
Published in Transactions on Machine Learning Research (06/2024)

A Appendix Overview

In this supplementary material, we provide additional information and details to the experimental results in
the main paper. In particular, we provide

• More information and analysis on the employed datasets in section B.

• More details in the experiment setup in section C.

• Additional experimental results in section D, including

– more details on the aggregated results given in the main paper (D),
– additionally results on state-of-the-art classification models (D1),
– an ablation on kernel sizes (D2)
– an ablation on selected, static kernels (D3)
– an ablation on thresholded kernel performance over thresholds (D4),
– an ablation on L1 prior regularization strengths (D5),
– additional details on the results on ImageNet-100 and ImageNet -1k (D6)
– an evaluation of the robustness against adversarial attacks (D7)
– experiments on using pretrained models (D8).

• An analysis of the optimized kernels in section E.

• An extended discussion of our findings in section F.

B Datasets

To train the di�erent models, subsets of the ImageNet (Russakovsky et al., 2015) dataset are used. To have
a widespread experiment set, the ImageNette (Howard, 2023) dataset with ten classes and the ImageNet-
100 (Tian et al., 2020) with 100 classes from ImageNet are used.

Furthermore, to evaluate the robustness of these models, the subsets are corrupted via di�erent corruptions
from OpticsBench (Müller et al., 2023) and Common Corruptions (Hendrycks & Dietterich, 2019).

B.1 Clean Datasets

ImageNette provides 9,469 training and 3,925 validation images on ten diverse ImageNet classes. We use
the ImageNette2 version in all experiments, publicly available from Howard (2023). This allows extensive
model training experiments to be carried out with limited computing resources. In addition, some of the
experiments were carried out on ImageNet-100, consisting of 100 randomly selected classes from ImageNet-1k
with a total of 128k training and 5k validation images. Each class has approximately 1,300 training and
50 validation images. As there are no extra test labels, we test on the validation images. The validation
images are kept from training. Finally, two experiments are conducted on ImageNet-1k, which consists of
1,000 classes with a total of 1,281k training and 50k validation images.

B.2 Common Corruptions

The diverse common corruptions (Hendrycks & Dietterich, 2019) consist of digital, weather, noise and blur
corruptions aimed at benchmarking DNNs in safety-critical applications. We use 16 di�erent algorithmically
generated corruptions, organized into five di�erent severities. Besides the 15 benchmark corruptions we also
include the saturate corruption from Hendrycks & Dietterich (2019) to test for more color corruptions.
The individual corruptions are shown in Fig. 8 for severity 4 out of 5. Following Hendrycks & Dietterich
(2019) images are saved using light JPEG compression, which means that other corruptions are also lightly
corrupted by the JPEG compression.

1

Published in Transactions on Machine Learning Research (06/2024)

B.3 OpticsBench

The recently published OpticsBench (Müller et al., 2023) provides additional blur corruptions obtained from
optics, which are obtained by convolving images with a given 3D kernel. The blur kernels (x,y,color) are
color dependent and have diverse shapes. They are intended as base classes for primary aberrations and
complement the blur corruptions from Common Corruptions (Hendrycks & Dietterich, 2019). Fig. 8 shows
the di�erent OpticsBench blur corruptions in the upper left along with the corresponding blur kernel in
linear scaling. Coma and astigmatism are shown in one orientation. As the authors use the defocus blur
from Hendrycks & Dietterich (2019) as a baseline, we also visualize the corresponding defocus blur kernel in
Fig. 8.

B.4 Grouping Corruption Types

Combining the two corrupted datasets, we evaluated all models on 24 di�erent corruptions, with each
consisting of five severities. The high number of corruptions provides a broad and stable view on the
robustness of our models against such corruptions. However, to visualize the results of our evaluation, we
grouped corruptions in five super-categories: noise, blur, compression, weather, and color.

The five super-categories with the corresponding corruptions can be examined in Fig. 8. As the first
super-category, we combined all noise generating corruptions from the Common Corruptions into noise.
Furthermore, we grouped all blur corruptions from the Common Corruptions (Hendrycks & Dietterich,
2019) with all corruptions from OpticsBench (Müller et al., 2023) into the super-category blur, as they all
mimic di�erent blur types. Similar to Hendrycks & Dietterich (2019) we combine all weather corruptions
into the super-category weather. However, we shifted the brightness corruption to the super-category color,
as brightness, contrast, and saturate behave similarly. The last super-category combines three di�erent
image transformation corruptions into the super-category compression.

defocus astigmatism coma trefoil spherical

original defocus motion glass blur zoom blur

brightness contrast saturate fog frost snow

elastic
transform

jpeg
compression

pixelate gaussian
noise

impulse noise shot noise

1

defocus astigmatism coma trefoil spherical

original defocus motion glass blur zoom blur

brightness contrast saturate fog frost snow

elastic
transform

jpeg
compression

pixelate gaussian
noise

impulse noise shot noise

1

defocus astigmatism coma trefoil spherical

original defocus motion glass blur zoom blur

brightness contrast saturate fog frost snow

elastic
transform

jpeg
compression

pixelate gaussian
noise

impulse noise shot noise

1

defocus astigmatism coma trefoil spherical

original defocus motion glass blur zoom blur

brightness contrast saturate fog frost snow

elastic
transform

jpeg
compression

pixelate gaussian
noise

impulse noise shot noise

1

defocus astigmatism coma trefoil spherical

original defocus motion glass blur zoom blur

brightness contrast saturate fog frost snow

elastic
transform

jpeg
compression

pixelate gaussian
noise

impulse noise shot noise

1

defocus astigmatism coma trefoil spherical

original defocus motion glass blur zoom blur

brightness contrast saturate fog frost snow

elastic
transform

jpeg
compression

pixelate gaussian
noise

impulse noise shot noise

1

defocus astigmatism coma trefoil spherical

original defocus motion glass blur zoom blur

brightness contrast saturate fog frost snow

elastic
transform

jpeg
compression

pixelate gaussian
noise

impulse noise shot noise

1

Clean Blur (Common Corruptions)Blur (OpticsBench)

Color Weather
Compression Noise

2

Figure 8: Overview of used corruptions applied to an ImageNet sample. The first row shows the unmodified
image (upper left) and various blur corruptions from Müller et al. (2023) (left box) and Hendrycks &
Dietterich (2019) (right box). The second row shows the remaining common corruptions from Hendrycks &
Dietterich (2019) grouped to color, weather, compression and noise (from left to right). All shown corrupted
images represent severity 4 out of 5.

Each of the evaluated corruptions and super-categories have five severities. In addition to the spatial domain
visualization in Fig. 8, the super-categories are visualized in the frequency domain, in Fig. 9 to 13. Each of
these figures is divided into six columns, in which the first five columns represents one of the super-categories.

2

Published in Transactions on Machine Learning Research (06/2024)

For every super-category, the average Fourier transformation magnitude over 100 images is displayed in the
top row. The bottom row corresponds to the absolute di�erence of corrupted average Fourier transformation
magnitude against the clean data average Fourier transformation magnitude. The last column represents
the average frequency magnitude of 100 clean data images.

Figure 9: Corruption Severity 1 - Average Fourier transformation magnitude over 100 ImageNet images for
each super-category (column 1–5) and the clean data (column 6). Top: The average Fourier transformation
magnitude. Bottom: The di�erence between the corrupted average Fourier transformation magnitude and
the clean average Fourier transformation magnitude.

Figure 10: Corruption Severity 2 - Average Fourier transformation magnitude over 100 ImageNet images for
each super-category (column 1-5) and the clean data (column 6). Top: The average Fourier transformation
magnitude. Bottom: The di�erence between the corrupted average Fourier transformation magnitude and
the clean average Fourier transformation magnitude.

3

Published in Transactions on Machine Learning Research (06/2024)

Figure 11: Corruption Severity 3 - Average Fourier transformation magnitude over 100 ImageNet images for
each super-category (column 1-5) and the clean data (column 6). Top: The average Fourier transformation
magnitude. Bottom: The di�erence between the corrupted average Fourier transformation magnitude and
the clean average Fourier transformation magnitude.

Figure 12: Corruption Severity 4 - Average Fourier transformation magnitude over 100 ImageNet images for
each super-category (column 1-5) and the clean data (column 6). Top: The average Fourier transformation
magnitude. Bottom: The di�erence between the corrupted average Fourier transformation magnitude and
the clean average Fourier transformation magnitude.

Figure 13: Corruption Severity 5 - Average Fourier transformation magnitude over 100 ImageNet images for
each super-category (column 1-5) and the clean data (column 6). Top: The average Fourier transformation
magnitude. Bottom: The di�erence between the corrupted average Fourier transformation magnitude and
the clean average Fourier transformation magnitude.

4

Published in Transactions on Machine Learning Research (06/2024)

C Experiment Setup

All models are trained from scratch on clean data, without corruption specific data augmentation. However,
common non-corruption specific data augmentations, such as random horizontal flip and random crop are
used during all model trainings. To guarantee a comparability between all models from the same architecture
type, we only added our proposed input layer to the corresponding models. Therefore, we did not change
any hyperparameters in-between the training of the same architecture type. The hyperparameters for
the training are used from maintainers & contributors (2016). The XSEResNext50 model is a specialized
ImageNette model, which is on the ImageNette leaderboard Howard (2023). The ViT version in use is the
base model, with patch size of 16. The Swin Transformer v2 (tiny) and the larger version Swin Transformer
v2 (base) have a window size of 8.

A quick overview over some important model information can be examined in Table 8.

Model Version #Parameters #Epochs Training Recipe
ResNet50 Base 23,528,522 100 (maintainers & contributors, 2016)
ResNet50 Trainable 23,530,397 100 (maintainers & contributors, 2016)

E�cientNet b0 Base 4,020,358 200 (maintainers & contributors, 2016)
E�cientNet b0 Trainable 4,022,233 200 (maintainers & contributors, 2016)

MobileNet Base 4,214,842 150 (maintainers & contributors, 2016)
MobileNet Trainable 4,216,717 150 (maintainers & contributors, 2016)

DenseNet161 Base 26,494,090 90 (maintainers & contributors, 2016)
DenseNet161 Trainable 26,495,965 90 (maintainers & contributors, 2016)

AlexNet Base 57,044,810 100 (maintainers & contributors, 2016)
AlexNet Trainable 57,046,685 100 (maintainers & contributors, 2016)

XSEResNext50 Base 25,550,618 200 (Howard, 2023)
XSEResNext50 Trainable 25,552,493 200 (Howard, 2023)

ConvNeXt Base 49,462,378 600 (maintainers & contributors, 2016)
ConvNeXt Trainable 49,464,253 600 (maintainers & contributors, 2016)

Swin v2 (tiny) Base 27,585,844 300 (Liu et al., 2022b)
Swin v2 (tiny) Trainable 27,587,719 300 (Liu et al., 2022b)
Swin v2 (base) Base 88,728,418 300 (Liu et al., 2022b)
Swin v2 (base) Trainable 88,730,293 300 (Liu et al., 2022b)

ViT (base) Base 85,806,346 300 (maintainers & contributors, 2016)
ViT (base) Trainable 85,808,221 300 (maintainers & contributors, 2016)

Table 8: A quick overview over the used model architectures and the corresponding number of parameters
and trained epochs per training run.

D Additional Experimental Results

To have a more holistic view on the performance of models with our proposed pre-pend layer, multiple
additional experiment are conducted. This section contains multiple detailed evaluation results from models
trained on the ImageNette (Howard, 2023) dataset. The next subsection (Sec. D.1) demonstrates, that the
proposed input layer also improves the performance of transformer-based models on corrupted images. The
subsequent subsection (Sec. D.2) indicates the reasoning for the proposed kernel size. Section D.3 presents
more experiments conducted with a static filter (class II). In Sec. D.4 and D.5, more experiments can be
examined on class III kernels. More ImageNet-100 training results are introduced in Sec. D.6. Additional to
the corruption robustness, Sec. D.7 indicates a higher robustness against adversarial attack by adding our
proposed trainable pre-processing layer to existing models.

In Fig. 14 the same pattern, as in Fig. 1, can be inspected. The convolutional preprocessing (ours) increases
the performance of the AlexNet model on all corruptions and severities of the OpticsBench (Müller et al.,
2023) dataset.

5

Published in Transactions on Machine Learning Research (06/2024)

Figure 14: Convolutional preprocessing (ours) can increase the robustness of classification networks against
unknown corruptions without data augmentation. AlexNet improved with a trainable preprocessing filter
evaluated on ImageNette (Howard, 2023) blur and corruptions from OpticsBench (Müller et al., 2023). For
each corruption type, five levels of severity are shown from left to right. The variation, visualized via the
box plots, results from five di�erent seeds per model.

An increase of accuracy over the most corruptions from Common Corruptions (Hendrycks & Dietterich,
2019) and OpticsBench (Müller et al., 2023), especially on higher severities are displayed in Fig. 16 to 22.

To extend the corruptions which we evaluate on, we also included the 3D Common Corruptions by Kar et al.
(2022). The results on these additional corruptions can be examined in Table 9. On all three datasets (Ima-
geNette, ImageNet-100, and ImageNet-1k), our proposed layer is able to outperform the baseline significantly.
This is also true for di�erent model architectures.

Dataset Model Verson CC3D

ImageNette

ResNet50 Base 0.509
ResNet50 Fully Trainable 0.665
AlexNet Base 0.655
AlexNet Fully Trainable 0.733

ImageNet-100

ResNet50 Base 0.423
ResNet50 Fully Trainable 0.470
ConvNeXt Base 0.337
ConvNeXt Fully Trainable 0.403

ImageNet-1k

MobileNet Base 0.255
MobileNet Fully Trainable 0.271

Swin v2 (base) Base 0.330
Swin v2 (base) Fully Trainable 0.375

Table 9: 3D Common Corruptions on ImagenNette (Howard, 2023), ImageNet-100 (Tian et al., 2020), and
Imagenet-1k (Russakovsky et al., 2015). 3DCC = 3D Common Corruptions

6

Published in Transactions on Machine Learning Research (06/2024)

Figure 15: MobileNet v3 large - ImageNette OpticsBench. A comparison of the MobileNet v3 large (Base)
and a MobileNet v3 large with our proposed layer (Fully Trainable), on ImageNette OpticsBench.For each
corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption column.

Figure 16: MobileNet v3 large - ImageNette Common Corruptions. A comparison of the MobileNet v3
large (Base) and a MobileNet v3 large with our proposed layer (Fully Trainable), on ImageNette Common
Corruptions. For each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right
in each corruption column.

7

Published in Transactions on Machine Learning Research (06/2024)

Figure 17: E�cientNet b0 - ImageNette OpticsBench. A comparison of the E�cientNet b0 (Base) and a
E�cientNet b0 with our proposed layer (Fully Trainable), on ImageNette OpticsBench. For each corruption
type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption column.

Figure 18: E�cientNet b0 - ImageNette Common Corruptions. A comparison of the E�cientNet b0 (Base)
and a E�cientNet b0 with our proposed layer (Fully Trainable), on ImageNette Common Corruptions. For
each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

8

Published in Transactions on Machine Learning Research (06/2024)

Figure 19: DenseNet161 - ImageNette OpticsBench. A comparison of the DenseNet161 (Base) and a
DenseNet161 with our proposed layer (Fully Trainable), on ImageNette OpticsBench. For each corrup-
tion type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption column.

Figure 20: DenseNet161 - ImageNette Common Corruptions. A comparison of the DenseNet161 (Base)
and a DenseNet161 with our proposed layer (Fully Trainable), on ImageNette Common Corruptions. For
each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

9

Published in Transactions on Machine Learning Research (06/2024)

Figure 21: ResNet50 - ImageNette OpticsBench. A comparison of the ResNet50 (Base), the ResNet50
with an additional prior 2D convolutional layer (Conv2D KS=25), a ResNet50 with an additional trainable
class I layer (Preserve Content), and a ResNet50 with our proposed layer (Fully Trainable), on ImageNette
OpticsBench. For each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right
in each corruption column.

Figure 22: ResNet50 - ImageNette Common Corruptions. A comparison of the ResNet50 (Base), the
ResNet50 with an additional prior 2D convolutional layer (Conv2D KS=25), a ResNet50 with an addi-
tional trainable class I layer (Preserve Content), and a ResNet50 with our proposed layer (Fully Trainable),
on ImageNette Common Corruptions. For each corruption type, five levels of severity (Severity 1 to 5) are
shown from left to right in each corruption column.

10

Published in Transactions on Machine Learning Research (06/2024)

D.1 Transformer-based Model Evaluation

In this section of the appendix, we show, that our proposed input layer not only performs well in combination
with convolutional models, it also increases the performance of transformer-based models. Therefore, we
trained two transformer-based models and compared them to a state-of-the-art convolutional-based model.
Fig. 23 highlights that our proposed input layer increases the accuracy of the Vision Transformer base
(Dosovitskiy et al., 2021) and the Swin Transformer v2 tiny (Liu et al., 2022b) on corrupted ImageNette
data. In comparison to the convolutional-based ConvNeXt small (Liu et al., 2022d) model, both transformer-
based models benefit in similar ranges from the added input layer. Furthermore, Fig. 24 to Fig. 30 present
more detailed evaluation results of these models on corrpted ImagenNette data.

Figure 23: Relative accuracy improvements on ImageNette (Howard, 2023). A fully trainable input layer
(class II) can increase the robustness of classification networks against unknown corruptions without data
augmentation. We evaluate di�erent state-of-the-art DNNs on blur and noise corruptions from Optics-
Bench (Müller et al., 2023) and Common Corruptions (Hendrycks & Dietterich, 2019). For each corruption
type, five levels of severity are shown from left to right.

11

Published in Transactions on Machine Learning Research (06/2024)

Figure 24: Convolutional preprocessing (ours) can increase the robustness of classification networks against
unknown corruptions without data augmentation. Swin Transformer v2 tiny (Liu et al., 2022b) improved
with a trainable preprocessing filter evaluated on ImageNette (Howard, 2023) blur and corruptions from
OpticsBench (Müller et al., 2023). For each corruption type, five levels of severity are shown from left to
right. The variation, visualized via the box plots, results from five di�erent seeds per model.

Figure 25: ConvNeXt small - ImageNette OpticsBench. A comparison of the ConvNeXt (Base) and a
ConvNeXt with our proposed layer (Fully Trainable), on ImageNette OpticsBench. For each corruption
type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption column.

12

Published in Transactions on Machine Learning Research (06/2024)

Figure 26: ConvNeXt small - ImageNette Common Corruptions. A comparison of the ConvNeXt (Base)
and a ConvNeXt with our proposed layer (Fully Trainable), on ImageNette Common Corruptions. For each
corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption column.

Figure 27: Vision Transformer base - ImageNette OpticsBench. A comparison of the Vision Transformer
(Base) and a Vision Transformer with our proposed layer (Fully Trainable), on ImageNette OpticsBench. For
each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

13

Published in Transactions on Machine Learning Research (06/2024)

Figure 28: Vision Transformer base - ImageNette Common Corruptions. A comparison of the Vision Trans-
former (Base) and a Vision Transformer with our proposed layer (Fully Trainable), on ImageNette Common
Corruptions. For each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right
in each corruption column.

Figure 29: Swin Transformer v2 tiny - ImageNette OpticsBench. A comparison of the Swin Transformer v2
(Base) and a Swin Transformer v2 with our proposed layer (Fully Trainable), on ImageNette OpticsBench.
For each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

14

Published in Transactions on Machine Learning Research (06/2024)

Figure 30: Swin Transformer v2 tiny - ImageNette Common Corruptions. A comparison of the Swin Trans-
former v2 (Base) and a Swin Transformer v2 with our proposed layer (Fully Trainable), on ImageNette
Common Corruptions. For each corruption type, five levels of severity (Severity 1 to 5) are shown from left
to right in each corruption column.

15

Published in Transactions on Machine Learning Research (06/2024)

D.2 Kernel Sizes

To explore a suitable kernel size for our proposed layer, we conducted six experiments with slightly increasing
kernel sizes. The results over the clean data, the Common Corruption corrupted data, and the OpticsBench
corrupted data, is displayed in Table 10. On the clean data, the baseline, without any prior layer to the
mode, outperforms all kernel sizes. Furthermore, the models with a prior trainable layer and a small kernel
size (7◊7 and 15◊15) achieve a higher accuracy on the clean data, than models with a large kernel size, such
as 31 ◊ 31 and 35 ◊ 35. However, on the corrupted datasets (OpticsBench and Common Corruptions), the
models with a larger kernel size outperform models with smaller kernel sizes and the baseline significantly.
The best performance on both corrupted datasets and a just slightly worse performance on the clean dataset
is achieved by the model with the kernel size of 25 ◊ 25. Therefore, we used this kernel size for all other
experiments, if not stated di�erently.

Kernel size CD OB CC
Base *0.800 *0.592 *0.487

7 0.782 0.616 0.526
15 0.790 0.575 0.532
21 0.765 0.610 0.530
25 *0.775 *0.685 *0.565
31 0.707 0.681 0.556
35 0.713 0.678 0.549

Table 10: Results on ImageNette for ResNet50 and di�erent kernel size for the proposed trainable convo-
lutional preprocessing layer. CD = Clean Data, OB = OpticsBench (Müller et al., 2023), CC = Common
corruptions (Hendrycks & Dietterich, 2019). * = average from multiple seeds. The results on the two cor-
ruption benchmarks are averaged across severity and corruption

D.3 Static Kernels (Class II)

To investigate the extent to which kernel training improves prediction stability, we freeze di�erent con-
volutional layer initializations. These static filters are then compared to both the baseline and the fully
trainable filters. We investigate two blur filters, one rotational-symmetric Gauss blur filter and a directional
(horizontal coma) blur filter obtained from OpticsBench (Müller et al., 2023). These have both lowpass
characteristic and remove high frequency content. The color distortion filter aims to split color-specific in-
formation by translation. The results on clean data and the di�erent corruption benchmarks on ImageNette
are shown in Table 11. It is noticeable that the two blur filters have an in-domain accuracy comparable
to the fully trainable or the baseline model, while the color distortion kernel model is significantly lower.
Overall, only the Gaussian blur and color distortion models perform better than the baseline on the two
corruption benchmarks. The directional blur model performs worst on corruptions, but second best on clean
data.

16

Published in Transactions on Machine Learning Research (06/2024)

Kernel type class CD OB CC
None (Base) - *0.800 *0.592 *0.487

Preserve content I 0.754 0.476 0.513
Preserve content large I 0.645 0.478 0.440

Fully trainable II *0.775 *0.685 *0.565
L1 prior III 0.712 0.699 0.567

Random initialization II 0.711 0.673 0.550
Con2D KS=25 II 0.655 0.601 0.501

Directional blur filter II 0.768 0.437 0.345
Gauss blur filter II 0.764 0.668 0.541
Color distortion II 0.677 0.660 0.533

Table 11: Results on ImageNette for ResNet50 and di�erent input layer large kernel types. CD = Clean
Data, OB = OpticsBench (Müller et al., 2023), CC = Common corruptions (Hendrycks & Dietterich, 2019).
* = average from multiple seeds. The results on the two corruption benchmarks are averaged across severity
and corruption.

D.4 Detailed plots of Thresholded Kernel Performance

Fig. 7 shows, the nearly constant performance on the OpticsBench dataset, while reducing the frequencies,
with small coe�cients, in the trainable kernel. To show this e�ect in a little more detail, Fig. 31 presents the
evaluation results of only one training run. To illustrate the model performance of class III kernels, we trained
on MobileNet v3 large model with our proposed convolutional preprocessing layer and no restrictions, such as
L1 prior. Subsequent to the training, we evaluated the model multiple times with di�erent shares of removed
frequencies of the proposed kernel layer. In Fig. 31 the evaluation runs with a lower frequency removal share
(0% & 90%) performs better for low severities, but decreases in a faster manner, than evaluation runs with
a high frequency removal share (95% & 99%).

Figure 31: Comparison of frequency thresholded kernels on OpticsBench (Müller et al., 2023) and Common
Corruptions (Hendrycks & Dietterich, 2019). All evaluation results from this diagram are from the same
MobileNet v3 large trainings run, with di�erent thresholding intervals.

17

Published in Transactions on Machine Learning Research (06/2024)

D.5 L1 Prior di�erent Regularization Strengths

Sec. D.4 compares already trained class II kernels, which are adjusted to class III kernels, by removing
frequencies from the proposed layer kernel. In this section, we further investigate the di�erent class III
kernels. Therefore, multiple ResNet50 models with our proposed fully trainable convolutional layer are
trained with an L1 prior on the frequency coe�cients on the trainable kernel of our proposed layer. Each
training run uses a di�erent ⁄ to shift the loss more on the frequency coe�cients on the trainable kernel.
Subsequently, these models are evaluated on the OpticsBench (Müller et al., 2023) and Common Corruptions
(Hendrycks & Dietterich, 2019), which results in Fig. 32. This experiment shows similar results as in Fig. 31,
as the results with a lower lambda are decreasing over higher severities faster. Especially, for noise and blur
corruptions, this decreasing over severities e�ect is more significant. However, it seems like models, which
are trained and optimized to also minimize the frequency coe�cients on the trainable kernel, tend to have
a higher overall accuracy for small ⁄s (⁄ = 0.00001 to ⁄ = 0.005), while models with larger ⁄s (⁄ = 0.001 to
⁄ = 0.01), seem to perform more constant over all severities of corruptions.

Figure 32: Comparison of models, which are trained with an L1 prior. Each model has an ResNet50
architecture, with our additional proposed fully trainable convolutional layer. All these models are trained
on ImageNette (Howard, 2023) and evaluated on corruptions from OpticsBench (Müller et al., 2023) and
Common Corruptions (Hendrycks & Dietterich, 2019).

D.6 ImageNet-100 and ImageNet-1k

Additionally, to all the experiments on ImageNette (Howard, 2023), we also tested the scalability of the
proposed convolutional prior layer. Therefore, Fig. 33 to 42 show comparisons of five di�erent convolutional-
based models (ResNet, AlexNet, E�cientNet, MobileNet, and ConvNeXt) on ImageNet-100 (Tian et al.,
2020). To evaluate our proposed input layer on two transformer-based Models (Vision Transformer and
Swin Transformer v2), Fig. 43 to 46 show the comparisons on ImageNet-100. In each figure, we compare a
model with our proposed fully trainable convolutional input layer against the baseline. The figures show the
performance on the ImageNet-100 corruptions of OpticsBench (Müller et al., 2023) and Common Corruptions
(Hendrycks & Dietterich, 2019). All the comparisons on ImageNet-100 show, that our proposed model
outperforms the baseline on the evaluated corruptions. However, the performance gain is slightly lower than
on ImageNette.

While training on the whole ImageNet-1k dataset (Russakovsky et al., 2015), the performance di�erences
between the baseline and our proposed convolutional-based model is even lower than on ImageNet-100. Only

18

Published in Transactions on Machine Learning Research (06/2024)

for severity 4 and 5 our model outperforms the baseline. This e�ect is visualized in Fig. 47 and 48. However,
the performance on clean data is also just slightly in favor of the baseline, which is stated in Table 4. This
does not hold for the transformer-based model (Swin Transformer v2), which outperforms the baseline on
all severities, which can be examined in Fig. 49.

Figure 33: Improvement on ImageNet-100 OpticsBench and Common Corruptions. For each corruption, five
levels of severity are shown from left to right. For readability, we summarize di�erent corruption types and
take the average.

Figure 34: Convolutional preprocessing (ours) can increase the robustness of classification networks against
unknown corruptions without data augmentation. ResNet50 improved with a trainable preprocessing filter
evaluated on ImageNet-100 (Tian et al., 2020) blur and corruptions from OpticsBench (Müller et al., 2023).
For each corruption type, five levels of severity are shown from left to right. The variation, visualized via
the box plots, results from five di�erent seeds per model.

19

Published in Transactions on Machine Learning Research (06/2024)

Figure 35: AlexNet - ImageNet-100 OpticsBench. A comparison of the AlexNet (Base) and a AlexNet with
our proposed layer (Fully Trainable), on ImageNet-100 OpticsBench. For each corruption type, five levels of
severity (Severity 1 to 5) are shown from left to right in each corruption column.

Figure 36: AlexNet - ImageNet-100 Common Corruptions. A comparison of the AlexNet (Base) and a
AlexNet with our proposed layer (Fully Trainable), on ImageNet-100 Common Corruptions. For each cor-
ruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption column.

20

Published in Transactions on Machine Learning Research (06/2024)

Figure 37: E�cientNet b0 - ImageNet-100 OpticsBench. A comparison of the E�cientNet b0 (Base) and a
E�cientNet b0 with our proposed layer (Fully Trainable), on ImageNet-100 OpticsBench. For each corrup-
tion type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption column.

Figure 38: E�cientNet b0 - ImageNet-100 Common Corruptions. A comparison of the E�cientNet b0 (Base)
and a E�cientNet b0 with our proposed layer (Fully Trainable), on ImageNet-100 Common Corruptions. For
each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

21

Published in Transactions on Machine Learning Research (06/2024)

Figure 39: MobileNet v3 large - ImageNet-100 OpticsBench. A comparison of the MobileNet v3 large (Base)
and a MobileNet v3 large with our proposed layer (Fully Trainable), on ImageNet-100 OpticsBench. For
each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

Figure 40: MobileNet v3 large - ImageNet-100 Common Corruptions. A comparison of the MobileNet v3
large (Base) and a MobileNet v3 large with our proposed layer (Fully Trainable), on ImageNet-100 Common
Corruptions. For each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right
in each corruption column.

22

Published in Transactions on Machine Learning Research (06/2024)

Figure 41: ConvNeXt small - ImageNet-100 OpticsBench. A comparison of the ConvNeXt (Base) and a
ConvNeXt with our proposed layer (Fully Trainable), on ImageNet-100 OpticsBench.For each corruption
type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption column.

Figure 42: ConvNeXt small - ImageNet-100 Common Corruptions. A comparison of the ConvNeXt (Base)
and a ConvNeXt with our proposed layer (Fully Trainable), on ImageNet-100 Common Corruptions.For
each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

23

Published in Transactions on Machine Learning Research (06/2024)

Figure 43: Vision Transformer base - ImageNet-100 OpticsBench. A comparison of the Vision Transformer
(Base) and a Vision Transformer with our proposed layer (Fully Trainable), on ImageNet-100 Optics-
Bench.For each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in
each corruption column.

Figure 44: Vision Transformer base - ImageNet-100 Common Corruptions. A comparison of the Vision
Transformer (Base) and a Vision Transformer with our proposed layer (Fully Trainable), on ImageNet-100
Common Corruptions. For each corruption type, five levels of severity (Severity 1 to 5) are shown from left
to right in each corruption column.

24

Published in Transactions on Machine Learning Research (06/2024)

Figure 45: Swin Transformer v2 tiny - ImageNet-100 OpticsBench. A comparison of the Swin Transformer v2
(Base) and a Swin Transformer v2 with our proposed layer (Fully Trainable), on ImageNet-100 OpticsBench.
For each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

Figure 46: Swin Transformer v2 tiny - ImageNet-100 Common Corruptions. A comparison of the Swin
Transformer v2 (Base) and a Swin Transformer v2 with our proposed layer (Fully Trainable), on ImageNet-
100 Common Corruptions. For each corruption type, five levels of severity (Severity 1 to 5) are shown from
left to right in each corruption column.

25

Published in Transactions on Machine Learning Research (06/2024)

Figure 47: ResNet50 - ImageNet-1k OpticsBench. A comparison of the ResNet50 (Base) and a ResNet50
with our proposed layer (Fully Trainable), on ImageNet-1k OpticsBench. For each corruption type, five
levels of severity (Severity 1 to 5) are shown from left to right in each corruption column.

Figure 48: MobileNet v3 large - ImageNet-1k OpticsBench. A comparison of the MobileNet v3 large (Base)
and a MobileNet v3 large with our proposed layer (Fully Trainable), on ImageNet-1k OpticsBench. For
each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

26

Published in Transactions on Machine Learning Research (06/2024)

Figure 49: Swin Transformer v2 tiny - ImageNet-1k OpticsBench. A comparison of the Swin Transformer v2
(Base) and a Swin Transformer v2 with our proposed layer (Fully Trainable), on ImageNet-1k OpticsBench.
For each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

Figure 50: Swin Transformer v2 base - ImageNet-1k OpticsBench. A comparison of the Swin Transformer v2
(Base) and a Swin Transformer v2 with our proposed layer (Fully Trainable), on ImageNet-1k OpticsBench.
For each corruption type, five levels of severity (Severity 1 to 5) are shown from left to right in each corruption
column.

27

Published in Transactions on Machine Learning Research (06/2024)

D.7 Adversarial Training and Robustness

We further investigate the performance of the proposed input layer on white-box adversarial attacks. There-
fore, we trained a ResNet50 with and without our proposed trainable convolutional input layer. The models
are trained with the fast gradient sign method (FGSM) (Goodfellow et al., 2015) and an ‘ of 2

255 and 6
255

and evaluated on clean data and under the FGSM adversarial attack, with two di�erent ‘ of 2
255 and 6

255 .

Model Version CD FGSM ‘ = 2
255 FGSM ‘ = 6

255
ResNet50 Adv. Baseline 0.665 0.567 0.385
ResNet50 Adv. Trainable 0.776 0.667 0.389
ResNet50 Adv. Baseline 0.534 0.483 0.760
ResNet50 Adv. Trainable 0.581 0.527 0.776

Table 12: Adversarial Results on ImageNette (Howard, 2023) data. CD= Clean Data, FGSM = FGSM
attack (Goodfellow et al., 2015) with two di�erent ‘ of 2

255 and 6
255 . The two models in the top rows are

trained with an ‘ of 2
255 , while the two model on the bottom are trained with an ‘ of 6

255 .

In Table 12 the results of these experiments, indicate the robustness of the models with our preprocessing
layer: they are outperforming the baseline on all evaluated data. While both models have similar accuracy
under FGSM attacks with ‘ of 2

255 , our model achieves better results on clean data (+11.1% & +4.7%) and
with a lower ‘ value of 2

255 (+10.0% & +4.4%). These increases are possible while only adding one layer
with less than 2k of parameters.

To further extend the experiment on robustness against adversarial attacks, we trained models without
adversarial training and compared, whether our proposed input layer is able to increase the robustness
even without specific adversarial training. Therefore, we used AutoAttack (Croce & Hein, 2020) with its 4
adversarial attacks and reported SQUARE (Andriushchenko et al., 2019) additionally as a black-box attack.
Table 13 displays the results of this experiment. On both architectures is our model able to outperform the
baseline.

Model Version AA SQUARE
ResNet50 Base 0.199 0.156
ResNet50 Fully Trainable 0.229 0.193
AlexNet Base 0.446 0.518
AlexNet Fully Trainable 0.468 0.657

Table 13: Adversarial Results on AutoAttack (Croce & Hein, 2020) with an epsilon of 4/255 and SQUARE
(Andriushchenko et al., 2019). AA= AutoAttack, SQUARE on ImagenNette (Howard, 2023).

D.8 Prepended Input Layer on Pretrained Models

To have a deeper understanding of the scope of our proposed input layer, we tested whether the entire model
needs to be trained or only our prepended input layer can be trained. Therefore, we used pretrained models
and prepended our proposed input layer, subsequently, we trained the models while freezing all layers except
our proposed input layer. This resulted in a model, which was on par with the baseline on clean data, but
performed slightly worse on the OpticsBench dataset. However, as table 14 shows, that the model with the
input layer slightly outperforms the baseline on the Common Corruptions dataset.

To summarize these experiments, our proposed input layer should be trained with the model, as the feature
extraction layer is tuned on the specific input to these layers. As the input layer transforms the input to the
subsequent layers, they are not able to extract the corresponding features in the same way anymore. Thus,
the performance boost of the prepended input layer on corrupted data is no longer present.

28

Published in Transactions on Machine Learning Research (06/2024)

Dataset Model Version CD OB CC

ImageNette ResNet50 Pretrained Base 0.987 0.870 0.807
ResNet50 Prepended Input Layer 0.986 0.851 0.813

Imagenet-100 ResNet50 Pretrained Base 0.868 0.615 0.467
ResNet50 Prepended Input Layer 0.866 0.607 0.470

Table 14: Results from prepending our input layer to pretrained ResNet50 models on Results on Ima-
geNette (Howard, 2023) and ImageNet-100 (Tian et al., 2020) datasets.

E Analysis of Optimized Kernels

Figure 51: Optimized kernels in the spatial domain (top) and their image-sized frequency magnitudes in
log10 scale (bottom) trained on ImageNette.

In this section, we perform an in-depth analysis of the pre-pended kernels. Fig. 51 visualizes optimized class
II kernels and their corresponding frequency magnitudes. It can be observed that the optimized kernels for
di�erent neural networks are di�erent. In the following, we quantitatively assess the similarities of these
kernels, compare the evolution of their spectra, and discuss their condition numbers in finer detail.

E.1 Spectrum Correlation

To ensure that our results reflect performance gains due to the proposed method and not because of for-
tuitous initialization, we experiment with multiple seeds. The kernel is, without change, initialized with a
specific coma filter, and the weights of the remaining network are generated pseudo-randomly. We find that
the performance of our networks is una�ected. A note-worthy discovery, however, is that despite di�erent
initializations, the optimized kernels’ spectra are found to be very similar, given the neural network archi-
tecture and the input dataset remain the same. Fig. 52 numerically assesses the structural similarity of
the spectra of multiple kernels post-optimization. One reason for the observed similarity could be that the
proposed kernel learns to map the input to an information-dense subspace most suited to aid the following
network in its classification task. Given that the input dataset and the architecture remain invariant, the
information-dense subspace should not change as well. Another observation is that given the same input
dataset, changing the network changes the mapping learned by the kernel. This suggests that di�erent neural
networks predominantly make use of di�erent information content of the unadulterated dataset.

29

Published in Transactions on Machine Learning Research (06/2024)

Figure 52: Structural similarity of the magnitudes of the spectra of di�erent kernels. S1 and S2 refer to
di�erent seed values, and Im100 and Nette refer to ImageNet-100 and ImageNette, respectively.

Figure 53: Optimized kernels in the spatial domain (top) and their image-sized frequency magnitudes in
log10 scale (bottom) pre-pended to ResNet50 initialized with di�erent seeds and trained on ImageNet-100.

E.2 Spectrum Evolution

We initialize our kernels with a specific coma filter, which can be observed in Fig. 54 (a) and (d). Moreover,
these kernels do not mix channel information. We can observe the evolution of the kernels in the spatial and
frequency domains in Fig. 54, when the networks are trained on ImageNet-100. From the figure, it is also
apparent that the kernels learn di�erent projections for each color channel.

Fig. 55 compares the evolution of class II and class III kernels. The frequency band axis represents the
dimension of a square window, with its center being the center of the frequency-shifted spectrum. Each bar
indicates the average magnitude of the frequencies in this window, which we refer to as a frequency band.
Then, the first bar in each epoch is the magnitude of the DC component of the spectrum and the last is

30

Published in Transactions on Machine Learning Research (06/2024)

(a) Epoch 0 (b) Epoch 10 (c) Epoch 90

(d) Epoch 0 (e) Epoch 10 (f) Epoch 90

Figure 54: Evolution of kernels in the spatial domain (left) and their frequency magnitudes in log10 scale
(right). Kernels in (a-c) and (d-f) were pre-pended to ResNet50 and AlexNet, respectively. Each row
corresponds to a color channel.

the mean of the magnitudes of the entire spectrum. From Fig. 55, we can observe that the spread of the
bars depends on the presence of the L1 prior. The L1 prior reduces the higher frequency components of the
spectrum. Barring the change in prior, the evolution of the spectrum is similar.

31

Published in Transactions on Machine Learning Research (06/2024)

(a) Alexnet w/o L1 Prior (b) Resnet w/o L1 Prior

(c) Alexnet with L1 Prior (d) Resnet with L1 Prior

Figure 55: Evolution of spectra of (a-b) Fully Trainable and (c-d) L1 Prior kernels. The bar height indicates
the average of the absolute value of the Fourier coe�cients in di�erent frequency bands (DC component in
the front). Each epoch is normalized separately.

E.3 Condition Numbers

We use the condition number (CN) as one of the two defining characteristics of our classes of kernels. One
significant feature of this description is that the convolution kernel, ·úg, and the corresponding deconvolution
kernel, · ú g

≠1, share the same CN. This is particularly important for class I kernels because it suggests that
the neural network following ·úg can perfectly restore the input without being stymied by noise amplification,
which distinguishes class I kernels from the rest. In this section, we will derive the equation for CN provided
in Sec. 3 and further inspect the CNs of class II kernels.

Derivation of the Condition Number: For an arbitrary invertible matrix A, CN is defined as:

CN (A) = ||A|| · ||A≠1|| = ||A≠1|| · ||A|| = CN
!
A

≠1"
,

32

Published in Transactions on Machine Learning Research (06/2024)

where ||.|| is the norm of a matrix. The sensitivity of A to noise or the noise amplification possible by the
transformation is equal to that of its inverse. Moreover, ||A|| = ‡max (A) and ||A≠1|| = 1/‡min (A), where
‡max and ‡min are the maximum and minimum singular values of the matrix, respectively. In our case, the
transformation A is a circulant matrix describing the convolution operation. The eigenvectors of A form an
orthonormal Fourier basis. Let each basis be a column of Q, and let the corresponding eigenvalues ⁄i, the
Fourier coe�cients, form a diagonal matrix, �. A can be decomposed as

A = Q�Q
T

,

as it is a normal matrix. Then using the relation ‡i =


⁄i (AT A),

‡max (A) =
Ò

⁄max (AT A)

=
Ú

⁄max
1

(Q�QT)T
Q�QT

2

=
Ò

⁄max (Q�2QT)

= |⁄max (A) |.

Similarly, ‡min (A) = |⁄min (A) |. Therefore,

CN (A) = |⁄max (A) |
|⁄min (A) | = 1/|⁄min (A) |

1/|⁄max (A) | = CN
!
A

≠1"
.

Class II Kernels: The CN of class I kernels is by their definition equal to unity and the CNs of class III
kernels are numerically very high (approaching infinity) due to the presence of zeros in the Fourier domain.
However, class II kernels have high finite CNs, around 104. We can observe these in Fig. 56. The range of
CNs of the optimized kernels is within one order of magnitude despite being pre-pended to di�erent neural
networks and trained on di�erent data sets.

Figure 56: Condition numbers of post-optimization class II kernels pre-pended to di�erent neural networks
and trained on ImageNet-100 and ImageNette. Each bar is a mean of up to 5 runs.

33

Published in Transactions on Machine Learning Research (06/2024)

Figure 57: Condition numbers of post-optimization class II kernels pre-pended to networks specified in the
xlabel and trained on ImageNette. S1-S5 refers to di�erent seed values, and R, G, and B refer to the color
channels.

F Extended Discussion

In the main paper, we only briefly visit two interesting discussion points, which we pick up here to extend
the discussion.

Figure 58: ResNet ImageNet100 OpticsBench. This evaluation demonstrates the benefit of our proposed
fully trainable large kernel filter over a fixed Gaussian filter. While the performance gap on ImageNette is
smaller, on ImageNet-100, the Gaussian pre-filtered images can not be reliably classified.

F.1 Static Low Pass Filtering

The first point arises when considering Table 5, in particular the results for the non-trainable, static Gaussian
kernel. This kernel defines a particular subspace projection, which one would expect to perform well under
high-frequency noise. Yet, it also removes information in a fixed and pre-determined way which leads to
a decay in the clean classification accuracy, which becomes more severe as the hardness of the considered

34

Published in Transactions on Machine Learning Research (06/2024)

classification task increases. While in ImageNette, the static Gaussian kernel only performs one percent
point below a fully learned filter of the same size of 25 ◊ 25, the gap is severe when looking at ImageNet-100
in Figure 58. As the classes become more di�cult to discriminate, the simple Gaussian blurring yield very
unsatisfactory results whereas the proposed fully trainable filter increases model robustness across various
corruptions.

F.2 Sparse Coding

The second point is an extended discussion on the relationship of our approach to sparse coding. In the
main paper, we started the discussion of why the standard initial layers of the usual networks, do not learn
similar patterns as our proposed dimension-preserving large kernel convolution. These layers are known to
learn an overcomplete representation of the data in a sparse coding sense, i.e. in every channel of every
feature map, only very few features are "active". When considering for example a convolution layer with
3 ◊ 3 kernels, it is also clear that the usual increase in feature map channels from 3 in the input to e.g. 64
likely leads to redundant information (a 3 ◊ 3 filter can be represented by 9 basis vectors, i.e. more than
9 feature map channels imply redundancy, not only with respect to the input information but also in the
amount of di�erent (i.e. linearly independent) features that can be extracted). Consequently, such usual
early layers are likely to represent sparse codes, representing every kind of data that is given in the input.
Such behavior is likely to impact a model’s robustness, as examplified in the below toy example:

Suppose the input data lives in an approximate subspace: the clean data forms (noisy) samples of this
subspace since it is only approximate. If this approximate subspace is mapped to higher dimensions via a
convolutional input layer with many redundant output channels, more degrees of freedom are available to fit
the data points. The optimizer may therefore choose to use additional redundant dimensions to marginally
increase the fit of the noisy data points. While this improves performance on the clean data, the extrapolation
capabilities to unseen samples may decrease, giving rise to overfitting and by implication worse performance
on corrupted data. Forcing the optimizer to stay in the original subspace and choosing a more constrained
model therefore may aid extrapolation, i.e. generalization capabilities of the resulting model.

In our layer, such behavior is avoided, since we are mapping every channel of the input to exactly one channel
in the output of our layer. If a particular piece of information from the input is to be preserved in the output
of our layer, the large kernel with its 3 ◊ 25 ◊ 25 weights has to be learned appropriately. As discussed
in section 3 Content Preserving Filters, only a limited set of special filters can fully preserve the input
content. Yet, for the kernel to be learned, it uses gradient signal that is provided from the classification task
at hand. In particular, if an input feature is not contributing to the discrimination between given classes,
there will be no gradient signal provided to the input that encourages to learn this particular feature, and
since the representation learned is not over-complete, it will also not be learned by chance. A large kernel
makes it particularly hard to learn local patterns by chance. It learns to predominantly represent signal that
is needed for the task at hand, i.e. the essential.
One potential interpretation is to understand the trained layer as an information bottleneck, through which
only such information is passed, that is explicitly needed for the classifier to perform well on the training
set. However, removing the additional parts of the signal that are not helpful for classification makes the
model more robust under input corruptions.

35

	Introduction
	Related Work
	Enhancing Prediction Stability with a Trainable Convolution Input Layer
	Experimental Evaluation
	Trainable Large Kernels can Improve Prediction Stability
	Which Properties of Trainable Kernels can help? – Comparing Kernel Classes
	Comparison with Augmentation and Joint Trainable Large Kernel and Augmentation

	Discussion
	Conclusion & Future Work
	Appendix Overview
	Datasets
	Clean Datasets
	Common Corruptions
	OpticsBench
	Grouping Corruption Types

	Experiment Setup
	Additional Experimental Results
	Transformer-based Model Evaluation
	Kernel Sizes
	Static Kernels (Class II)
	Detailed plots of Thresholded Kernel Performance
	L1 Prior different Regularization Strengths
	ImageNet-100 and ImageNet-1k
	Adversarial Training and Robustness
	Prepended Input Layer on Pretrained Models

	Analysis of Optimized Kernels
	Spectrum Correlation
	Spectrum Evolution
	Condition Numbers

	Extended Discussion
	Static Low Pass Filtering
	Sparse Coding

