the following equation by subtracting the above two equations:

Eθ,θ′ [DisP(hθ, hθ′)]− Eθ[TestErrP(hθ)]

= E(X,Y )∼P

[
Bias2

hθ,(X,Y )

2
+

Varihθ,(X,Y )

2
−Varihθ,(X,Y )

]

= E(X,Y )∼P

[
BVGhθ,(X,Y )

2

] .

Apply Theorem 4.3 with Σi = Σpre
i = σ(h(i | X)) and using Uncehθ (X) = 0 (because hθ(· | x) is

a one-hot vector for ∀x ∈ X ), we obtain

E(X,Y )∼P

[
BVGhθ,(X,Y )

2

]
=
∑
i∈[K]

E [E[∆(i | X) | Σpre
i ]h(i | X)] . (51)

We see immediately that if E[∆(i | X) | Σpre
i ] = 0 for ∀i ∈ [K], the GDE is satisfied.

The right-hand side of Equation (51) equals∑
i∈[K]

E [E[∆(i | X) | Σpre
i ]h(i | X)]

=

∫ 1

0

∑
i∈[K]

(q − P(Y = i | h(i | X) = q)) qP(h(i | X) = q)dq

=

∫ 1

0

q ∑
i∈[K]

P(h(i | X) = q)−
∑
i∈[K]

P(Y = i, h(i | X) = q)

 qdq .

In the first equality, we expand the expectations. To compute the outer expectation, we condition
on the prediction h(i|X) returned by the model for class index i and integrate with respect to the
conditional probability distribution h(i|X). The inner expectation is taken over all X such that the
model for class index i returns q, the value that we condition on. In the last equality, we apply the
conditional probability rule P(Y = i, h(i | X) = q) = P(Y = i | h(i | X) = q)P(h(i | X) = q).

Taking the absolute value gives

|Eθ,θ′ [DisP(hθ, hθ′)]− Eθ[TestErrP(hθ)]|

≤
∫ 1

0

∣∣∣∣∣∣
q ∑

i∈[K]

P(h(i | X) = q)−
∑
i∈[K]

P(Y = i, h(i | X) = q)

∣∣∣∣∣∣ qdq
≤
∫ 1

0

∣∣∣∣∣∣
q ∑

i∈[K]

P(h(i | X) = q)−
∑
i∈[K]

P(Y = i, h(i | X) = q)

∣∣∣∣∣∣ dq
= CACEP,h ,

where the last inequality uses q ∈ [0, 1].

G FURTHER RESULTS ON NEURAL COLLAPSE AND THE BIAS-VARIANCE
CORRELATION

G.1 PROPERTIES OF SIMPLEX EQUIANGULAR TIGHT FRAME (ETF)

WETF has the following properties: First, it is symmetric. Second, the inner product between any
two distinct columns is equal to − 1

K−1 . Third, this pairwise distance is maximized, i.e., there does
not exist any matrix where the inner product between any two distinct pairs of columns are smaller
than − 1

K−1 .
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G.2 VERIFYING ASSUMPTION 5.1

As stated in Assumption 5.1, we assume that the logits of a deep network for any test sample (X,Y )
are drawn from the following distribution:

softmax
(
WETF(swETF

Y + v)
)

= softmax

(√
K

K − 1

(
IK −

1

K
1K1>K

)(
s

√
K

K − 1

(
eY −

1

K
1K

)
+ v

))
(

use the fact
(
IK −

1

K
1K1>K

)
1K = 0

)
= softmax

(√
K

K − 1

(
IK −

1

K
1K1>K

)(
s

√
K

K − 1
eY + v

))

= softmax

(
sK

K − 1
eY +

√
K

K − 1
v −

√
K

K − 1
· 1

K
1K1>K

(
s

√
K

K − 1
eY + v

))

= softmax

(
sK

K − 1
eY +

√
K

K − 1
v

)
,

(52)

where the final equality follows from the fact that the term −
√

K
K−1 ·

1
K1K1>K

(
s
√

K
K−1eY + v

)
is parallel to 1K and the addition of this term does not change the value of the softmax function.

In particular, v above is a random vector with i.i.d. entries drawn according to −β
√

K
K−1vi ∼

Gumbel(µ, β). In this section, we verify this assumption from two perspectives. First, we will plot
the distributions of logits in practical neural networks, and show that they align with (52). Second,
we will show through simulation that, if the logits are generated according to (52), then we observe
bias-variance alignment.

Distribution of logits. From (52), the logits corresponding to the correct class (i.e., Y ) and any
incorrect class Y ′ 6= Y are given by

sK

K − 1
+

√
K

K − 1
vY , and

√
K

K − 1
vY ′ , (53)

respectively. In particular, since Gumbel distribution has a unimodal shaped probability density
function, the distribution of both the positive and all the negative logits have unimodal shape according
to (53). To verify that this aligns with the practical observations, we calculate the distributions of
logit values on various datasets and model architectures, for both positive classes and negative classes.
The results are presented in Figure 13. We observe unimodal logit distributions for both positive and
negative classes in all cases. On the other hand, one may notice that while (53) predicts the positive
and negative logits to have different biases but the same variance, in many cases from Figure 13, the
positive and negative logits have notable different variances. Hence, Assumption 5.1 is used as a
simplified model that makes our theoretical analysis tractable, but is not meant to perfectly model
the distribution of logits in practice. We will show next that such a simplified model is sufficient for
producing the bias-variance alignment phenomenon that we observe in practice.

Synthesizing bias-variance alignment. To justify Assumption 5.1, we synthetically generate a
collection of logit vectors according to (53), and plot the sample-wise bias and variance obtained from
the logit vectors. Specifically, given any number n as the number of samples, and K as the number
of classes, we first generate a collection of n random labels where each label is drawn uniformly
at random from [K]. For each label, we sample T logit vectors independently according to (53)
(for the Gumbel distribution, we take µ = 0 and β = 1). Here, T is interpreted as the number of
independently trained models for estimating bias and variance.

The results with n = 200,K = 2, and T = 10, under varying choices of s ∈ {5, 10, 20, 100} are
reported in Figure 14. In all cases, we observe a clear bias-variance alignment. In particular, we did
not draw correctly and incorrectly classified samples in different colors (as in Figure 1b) because all
the samples in these cases are correctly classified.
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Figure 13: Distribution of logits for positive and negative classes.

Figure 14: Sample-wise bias and variance for synthetic data generated according to (53). From left to
right, s is varied in the set {5, 10, 20, 100}.

G.3 VERIFYING COROLLARY 5.3: BINARY CLASSIFICATION

We note that the Neural collapse theory relies on the binary classification assumption. To ensure
that the bias-variance alignment results hold for such a setup empirically, we construct a binary
classification problem based on the CIFAR-10 dataset: each example in the first five classes is
assigned label 0, and each eample in the last five classes is assigned label 1. We call the resulting
dataset CIFAR-2. The results are shown in Figure 15.

G.4 RELATIONSHIP BETWEEN GUMBEL AND EXPONENTIAL DISTRIBUTION

Lemma G.1. Let X ∼ Gumbel(µ, β). Then, e−X/β ∼ Exp(eµ/β).

Proof. Recall that the cumulative distribution function (CDF) of the Gumbel distribution is given by

P(X ≤ x) = e−e
−(x−µ)/β

. (54)
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Figure 15: Squared bias and variance computed based on various model sizes on the CIFAR-2
problem. See Appendix G.3 for details.

Thus we get
P(e−X/β ≤ e−x/β) = 1− e−e

−(x−µ)/β
. (55)

Substituting t = e−x/β , we get

P(e−X/β ≤ t) = 1− e−te
µ/β

. (56)

This is the CDF of Exp(eµ/β).

G.5 PROOF OF THEOREM 5.2

Proof of Theorem 5.2. As the first step, we compute the output of function hθ
hθ(X) = softmax (Wψτ (X))

= softmax
(
WETFR>

(
R
(
swETF

Y + v
)))

= softmax

(√
K

K − 1

(
s

√
K

K − 1

(
eY −

1

K
1K

)
+ v

))

= softmax

(
sK

K − 1
eY +

√
K

K − 1
v

) (57)

Let us denote w , hθ(· | X). Without loss of generality and for the ease of presentation, we label the

Y -th entry as the first entry (Y = 1). Moreover, we introduce the shorthand notation u ,
√

K
K−1v.
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Then we have

s = softmax

(
sK

K ′
e1 + u

)
=

(
aeu1

aeu1 + eu2 + · · ·+ euK
,

eu2

aeu1 + eu2 + · · ·+ euK
, . . . ,

euK

aeu1 + eu2 + · · ·+ euK

)> (58)

where a = esK/K
′
. In light of Lemma G.1, since −βui ∼ Gumbel(µ, β) are i.i.d., then vi , eui ∼

Exp(λ) where λ , eµ/β .

Let us look at the first entry w1 of s = softmax(re1 + u). It equals

w1 =
aeu1

aeu1 + eu2 + · · ·+ euK
=

a

a+ eu2+···+euK
eu1

=
a

a+ (K − 1)F
=

c

c+ F
, (59)

where c = a
K−1 = esK/K

′

K′ and F = (eu2+···+euK )/(2(K−1))
eu1/2 = (eu2+···+euK )/(K−1)

eu1 ∼ F(2(K −
1), 2) follows the F distribution (this is because eui ∼ Exp(λ) = 1

2λχ
2
2).

The expectation of w1/c is given by

E
[w1

c

]
= EF∼F(2K′,2)

[
1

c+ F

]
(60)

=
1

K ′ Beta(K ′, 1)

∫ ∞
0

xK
′−1

(c+ x)(x+ 1/K ′)K′+1
dx (61)

=
cK
′−1
(
c− 1

K′

)−K′
(cK ′ −K ′ log(cK ′)− 1)

cK ′ − 1
(62)

+

(
c− 1

K′

)−K′−1

K ′

K′−1∑
j=1

(K ′ − j)(c− 1
K′ )

jc−j+K
′−1

j
(63)

= φK′(c) . (64)

As a result, the squared bias of the first entry w1 is

βhθ,(X,Y )(1) = |Ew1 − 1| = |cφK′(c)− 1| . (65)

To get the variance of the first entry w1, we compute its second moment as the first step:

E[w2
1] = c2E

[
1

(c+ F )2

]
= −c2 d

dc
E
[

1

c+ F

]
= −c2 dφK

′(c)

dc
. (66)

Therefore, it follows that

Varihθ,(X,Y )(1) = E[w2
1]− E[w1]2 = −c2 dφK

′(c)

dc
− c2φK′(c)2 , (67)

which yields

ςhθ,(X,Y )(1) =
√

Varihθ,(X,Y )(1) = c

√
−
(
dφK′(c)

dc
+ φK′(c)2

)
. (68)

G.6 PROOF OF COROLLARY 5.3

Proof of Corollary 5.3. If K = 2, we get EF∼F(2,2)[
1

c+F ] = c−log(c)−1
(c−1)2 . As in the Proof of Theo-

rem 5.2, without loss of generality and for the ease of presentation, we label the Y -th entry as the
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first entry (Y = 1). We then have the following expectations:

Eu[w1] =
c(c− log(c)− 1)

(c− 1)2
, Eu[w2] =

−c+ c log(c) + 1

(c− 1)2

EF∼F(2,2)

[
1

(c+ F )2

]
= − ∂

∂c
EF∼F(2,2)[

1

c+ F
] =

c2 − 2c log(c)− 1

(c− 1)3c

To obtain the variance of w1, w2, we first calculate the second moment:

Eu[w2
1] =

c2(c2 − 2c log(c)− 1)

(c− 1)3c
(69)

Eu[w2
2] = Eu[(1− w1)2] =

c2 − 2c log(c)− 1

(c− 1)3
(70)

As a result, we have

Varu[w1] = Varu[w2] =
c
(
(c− 1)2 − c log2(c)

)
(c− 1)4

(71)

Therefore, we obtain

βhθ,(X,Y )(1) = |Eu[w1]− 1| = |log(c)c− c+ 1|
(c− 1)2

,

βhθ,(X,Y )(2) = |Eu[w2]− 0| = βhθ,(X,Y )(1)

ςhθ,(X,Y )(1) = ςhθ,(X,Y )(2) =
√

Varu[w1] =

√
c
(
(c− 1)2 − c log2(c)

)
(c− 1)2

.

The ratio
βhθ,(X,Y )(i)

ςhθ,(X,Y )(i)
= |−c+c log(c)+1|√

c((c−1)2−c log2(c))
is a decreasing function of c ∈ (1,∞) and

limc→1+
βhθ,(X,Y )(i)

ςhθ,(X,Y )(i)
=
√

3. Therefore, the ratio
βhθ,(X,Y )(i)

ςhθ,(X,Y )(i)
≤
√

3 < 1.74 for c > 1. To show
βhθ,(X,Y )(i)

ςhθ,(X,Y )(i)
= |−c+c log(c)+1|√

c((c−1)2−c log2(c))
≥ log c−1√

c
≡ 2s−1

es , it suffices to prove

(−c+ c log(c) + 1)2 ≥
(
(c− 1)2 − c log2(c)

)
(log(c)− 1)2 ,

which is equivalent to

log(c)
(
−2c+ c log3(c)− 2c log2(c) + (3c− 1) log(c) + 2

)
, log(c)f(c) ≥ 0 .

Since f ′(c) = − 1
c + log3(c) + log2(c)− log(c) + 1 ≥ 0 and f(1) = 0, we complete the proof for

βhθ,(X,Y )(i)

ςhθ,(X,Y )(i)
≥ log c−1√

c
. On the log scale,

log Biashθ,(X,Y )(i)

log Varihθ,(X,Y )(i)
=

log

(
(−c+c log(c)+1)2

(c−1)4

)
log

(
c((c−1)2−c log2(c))

(c−1)4

) is a monotone

function for ∀c > 1. As c approaches 1 from the right, the limit of the function is log(4)
log(12) > 0.557.

As c approaches infinity, the limit of the function is 2.

H FUTURE WORK

In the realm of future research, an intriguing avenue lies in the exploration of the bias-variance
alignment phenomenon within diverse machine learning model ensembles. While our present work
sheds light on this phenomenon in the context of deep neural network ensembles, there remains a
substantial gap in our understanding of its presence or absence in other model types such as decision
trees and support vector machines. An essential direction for future investigation involves unraveling
the root causes of bias-variance alignment, particularly as it pertains to distinct types of overfitting
in machine learning models—be it benign, tempered, or catastrophic (Mallinar et al., 2022). Our
conjecture extends towards discerning whether bias-variance alignment is a ubiquitous trait across
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various overfitting scenarios or if its manifestation is contingent on the specific type of overfitting.
Notably, we hypothesize that catastrophic overfitting may exhibit a bias-variance tradeoff, while
benign and tempered overfitting might demonstrate a unique bias-variance alignment. Unraveling
these intricacies is pivotal for advancing our comprehension of ensemble behaviors across different
machine learning paradigms. Moreover, Atanasov et al. (2022) demonstrates an inverse relationship
between the feature learning strength and the variance across initializations. Exploring the interplay
between bias, variance, and feature learning strength in neural networks is also an intriguing area of
future research.
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