
Setup Notations Explanations

basic setup

K; T the number of (base) arms; time horizon
k; t arm index; time round t k 2 [K], t 2 [T]
P probability simplex P 2 [0, 1]K

✏ discretization parameter ✏ 2 [0, 1]
P✏ probability simplex after discretization with ✏ P✏ ⇢ P
p meta arm/mixed strategy p 2 P
p⇤ optimal meta arm
p⇤

✏ optimal meta arm in P✏

rk(·) expected reward function of arm k rk : [0, 1] ! [0, 1]
�k arm k’s hyperparameter on tradeoff the expected reward and fairness

pk, pk(t) the probability on pulling arm k, at time t pk, pk(t) 2 [0, 1]
Lr

k the Lipschitz constant of rk

L⇡
k the Lipschitz constant of ⇡k

L⇤ the maximum L⇤ = max(1 + Lr
k + |�k|L⇡

k)
r̃t the realized reward at time t
brt the importance weighted reward

r̄t(pk) the empirical reward mean of discretized arm pk

Reg(t) cumulative regret till time t
�p the badness of meta arm p t

p(t) = {pk(t)}k2[K] the meta arm deployed in time round t
f(t) = {fk(t)}k2[K] actions impact function

action
dependent
bandit

nt(pk) the number of times when pulling arm k with prob pk till time t
Nt(p) number of pulls of meta arm p till time t
S(pk) the set of all meta arms which contain pk S(pk) = {p, pk 2 p}

Nt(S(pk)) total number of pulls of all meta arms in S(pk) Nt(S(pk)) =
P

p2S(pk)
Nt(p)

pmin(p) pmin(p) = arg minp2p nt(pk) for some t
U t(p) the empirical reward mean of meta arm p
U(p) the expected reward of meta arm p

history
dependent
bandit

� time-discounted factor � 2 (0, 1)
L the length of phase L 2 N+

sa the length of approaching stage sa 2 N+

⇢ the ratio of estimation stages over each phase ⇢ 2 (0, 1)
m the index of each phase

�t(pk) the set of all indexes which arm k is pulled with prob pk

p(�) = {p(�)k }k2[K] the time-discounted empirical frequency
r̄estm (pk) the empirical reward mean of discretized arm pk in all estimation stages
Uest

t (bp) the empirical reward mean of meta arm p in all estimation stages
nest

m (pk) the number of rounds that arm k is pulled with prob pk in the first m phases

Table 1: The summary of notations.

A Related Work

Our learning framework is based on the rich bandit learning literature [3, 42]. However, instead of
making the standard assumption of i.i.d. or adversarial rewards, we consider the setting in which
the arm reward depends on the action history. The settings most similar to ours are non-stationary
bandits, including restless bandits [60, 8, 25, 63, 21], in which the reward of each arm changes over
time regardless of whether the arm is pulled, and rested bandits [43, 58, 17], in which the reward of
arm evolves only when it is pulled. In contrast, our model encodes a generic dependency of actions
taken in the past and our setting is sort of a mix between the above two. On one hand, the reward of
each arm is restless, because even if we do not select a particular arm at step t, the arm’s underlying
state will continue to evolve (this is represented by our definition of f(t)), which will change the
expected reward to be seen in the future. On the other hand, the changing of rewards does depend on
actions, so in this sense, it is related to rested bandit. Technically, due to the presence of historical
bias, we allow the learner to learn the optimal strategy in a continuous space which is built on the
probabilistic simplex over all arms. Meanwhile, our work distinguishes from prior works in that
our proposed framework does not require the exact knowledge of dependency function except to the
extent of a Lipschitz property and a convergence property.

Our formulation bears similarity to reinforcement learning since our impact function encodes memory
(and is in fact Markovian [53, 62]), although we focus on studying the exploration-exploitation
tradeoff in bandit formulation. Our techniques and approaches share similar insights with Lipschitz
bandits [39, 59, 50, 16] and combinatorial bandits [11, 15, 13, 12] in that we also assume the Lipschitz
reward structure and consider combinatorial action space. However, our setting is different since the
arm reward explicitly depends on the learner’s action history. We have a detailed regret comparisons
with the regret of directly applying techniques in combinatorial bandits to our setting in Section 4.

There are several works that formulate delayed feedback in online learning [35, 64, 56, 38, 55, 24, 10,
41]. We discuss the ones that are mostly related to ours. In particular, Pike-Burke et al. [56] considers

15

the setting in which the observed reward is a sum of a number of previously generated rewards which
happen to arrive in the given round. Joulani et al. [35] and Vernade et al. [64] focus on the setting
where either feedback or reward is delayed. Our work differs from the above works in that, in our
setting, the reward of the arm is influenced by the action history while the above works still consider
stationary rewards (though the reward realization could be delayed). There have also been works
that study the setting that explores different generative process of reward distribution of arms, e.g.,
the reward of the arm depends on strategic or biased human behavior [32, 48, 61]. The more closer
works to ours include considering the arm of the reward is an increasing concave function of the time
since it was last played Kleinberg & Immorlica [38], or decreases as it was played more time [43, 58].
Our work differs from the above in that we formalize an impact function that permits more general
form of the reward evolvement as a function of the history of arm plays.

Our work also has implications in algorithmic fairness. one related line of works have studied fairness
in the sequential learning setting, however they do not consider long-term impact of actions [34, 7,
49, 30, 27, 44]. For the explorations of delayed impacts of actions, the studies so far have focus
on addressing the one-step delayed impacts or a multi-step sequential setting with full information
[31, 33, 45, 51, 18, 6]. Our work differs from the above and studies delayed impacts of actions in
sequential decision making under uncertainty.

B Lagrangian Formulation

While our setting follows standard bandit settings and aims to maximize the utility, it can be extended
to incorporate fairness constraints as commonly seen in the discussion of algorithmic fairness. For
example, consider the notion of group fairness, which aims to achieve approximate parity of certain
measures across groups. Let ⇡i(fi(t)) 2 [0, 1] be the fairness measure for group i (which could
reflect the socioeconomic status of the group). One common approach is to impose constraints to
avoid the group disparity. Let ⌧ 2 [0, 1] be the tolerance parameter, the fairness constraints at t can be
written as: |⇡i(fi(t)) � ⇡j(fj(t))| ⌧, 8i, j 2 [K]. ⇡i(·) is unknown a priori and is dependent on
the historical impact. Incorporating the fairness constraints would transform the goal of the institution
as a constrained optimization problem:

max
p2P

TX

t=1

Ut(p(t)) s.t. |⇡i(fi(t)) � ⇡j(fj(t))| ⌧, 8i, j 2 [K], 8t 2 [T].

We can then utilize the Lagrangian relaxation: impose the fairness requirement as soft constraints
and obtain an unconstrained optimization problem with a different utility function. As long as we
also observe (bandit) feedback on the fairness measures at every time step, the techniques developed
in this work can be extended to include fairness constraints.

To simplify the presentation, we fix a time t and drop the dependency on t in the notations.

Definition B.1. The Lagrangian L : P⇥⇤2 ! R where ⇤ ✓ R(K2)
+ of our problem can be formulated

as:

L(p, �) :=
KX

k=1

pkrk(fk) �
(K2)X

c=1

�+
c (⇡ic(fic) � ⇡jc(fjc) � ⌧) �

(K2)X

c=1

��
c (⇡jc(fjc) � ⇡ic(fic) � ⌧) ,

where �+, �� 2 ⇤. The notation (ic, jc) 2 {(i, j)1i<jK} is a pair of combination and c 2
[K(K � 1)/2] is the index of each pair of this combination.

The problem then reduces to jointly maximize over p 2 P and minimize over �+, �� 2 ⇤. Rear-
ranging and with a slight abuse of notations, we have the following equivalent optimization problem:

max
p2P

min
�+,��

KX

k=1

pk(t)rk(fk(t)) + �k⇡k(fk(t)) + ⌧

(K2)X

c=1

(�+
c + ��

c), (8)

where �k := �
P

c:ic=k(�+
c � ��

c) +
P

c:jc=k(�+
c � ��

c). Due to the uncertainty of reward function
rk(·) and fairness measure ⇡k(·) (recall that our fairness criteria is defined as the parity of socio-
economic status cross different groups, which we can only observe the realization drawn from an

16

unknown distribution), we treat the above optimization problem as a hyperparameter optimization:
similar to choosing hyperparameters (the Lagrange multipliers: �+ and ��) based on a validation
set in machine learning tasks. Therefore, given a fixed set of �+ and ��, the problem in (8) can be
reduced to the following:

max
p2P

KX

k=1

pk(t) · rk(fk(t)) + �k · ⇡k(fk(t)). (9)

C Negative Results

In this section, we show that an online algorithm which ignores its action’s impact would suffer linear
regret. We consider two general bandit algorithms: TS (Thompson Sampling) and a mean-converging
family of algorithms (which includes UCB-like algorithms). These are the two most popular and
robust bandit algorithms that can be applied to a wide range of scenarios. We prove the negative
results respectively. In particular, we construct problem instances that could result in linear regret if
the deployed algorithm ignore the action’s impact.
Example 1. Considering the following Bernoulli bandit instance with two arms, indexed by arm 1
and arm 2, i.e., K = 2. For any ✏ 2 [0, 1/2), define the expected reward of each arm as follows:

• arm 1: r1(p) = p/(1 � ✏) · (p 1 � ✏) + (2 � ✏ � p) · (p � 1 � ✏), 8p 2 [0, 1]

• arm 2: r2(p) = p/(2✏) · (p ✏) + (� 1
2p + 1

2 (1 + ✏)) · (p � ✏), 8p 2 [0, 1]

It is easy to see that p⇤ = {1 � ✏, ✏} is the optimal strategy for the above bandit instance.

We first prove the negative result of Thompson Sampling using the above example. The Thompson
Sampling algorithm can be summarized as below.

Algorithm 4 Thompson Sampling
1: Si = 0, Fi = 0.
2: for t = 1, 2, . . . , do
3: For each arm i = 1, 2, sample ✓i(t) from the Beta(Si + 1, Fi + 1) distribution.
4: Play arm at := arg maxi ✓i(t) and observe reward r̃t.
5: If r̃t = 1, then Sat = Sat + 1, else Fat = Fat + 1.
6: end for

Lemma C.1. For the reward structure defined in Example 1, Thompson Sampling would suffer linear
regret if it doesn’t consider the action’s impact it deploys at every time round, namely, it takes the
sample mean as the true mean reward of each arm.

Before we proceed, we first prove the following strong law of large numbers in Beta distribution. We
note that the below two lemmas are not new results and can be found in many statistical books. We
provide proofs here for the sake of making the current work self-contained.
Lemma C.2. Consider the Beta distribution Beta(a↵+1, b↵+1) whose pdf is defined as f(x, ↵) =
[xa(1�x)b]↵

B(a↵+1,b↵+1) , where B(·) is the beta function, then for any positive (a, b) such that a + b = 1, when
↵ ! 1, the limit of f(x, ↵) can be characterized by Dirac delta function �(x � a).

Proof. By Stirling’s approximation, we can write the asymptotics of beta function as follows:

B(x, y) ⇠
p

2⇡
xx�0.5yy�0.5

(x + y)x+y�0.5
.

Thus, when ↵ ! 1, i.e., for large a↵ + 1 and b↵ + 1, we can approximate the pdf f(x, ↵) in the
following:

f(x, ↵) ⇠
r

a + 2

2⇡ab
h↵(x),

where h(x) := (x/a)a
�
1�x

b

�b. It’s easy to see that h(x) has a unique maximum at a, by invoking
Lemma C.3 will complete the proof.

17

Lemma C.3. Let h : [0, 1] ! R+ be any bounded measurable non-negative function with a unique
maximum at x⇤, and suppose h is continuous at x⇤. For � > 0 define h�(x) = C�h�(x) where C�

normalizes such that
R 1
0 h�(x)dx = 1. Consider any continuous function f defined on [0, 1] and ✏ >

0, then we have lim�!1
R

h(x)h(x⇤)�✏ h�(x)f(x)dx = 0 and lim�!1
R 1
0 h�(x)f(x)dx = f(x⇤).

Proof. For any � > 0, we have
����
Z 1

0
h�(x)f(x)dx � f(x⇤)

����

=

����
Z 1

0
h�(x)

�
f(x) � f(x⇤)

�
dx

����

����
Z

|x�x⇤|�
h�(x)

�
f(x) � f(x⇤)

�
dx

����+
����
Z

|x�x⇤|>�
h�(x)

�
f(x) � f(x⇤)

�
dx

����

����
Z

|x�x⇤|�
h�(x)

�
f(x) � f(x⇤)

�
dx

����+ max
��f(x) � f(x⇤)

��
����
Z

|x�x⇤|>�
h�(x)dx

����.

For any � > 0, and due to the continuous property of f on x⇤, which further implies that there exists
a constant c > 0 such that |f(x)� f(x⇤)| < �/2 whenever |x�x⇤| < c. Thus, given c > �, we have

����
Z 1

0
h�(x)f(x)dx � f(x⇤)

���� ✏/2 + max
��f(x) � f(x⇤)

��
����
Z

|x�x⇤|>�
h�(x)dx

����.

It suffices to show that the second term in RHS of above inequality will converge to 0 as � ! 1.
Let ||h||1,� denote the L1 norm of h when h is restricted to {|x � x⇤| > �}. Note that for any
nonnegative integrable functions h, we have

lim
�!1

✓Z 1

0
h�(x)dx

◆1/�

= ||h||1.

Recall the definition of C� = 1R 1
0 h�(x)dx

, thus, we have lim�!1 C1/�
� = 1

||h||1 , which immediately
showing that

✓Z

|x�x⇤|>�
h�(x)dx

◆1/�

= C1/�
�

✓Z

|x�x⇤|>�
h�(x)dx

◆1/�

,

which further implies that ||h||1,�/||h||1 < 1. Thus, there must exist �0 such that 8� > �0,
✓Z

|x�x⇤|>�
h�(x)dx

◆1/�

< � < 1. (10)

Since � < 1, we then have lim�!1 �� = 0, this implies the second term of RHS of (10) converging
to 0 as � ! 1.

We now ready to prove Lemma C.1.

Proof. We prove this by contradiction. Let Reg(T) denote the expected regret incurred by TS
up to time round T , and Nt(p) =

Pt
s=1 (p(s) = p) denote the number of rounds when the

algorithm deploys the (mixed) strategy p 2 �K . Furthermore, let Si(t)(resp. Fi(t)) denote the
received 1s(resp. 0s) of arm i up to time round t. Recall that in Thompson Sampling, we have
P(at = 1) = P

�
✓1(t) > ✓2(t)

�
. By the reward function defined in Example 1, it’s immediate to see

that

S1(T) � (1 � ✏)NT (p⇤); F1(T) T � NT (p⇤); S2(T) � 0.5✏NT (p⇤); F2(T) � 0.5✏NT (p⇤).

Now suppose Thompson Sampling achieves sublinear regret, i.e., Reg(T) = o(T), which implies
following

lim
T!1

T � NT (p⇤)

T
= 0.

18

Thus, by the strong law of large numbers and invoking Lemma C.2, the sample ✓1(T + 1) ⇠
Beta(S1(T), F1(T)) and ✓2(T + 1) ⇠ Beta(S2(T), F2(T)) will converge as follows:

lim
T!1

✓1(T + 1) = 1; lim
T!1

✓2(T + 1) = 0.5.

Then it’s almost surely that limT!1 P(aT+1 = 1) = limT!1 P
�
✓1(T + 1) > ✓2(T + 1)

�
= 1.

This leads to following holds for sure

S1(s + 1) = S1(s) + 1, 8s > T.

Thus, consider the regret incurred from the (T + 1)�th round to (2T)�th round, the regret will be

Reg(2T) � Reg(T) =
2TX

s=T+1

U(p(s)) = 0.5T ✏,

where the second equality follows that p(s) = (1, 0) holds almost surely from T + 1 to 2T . This
shows that limT!1

E[Reg(2T)]
2T = ✏/4, which contradicts that the algorithm achieves the sublinear

regret.

We now show that a general class of algorithms, which are based on mean-converging, will suffer
linear regret if it ignores the action’s impact. This family of algorithms includes UCB algorithm in
classic MAB problems.
Definition C.4 (Mean-converging Algorithm [57]). Define Ik(t) = {s : as = k, s < t} as the set of
time rounds such the arm k is chosen. Let r̄k(t) = 1

|Ik(t)|
P

s2Ik(t)
r̃s be the empirical mean of arm

k up to time t. The mean-converging algorithm A assigns sk(t) for each arm k if following holds
true:

• sk(t) is the function of {r̃s : s 2 Ik(t)} and time t;

• P(sk(t) = r̄k(t)) = 1 if lim inft
|Ik(t)|

t > 0.
Lemma C.5. For the reward structure defined in Example 1, the mean-converging Algorithm will
suffer linear regret if it mistakenly take the sample mean as the true mean reward of each arm.

Proof. We prove above lemma by contradiction. Let NA
t (p) denote the number of plays with

deploying the strategy p by algorithm A till time t. Suppose a mean-converging Algorithm A achieves
sublinear regret, then it must have limT!1 NA

T (p⇤)/T > 0 and limT!1
�
T � NA

T (p⇤)
�
/T =

o(T). By the definition of mean-converging algorithm and recall the reward structure defined in
Example 1, the score sT (1) assigned to arm 1 by the algorithm A must be converging to 1, and the
score of sT (2) assigned to arm 2 must be converging to 0.5. By the strong law of large numbers, it
suffices to show that P(p(t) = {1, 0}) = 1, 8t � T + 1, which implies the algorithm A would suffer
linear regret after T time rounds and thus completes the proof.

D Missing Proofs for Action-Dependent Bandits

D.1 The naive method that directly utilize techniques from Lipschitz bandits

We first give a naive approach which directly applies Lipschitz bandit technique to our action-
dependent setting. Recall that each meta arm p specifies the probability pk 2 [0, 1] for choosing each
base arm k. We uniformly discretize each pk into intervals of a fixed length ✏, with carefully chosen
✏ such that 1/✏ is an positive integer. Let P✏ be the space of discretized meta arms, i.e., for each
p = {p1, . . . , pK} 2 P✏,

PK
k=1 pk = 1 and pk 2 {0, ✏, 2✏, . . . , 1} for all k. We then run standard

bandit algorithms on the finite set P✏.

There is a natural trade-off on the choice of ✏, which controls the complexity of arm space and the
discretization error. show that, with appropriately chosen ✏, this approach can achieve sublinear regret
(with respect to the optimal arm in the non-discretized space P).

Lemma D.1. Let ✏ = ⇥
��

lnT
T

� 1
K+1

�
. Running a bandit algorithm which achieves optimal regret

O(
p

|P✏|T ln T) on the strategy space P✏ attains the following regret (w.r.t. the optimal arm in
non-discretized P): Reg(T) = O

�
T

K
K+1 (ln T)

1
K+1

�
.

19

Proof. As mentioned, we uniformly discretize the interval [0, 1] of each arm into interval of a fixed
length ✏. The strategy space will be reduced as P✏, which we use this as an approximation for the full
set P . Then the original infinite action space will be reduces as finite P✏, and we run an off-the-shelf
MAB algorithm A, such as UCB1 or Successive Elimination, that only considers these actions in P✏.
Adding more points to P✏ makes it a better approximation of P , but also increases regret of A on
P✏. Thus, P✏ should be chosen so as to optimize this tradeoff. Let p⇤

✏ := supp2P✏

PK
k=1 pkrk(pk)

denote the best strategy in discretized space P✏. At each round, the algorithm A can only hope to
approach expected reward U(p⇤

✏), and together with additionally suffering discretization error:

DE✏ := U(p⇤) � U(p⇤
✏).

Then the expected regret of the entire algorithm is:

Reg(T) = T · U(p⇤) � Reward(A)

= T · U(p⇤
✏) � Reward(A) + T (U(p⇤) � U(p⇤

✏))

= E[Reg✏(T)] + T · DE✏,

where Reward(A) is the total reward of the algorithm, and Reg✏(T) is the regret relative to U(p⇤
✏).

If A attains optimal regret O(
p

KT ln T) on any problem instance with time horizon T and K arms,
then,

Reg(T) O(
q��P✏

��T ln T) + T · DE✏.

Thus, we need to choose ✏ to get the optimal trade-off between the size of P✏ and its discretization
error. Recall that rk(·) is Lipschitz-continuous with the constant of Lk, thus, we could bound the DE✏

by restricting p⇤
✏ to be nearest w.r.t p⇤. Let L⇤ = maxk2[K](1 + Lk), then it’s easy to see that

DE✏ = ⌦(KL⇤✏).

Thus, the total regret can be bounded above from:

Reg(T) O
✓q

(1/✏ + 1)K�1T ln T

◆
+ ⌦(TKL⇤✏).

By choosing ✏ = ⇥

✓⇣
lnT

T (L⇤)2

⌘ 1
K+1

◆
we obtain:

Reg(T) O(cT
K

K+1 (ln T)
1

K+1).

where c = ⇥
⇣
K(L⇤)

K�1
K+1

⌘
.

D.2 Missing Discussions and Proofs of Theorem 4.2

Step 1: Bounding the error of |U(p) � U(p)|. For any p = {p1, . . . , pK}, define the empirical
reward U t(p) =

PK
k=1 pkr̄t(pk). The first step of our proof is to bound P(|U t(p) � U(p)| �) for

each meta arm p = {p1, . . . , pK} with high probability.9 Using the Hoeffding’s inequality, we obtain

P
�
|U t(p) � U(p)| � �

�
= P

✓����
X

k

P
s2Tt(pk)

brs(pk)

nt(pk)
�
X

k

pkr(pk)

���� � �

◆

 2 exp

✓
� 2�2P

k
1

nt(pk)

◆
 2 exp

✓
� 2�2nt(pmin(p))

K

◆
,

where pmin(p) := arg minpk2p nt(pk). By choosing � =
q

K ln t
nt(pmin(p))

in the above inequality,

for each meta arm p at time t, we have that |U t(p) � U(p)|
p

K ln t/nt(pmin(p)), with the
probability at least 1 � 2/t2.

9We use � to denote the estimation error, as ✏ has been used as the discretization parameter.

20

Step 2: Bounding the probability on deploying suboptimal meta arm. With the above high
probability bound we obtain in Step 1, we can construct an UCB index for each meta arm p 2 P✏:

UCBt(p) = U t(p) +

s
K ln t

nt(pmin(p))
. (11)

The above constructed UCB index gives the following guarantee:

Lemma D.2. At any time round t, for a suboptimal meta arm p, if it satisfies nt(pmin(p)) �
4K ln t/�2

p, then UCBt(p) < UCBt(p⇤
✏) with the probability at least 1 � 4/t2. Thus, for any t,

P
�
p(t) = p|nt(pmin(p)) � 4K ln t/�2

p

�
 4t�2,

where �p denotes the badness of meta arm p.

Proof. We prove this lemma by considering two “events” which occur with high probability: (1) the
UCB index of each meta arm will concentrate on the true mean utility of p; (2) the empirical mean
utility of each meta arm p will also concentrate on the true mean utility of p. We then show that the
probability of either one of the events not holding is at most 4/t2. By a union bound we prove above
desired lemma.

UCBt(p) =
KX

k=1

pkr̄t(pk) +

s

ln t
K

nt(pmin(p))

(a)

KX

k=1

pkr̄t(pk) + �p/2 <

KX

k=1

pkrk(pk) + �p/2

!
+ �p/2 By Event 1

=
KX

k=1

p⇤k,✏rk(p⇤k,✏) <
KX

k=1

p⇤k,✏r̄t(p
⇤
k,✏) +

s

ln t
K

nt(pmin(p⇤
✏))

By Event 2

= UCBt(p
⇤
✏),

where p⇤
✏ = (p⇤1,✏, . . . , p

⇤
K,✏). The first inequality (a) comes from that nt(pmin(p)) � 4K ln t

�2
p

and the
probability of third inequality or fifth inequality not holding is at most 4/t2.

Intuitively, Lemma D.2 essentially shows that for a meta arm p, if its nt(pmin(p)) is sufficiently
sampled with respect to �p, that is, sampled at least 4K ln t/�2

p times, we know that the probability
that we hit this suboptimal meta arm is very small.

Step 3: Bounding the E[nT (pmin(p))]. Ideally, we would like to bound the number of the selec-
tions on deploying the suboptimal meta arm, i.e., NT (p), in a logarithmic order of T . However, if
we proceed to bound this by separately considering each meta arm, the final regret bound will have
an order with exponent in K since the number of meta arms grows exponentially in K. Instead, we
turn to bound E[nT (pmin(p))]. Recall that by the definitions of nT (p) and pmin(p), the pulls of p is
upper bounded by its nT (pmin(p)). This quantity will help us to reduce the exponential K to the
polynomial K. This is formalized in the following lemma.

Lemma D.3. For each suboptimal meta arm p 6= p⇤
✏ , we have that E[nT (pmin(p))] 4K lnT

�2
p

+

O(1).

Proof. To simplify notations, for each discretized arm pk, we define the notion of super set S(pk) =
{p : pk 2 p} which contains all the meta arms that include this discretized arm. For suboptimal meta

21

arm p 6= p⇤
✏ and its pmin(p), we have

E[nT (pmin(p))]

(a)
= 1 + E

 TX

t=dK/✏e+1

(p(t) = p,p 2 S(pmin(p)))

�

= 1 + E
 TX

t=dK/✏e+1

✓
p(t) = p,p 2 S(pmin(p)); nt(pmin(p)) <

4K ln t

�2
p

◆�

+ E
 TX

t=dK/✏e+1

✓
p(t) = p,p 2 S(pmin(p)); nt(pmin(p)) � 4K ln t

�2
p

◆�

(b)
 4K ln T

�2
p

+ E
 TX

t=dK/✏e+1

✓
p(t) = p,p 2 S(pmin(p)); nt(pmin(p)) � 4K ln t

�2
p

◆�

=
4K ln T

�2
p

+
TX

t=dK/✏e+1

P
✓
p(t) = p,p 2 S(pmin(p)); nt(pmin(p)) � 4K ln t

�2
p

◆

=
4K ln T

�2
p

+
TX

t=dK/✏e+1

P
✓
p(t) = p,p 2 S(pmin(p))

����nt(pmin(p)) � 4K ln t

�2
p

◆
P
✓

nt(pmin(p)) � 4K ln t

�2
p

◆

(c)
 4K ln T

�2
p

+
2⇡2

3
.

We add 1 in the first equality to account for 1 (step (a)) initial pull of every discretized arm by
the algorithm (the initialization phase). In step (b), suppose for contradiction that the indicator

(p(t) = p,p 2 S(pmin(p)); nt(pmin(p)) < S) takes value of 1 at more than S � 1 time steps,
where S = 4K lnT

�2
p

. Let ⌧ be the time step at which this indicator is 1 for the (S�1)-th time. Then the
number of pulls of all meta arms in S(pmin(p)) is at least L times until time ⌧ (including the initial
pull), and for all t � ⌧ , nt(pmin(p)) � S which implies nt(pmin(p)) � 4K ln t

�2
p

. Thus, the indicator
cannot be 1 for any t � ⌧ , contradicting the assumption that the indicator takes value of 1 more than
L times. This bounds 1 + E

hP
t�dK/✏e+1 (p(t) = p,p 2 S(pmin(p)); nt(pmin(p)) < S)

i
by S.

In step (c), we apply the lemma D.2 to bound the first conditional probability term and use the fact
that the probabilities cannot exceed 1 to bound the second probability term.

We use this connection in the following step to reduce the computation of regret on pulling all
suboptimal meta arms so that to calculate the regret via the summation over discretized arms.

Wrapping up: Proof of Theorem 4.2. We are now ready to prove Theorem 4.2. We first define
notations that are helpful for our analysis. To circumvent the summation over all feasible suboptimal
arms {p}, for each discretized arm pk, we define the notion of super set S(pk) := {p : pk 2 p}
which contains all suboptimal meta arms that include this discretized arm. With a slight abuse of
notations, we also sort all meta arms in S(pk) as p1,p2, . . . ,pI(pk) in ascending order of their
expected rewards, where I(pk) := |S(pk)| is the cardinality of the super set S(pk). For pl 2 S(pk),
we also define �pk

l := �pl
where l 2 [I(pk)], and specifically �pk

min := minp2S(pk) �p = �pk

I(pk)
;

�pk
max := maxp2S(pk) �p = �pk

1 . Let Reg✏(T) denote the regret relative to the best strategy in
the discretized space parameterized by ✏. With these notations, we first establish the following
instance-dependent regret.

Lemma D.4. Following the UCB designed in (11), we have the following instance-dependent regret
on the discretized arm space: Reg✏(T) dK/✏e · (�max + O(1)) +

P
pk:�

pk
min>0 8K ln T/�pk

min,
where �max := maxpk �pk

max.

22

Proof. Note that by definition, we can compute the regret Reg✏(T) as follows:

Reg✏(T) =
X

p2P✏

E[NT (p)]�p
X

pk

X

l2[I(pk)]

E[NT (pl)]�
pk

l . (12)

Observe that, by Lemma D.3, for each discretized arm pk, there are two possible cases:

• There exists a meta arm pl 2 S(pk), and its pmin(pl) = pk. Then by linearity of expectation, we
can bound the expectation of total number of pulls for all pl0 2 S(pk) as follows

X

pl02S(pk)

E[NT (pl0)] = E[nT (pk)] 4K ln T

(�pk
min)

2
+ O(1).

• There exists no meta arm p 2 S(pk), and pmin(p) for each p is pk. In this case, for each
pl 2 S(pk), there always exists another discretized arm p0 that is included in pl such that
p0 = pmin(pl) but p0 6= pk. Thus, for each pl 2 S(pk), together with other meta arms which also
include discretized arm p0 as pl, we have that

X

p2
S

p02p p

E[NT (p)] =
X

p2S(p0)

E[NT (p)]

= E[nT (p0)] 4K ln T

(�p0

min)
2

+ O(1).

The above observations imply that even though we can not find any meta arm p in S(pk) such that
pmin(p) = pk, we can always carry out similar analysis by finding another discretized arm p0 2 p but
p0 6= pk, such that p0 = pmin(p). Thus, for each discretized arm pk, we can focus on the case where
pk is able to attain the minimum nt(pk) for some p 2 S(pk). For analysis convenience, instead of
looking at the counter of p, i.e., nt(pmin(p)), we will define a counter c(pk) for each discretized arm
pk and the value of c(pk) at time t is denoted by ct(pk). The update of ct(pk) is as follows: For a
round t > dK/✏e (here dK/✏e is the number of rounds needed for initialization), let p(t) be the meta
arm selected in round t by the algorithm. Let pk = arg minpk2p(t) ct�1(pk). We increment c(pk) by
one, i.e., ct(pk) = ct�1(pk) + 1. In other words, we find the discretized arm pk with the smallest
counter in p(t) and increment its counter. If such pk is not unique, we pick an arbitrary discretized
arm with the smallest counter. Note that the initialization gives

P
pk

cdK/✏e(pk) = dK/✏e. It is easy
to see that for any pk = pmin(p), we have nt(pk) = ct(pk).

With the above change of counters, Lemma D.2 and Lemma D.3 then have the implication on selecting
discretized arm pk /2 p⇤

✏ given its counter ct(pk). To see this, for each pl 2 S(pk), we define
sufficient selection of discretized arm pk with respect to pl as pk being selected 4K ln T/

�
�pk

l

�2

times and pk’s counter c(pk) being incremented in these selected instances. Then Lemma D.2 tells us
when pk is sufficiently selected with respect to pl, the probability that the meta arm pl is selected by
the algorithm is very small. On the other hand, when pk’s counter c(pk) is incremented, but if pk is
under-selected with respect to pl, we incur a regret of at most �pk

j for some j l.

Define CT (�) := 4K lnT
�2 , the number of selection that is considered sufficient for a meta arm with

reward � away from the optimal strategy p⇤
✏ with respect to time horizon t. With the above analysis,

we define following two situations for the counter of each discretizad arm:

cl,suf
T (pk) :=

TX

t=dK/✏e+1

(p(t) = pl, ct(pk) > ct�1(pk) > CT (�pk

l)) ,

cl,und
T (pk) :=

TX

t=dK/✏e+1

(p(t) = pl, ct(pk) > ct�1(pk), ct�1(pk) CT (�pk

l)) .

Clearly, we have cT (pk) = 1 +
P

l2I(pk)

�
cl,suf
T (pk) + cl,und

T (pk)
�
. With these notations, we can

write (12) as follows:

Reg✏(T) E
X

pk

✓
�pk

max +
X

l2[I(pk)]

⇣
cl,suf
T (pk) + cl,und

T (pk)
⌘

· �pk

l

◆�
. (13)

23

The proof of this lemma will complete after establishing following two claims:

Claim 1: E
X

pk

X

l2[I(pk)]

cl,suf
T (pk)

�
 dK/✏e · O(1). (14)

Claim 2: E
X

pk

X

l2[I(pk)]

cl,und
T (pk)�pk

l

�

X

pk

((4K ln T)/�pk

min + 4K ln T (1/�pk

min � 1/�pk
max)) .

(15)

We now first prove the Claim 1 as in (14), i.e., for any t > dK/✏e, we have following upper bound
over counters of sufficiently selected discretized arms. To see this, by definition of cl,suf

T (pk), it
reduces to show that for any T � t > dK/✏e,

E
X

pk

X

l2[I(pk)]

(p(t) = pl, ct(pk) > ct�1(pk) > CT (�pk

l))

�

=
X

pk

X

l2[I(pk)]

P (p(t) = pl, pk = pmin(pl); 8p 2 pl, ct�1(p) > CT (�pk

l))

(a)
 d4K/✏e · t�2,

where the last step (a) is due to Lemma D.2, thus (14) follows from a simple series bound.

We now proceed to analyze the discretized arms that are not sufficiently included in the meta arm
chosen by the algorithm and prove the Claim 2 as in (15). For any under-selected discretized arm pk,
its counter c(pk) will increase from 1 to CT (�pk

min). To simplify the notation, we set CT (�pk
0) = 0.

Suppose that at round t, c(pk) is incremented, and ct�1(pk) 2 (CT (�pk
j�1), CT (�pk

j)] for some
j 2 [I(pk)]. Notice that we are only interested in the case that pk is under-selected. In particular, if
this is indeed the case, p(t) = pl for some l � j. (Otherwise, p(t) is sufficiently selected based on
the counter value ct�1(pk).) Thus, we will suffer a regret of �pk

l �pk
j (step (a)). As a result, for

counter ct(pk) 2 (CT (�pk
j�1), CT (�pk

j)], we will suffer a total regret for those playing suboptimal
meta arms that include under-selected discretized arms at most (CT (�pk

j) � CT (�pk
j�1)) · �pk

j

in rounds that ct(pk) is incremented (step (b)). In what follows we establish the above analysis
rigorously.

X

l2[I(pk)]

cl,und
T (pk)�pk

l

=
TX

t=dK/✏e+1

X

l2[I(pk)]

(p(t) = pl, ct(pk) > ct�1(pk), ct�1(pk) CT (�pk

l)) · �pk

l

=
TX

t=dK/✏e+1

X

l2[I(pk)]

lX

j=1

�
p(t) = pl, ct(pk) > ct�1(pk), ct�1(pk) 2 (CT (�pk

j�1), CT (�pk
j)]
�

· �pk

l

(a)

TX

t=dK/✏e+1

X

l2[I(pk)]

lX

j=1

�
p(t) = pl, ct(pk) > ct�1(pk), ct�1(pk) 2 (CT (�pk

j�1), CT (�pk
j)]
�

· �pk
j

TX

t=dK/✏e+1

X

l,j2[I(pk)]

�
p(t) = pl, ct(pk) > ct�1(pk), ct�1(pk) 2 (CT (�pk

j�1), CT (�pk
j)]
�

· �pk
j

=
TX

t=dK/✏e+1

X

j2[I(pk)]

�
p(t) 2 S(pk), ct(pk) > ct�1(pk), ct�1(pk) 2 (CT (�pk

j�1), CT (�pk
j)]
�

· �pk
j

(b)

X

j2[I(pk)]

(CT (�pk
j) � CT (�pk

j�1)) · �pk
j .

24

Now, we can compute the regret incurred by selecting the meta arm which includes under-selected
discretized arms:X

pk

X

l2[I(pk)]

cl,und
T (pk)�pk

l
X

pk

X

j2[I(pk)]

(CT (�pk
j) � CT (�pk

j�1)) · �pk
j

=
X

pk

✓
CT (�pk

min)�
pk

min +
X

j2[I(pk)�1]

CT (�pk
j) · (�pk

j � �pk
j+1)

◆

X

pk

✓
CT (�pk

min)�
pk

min +

Z �
pk
max

�
pk
min

Ct(x)dx

◆

=
X

pk

✓
4K ln T

�pk

min
+ 4K ln T

✓
1

�pk

min
� 1

�pk
max

◆◆
. (16)

Equipped with the above set of results, the bound of regret (13) follows by combing the bounds
in (14) and (15).

To achieve instance-independent regret bound, we need to deal with the case when the meta-arm gap
�pk

min is too small, leading the regret to approach infinite. Nevertheless, one can still show that when
�pk

min 1/
p

T , the regret contributed by this scenario scales at most O(
p

T) at time horizon T .
Lemma D.5. Following the UCB designed in (11), we have: Reg✏(T) O

�
K
p

T ln T/✏
�
.

Proof. Following the proof of Lemma D.4, we only need to consider the meta arms that are played
when they are under-sampled. We particularly need to deal with the situation when �pk

min is too small.
We measure the threshold for �pk

min based on cT (pk), i.e., the counter of disretized arm pk at time
horizon T . Let {T (pk), 8pk} be a set of possible counter values at time horizon T . Our analysis will
then be conditioned on the event that E(pk) = {cT (pk) = T (pk)}. By definition,

E
⇥ X

l2[I(pk)]

cl,und
T (pk) · �pk

l | E(pk)
⇤

=
TX

t=dK/✏e+1

X

l2[I(pk)]

(p(t) = pl, ct(pk) > ct�1(pk), ct�1(pk) CT (�pk

l) | E(pk)) · �pk

l .

(17)

We define �⇤(T (pk)) :=
⇣

4K lnT
T (pk)

⌘1/2
, i.e., CT (�⇤(T (pk))) = T (pk). To achieve instance-

independent regret bound, we consider following two cases:
Case 1: �pk

min > �⇤(T (pk)), we thus have

E
⇥ X

l2[I(pk)]

cl,und
T (pk) · �pk

l | E(pk)
⇤

 O
⇣p

4K ln T · T (pk)
⌘

. (18)

Case 2: �pk
min < �⇤(T (pk)). Let l⇤ := min{l 2 I(pk) : �pk

l > �⇤(T (pk))}. Observe that we
have �pk

l⇤ �⇤(T (pk)) and the counter c(pk) never go beyond T (pk), we thus have

(17) (CT (�⇤(T (pk))) � CT (�pk

l⇤�1)) · �⇤(T (pk)) +
X

j2[l⇤�1]

(CT (�pk
j) � CT (�pk

j�1)) · �pk
j

 CT (�⇤(T (pk))) · �⇤(T (pk)) +

Z �
pk
max

�⇤(T (pk))
CT (x)dx O

⇣p
K ln T · T (pk)

⌘
. (19)

Thus, combining (18) and (19), we have

E
⇥ X

pk:�
pk
min>0

X

l2[I(pk)]

cl,und
T (pk) · �pk

l | E(pk)
⇤

X

pk:�
pk
min>0

O(
p

K ln T · T (pk))

(a)
 O(K

p
T ln T/✏),

where (a) is by Jesen’s inequality and
P

pk
T (pk) KT/✏. Put all pieces together, we have the

instance-independent regret bound as stated in the lemma. Observe that the final inequality does not
depend on the event E(pk), we thus can drop this conditional expectation.

25

With the above lemma in hand, picking ✏ = ⇥((ln T/T)1/3) will give us desired result in Theorem 4.2.
10

Remark D.6. When only one arm is activated according to p(t), the Hoeffding’s inequality is
adapted as follows:

P
�
|U t(p) � U(p)| � �

�

X

k

P
�
|pkr̄(pk) � pkr(pk)| � �/K

�

X

k

2 exp
�
�2�2nt(pk)/K2

�
 2K exp

�
�2�2nt(pmin(p))/K2

�
.

The below analysis carries over with accordingly changing � =
q

K ln t
nt(pmin(p))

to � =
q

K2 ln(
p

Kt)
nt(pmin(p))

,

and the condition of nt(pmin(p)) in Lemma D.2 is changed to 4K2 ln(
p

Kt)/�2
p to account

for larger �. As a result, the instance-independent regret bound in Lemma D.5 is changed to

O
✓

K
q

KT ln(
p

KT)/✏

◆
. Together with the discretization error, one can then optimize the choice

of ✏ to get Õ(K4/3T 2/3) regret bound.

D.2.1 Regret Bound Comparison with [13]

In the work [13], the authors study the setting when pulling the meta arm, each base arm in (or
possibly other base arm) this meta arm will be triggered and played as a result. Back to our setting,
this is saying that when pulling a meta arm p = (p1, . . . , pK), each base arm k will be triggered
with its corresponding probability (discretized arm) pk. The authors in [13] discuss a general setting
which allows complex reward structure where only requires two mild conditions. In particular, one
of the condition they need for expected reward of playing a meta arm is the bounded smoothness
(cf., Definition 1 in [13].). In the Theorem 2 of [13], the authors give results when the function
used to characterize bounded smoothness is f(x) = � · x! for some � > 0 and ! 2 (0, 1]. In

more detail, they achieve a regret bound O
✓

2�
2�!

⇣
12|M| lnT

p⇤

⌘!/2
· T 1�!/2 + |M| · �max

◆
where

p⇤ 2 (0, 1) is the minimum triggering probability across all base arms and �max is the largest
badness of the suboptimal meta arm in discretized space. 11 Adapt to our setting, by inspection, we
have � = L⇤, ! = 1, p⇤ = ✏, |M| = ⇥(K/✏), and �max = ⇥(KL⇤). Substituting these values to
the above bound, ignoring constant factors and combining with the discretization error, we have

O
 ✓

K ln T

✏2

◆1/2

· T 1/2 + K2/✏

!
+ O(TK✏).

Picking ✏ = ⇥(ln T/(KT))1/4 will give us result.

E Proof of Theorem 5.1 for History-dependent Bandits

In this section, we provide the analysis of Theorem 5.1. The analysis follows a similar structure
to the one used in the proof of the regret bound in Theorem 4.2. However, due to the existence of
historical bias, we need to perform a careful computation when handling the high-probability bounds.
Specifically, we need to prove that, after deploying p consecutively for moderate long rounds (tuning
sa), the approximation error

��U(p) � Uest
m (p)

�� is small enough. The analysis is provided below.

Step 1: Bounding the small error of
��U(p) � Uest

m (p)
�� with high-probability. Our first step is

to ensure the empirical mean reward estimation we obtain from the information we collected in all
the estimation stages will approximate well the true mean of meta arm we want to deploy.

To return a high-probability error bound, we first bound the approximation error incurred due to the
dependency of history of arm selection (“historical bias"). This is summarized below.

10Here the choice of ✏ absorbs Lipschitz constant of rk(·).
11For simplicity, the bound we present here omits a non-significant term.

26

Lemma E.1. Keeping deploying p = {p1, . . . , pK} in the approaching stage with sa rounds, and
collect all reward feedback in the following estimation stage for the empirical estimation of rewards
generated by p, one can bound the approximation error as follows:

E
⇥��Uest

m (p) � U(p)
��⇤ K�sa(L⇤ + 1),

where U(p) denote the empirical mean of rewards if the instantaneous reward is truly sampled from
mean reward function according to p.

Proof. The proof of this lemma is mainly built on analyzing the convergence of p(�) via pulling the
base arms with the same probability consistently. For the ease of presentation, let us suppose t = mL
and let testm := t

L (L � sa) = m(L � sa) be the total number of estimation rounds in the first m
phases. Thus, at the end of the approaching stage, we have

bp(�)k (t + sa) =
pk(t + sa)�0 + . . . + pk(t + 1)�sa�1 + (1 + � + . . . + �t�1)�sabp(�)k (t)

1 + � + . . . + �t+sa�1
,

where bp(�)k (t) = pk(t)�
0+...+pk(1)�

t�1

1+�+...+�t�1 . Recall that during the approaching stage, we consistently pull

arm k with the same probability pk. Thus, the approximation error of bp(�)k (t + sa) w.r.t. pk can be
computed as:

��bp(�)k (t + sa) � pk

�� =
����
pk(1 � �sa) + bp(�)k (t)�sa(1 � �t)

1 � �t+sa
� pk

����
�sa(1 � �t)

1 � �t+sa
< �sa .

Recall that U(p) =
P

pk2p pkrk(pk). In the estimation stage, we approximate all the realized
utility as the utility generated by the meta arm p. However, note that we actually cannot compute
the empirical value of U(p), instead, we use Uest

m (p(t + sa)) of each phase as an approximation
of U(p), i.e., we approximate all p(�)(t + s), 8s 2 (sa, L] as p(t + sa) and use p(t + sa) as the
approximation of p. Recall that for any s 2 (sa, L], we have:

��bp(�)k (t + s) � pk

�� =
����
�s(1 � �t)(bp(�)k (t) � pk)

1 � �t+s

����
�s(1 � �t)

1 � �t+s
<

�sa(1 � �t)

1 � �t+sa
< �sa .

Thus, the approximation error on the empirical estimation can be computed as follows:

E
⇥��Uest

m (p(t + sa)) � U(p)
��⇤ = E

����
X

p(�)
k 2p(t+sa)

p(�)k r̄estt+sa
(p(�)k) �

X

pk2p

pkr̄estt+sa
(pk)

����

�

=

����
X

p(�)k E
h
r̄estt+sa

(p(�)k)
i

�
X

pkE
⇥
r̄estt+sa

(pk)
⇤ ����

=

����
X

p(�)k rk(p(�)k) �
X

pkrk(pk)

����

=

����
X⇣

p(�)k

⇣
rk(p(�)k) � rk(pk)

⌘
+ rk(pk)(p(�)k � pk)

⌘ ����

X����saLkp(�)k + rk(pk)�sa

��� K�sa(L⇤ + 1).

With the approximation error at hand, we can then bound the error of
��U(p) � Uest

m (p)
�� with high

probability:
Lemma E.2. With probability at least 1 � 6�

L⇢m
�2 , we have

��U(p) � Uest
m (p)

�� err + 3

s
K ln

�
L⇢m

�

nest
m (pmin(p))

,

where pmin(p) = arg minpk2p nest
m (pk).

27

Proof. We first decompose
��U(p) � Uest

m (p(�)
e)
�� as

��U(p) � U(p)
��+
��U(p) � Uest

m (p)
�� and then

apply union bound.

P
���U(p) � Uest

m (p(t + sa))
�� � �

�

 P
���U(p) � U(p)

��+
��U(p) � Uest

m (p(t + sa))
�� � �

�
By triangle inequality

= P
✓��U(p) � U(p)

��+
��Uest

m (p(t + sa)) � E[Uest
m (p(t + sa))]�

(U(p) � E[U(p)]) + E[U(p)] � E[Uest
m (p(t + sa))]

�� � �

◆

 P
✓

2
��U(p) � U(p)

��+
��Uest

m (p(t + sa)) � E[Uest
m (p(t + sa))

�� � � � err
◆

(a)
 3P

✓
|U(p) � U(p)

�� � � � err
3

◆
 6 exp

✓
� 2nest

m (pmin(p))(� � err)2

9K

◆
,

where in step (a), we use the Hoeffding’s Inequality on Weighted Sums and Lemma E.1.

Step 2: Bounding the probability on deploying suboptimal meta arm. Till now, with the help
of the above high probability bound on the empirical reward estimation, the history-dependent reward
bandit setting is largely reduced to an action-dependent one with a certain approximation error. Then,
similar to our argument on upper bound of action-dependent bandits, we have the following specific
Lemma for history-dependent bandits:
Lemma E.3. At the end of each phase, for a suboptimal meta arm p, if it satisfies nest

m (pmin(p)) �
9K ln

�
L⇢m

�
�
�p/2�err

�2 , then with the probability at least 1 � 12�
L⇢m

�2 , we have UCBm(p) < UCBm(p⇤), i.e.,

P
✓
p(m + 1) = p|nest

m (pmin(p)) �
9K ln

�
L⇢m

�
��p

2 � err
�2

◆
 12
�
L⇢m

�2 .

Proof. To prove the above lemma, we construct two high-probability events. Event 1 corresponds to
that the UCB index of each meta arm concentrates on the true mean utility of p; Event 2 corresponds
to that the empirical mean utility of each approximated meta arm p(�) concentrates on the true mean
utility of p. The probability of Event 1 or Event 2 not holding is at most 4/t2. By the definition
of the constructed UCB, we’ll have

UCBm(p) = Uest
m (p(t + sa)) + err + 3

s
K ln (L⇢m)

nest
m (pmin(p))

(a)
 Uest

m (p(t + sa)) + �p/2

(b)
< (U(p) + �p/2) + �p/2 By Event 1

= U(p⇤
✏)

(c)
< UCBm(p⇤

✏), By Event 2

where the first inequality (a) is due to nest
m (pmin(p)) � 9K ln(L⇢m)

(�p/2�err)2 , and the probability of step (b)

or (c) not holding is at most 12/(L⇢m)2.

The above lemma implies that we will stop deploying suboptimal meta arm p and further prevent it
from incurring regret as we gather more information about it such that UCBm(p) < UCBm(p⇤

✏).

Step 3: Bounding the E[nest
m (pmin(p))]. The results we obtain in Step 2 implies following guar-

antee:
Lemma E.4. For each suboptimal meta arm p 6= p⇤, we have following:

E[nest
m (pmin(p))]

9K ln
�
L⇢m

�
�
�p/2 � err

�2 +
2⇡2

L � sa
.

28

Proof. For notation simplicity, suppose t = mL. For each suboptimal arm p 6= p⇤
✏ , and suppose

there exists pmin(p) /2 p⇤
✏ such that pmin(p) = arg minpk2p nest

t (pk), then

E[nest
t (pmin(p))]

= (L � sa)E
"

mX

i=1

(p(i) = p,p 2 S(pmin(p)))

#

= (L � sa)E
"

mX

i=1

p(i) = p,p 2 S(pmin(p)); nest

i (pmin(p)) <
9K ln (i(L � sa))

(�p/2 � err)2

!#
+

(L � sa)E
"

mX

i=1

p(i) = p,p 2 S(pmin(p)); nest

i (pmin(p)) � 9K ln (i(L � sa))

(�p/2 � err)2

!#

(a)
 9K ln (testm)

(�p/2 � err)2
+ (L � sa)E

"
mX

i=1

p(i) = p,p 2 S(pmin(p)); nest

i (pmin(p)) � 9K ln (i(L � sa))

(�p/2 � err)2

!#

=
9K ln (testm)

(�p/2 � err)2
+ (L � sa)

mX

i=1

P

p(i) = p,p 2 S(pmin(p))

����n
est
i (pmin(p)) � 9K ln (i(L � sa))

(�p/2 � err)2

!
·

P

nest
i (pmin(p)) � 9K ln (i(L � sa))

(�p/2 � err)2

!

 9K ln (testm)

(�p/2 � err)2
+ (L � sa)

mX

i=1

12

(i(L � sa))2
 9K ln (testm)

(�p/2 � err)2
+

2⇡2

L � sa
.

In step (a), suppose for contradiction that the indicator
(p(i) = p,p 2 S(pmin(p)); nest

i (pmin(p)) < S) takes value of 1 at more than S � 1 time
steps, where S = 9K ln(i(S�sa))

(�p/2�err)2 . Let ⌧ be the phase at which this indicator is 1 for the
(S � 1)-th phase. Then the number of pulls of all meta arms in S(pmin(p)) is at least L
times until time ⌧ (including the initial pull), and for all i > ⌧ , ni(pmin(p)) � S which
implies nest

i (pmin(p)) � 9K ln(i(S�sa))
(�p/2�err)2 . Thus, the indicator cannot be 1 for any i � ⌧ , con-

tradicting the assumption that the indicator takes value of 1 more than S times. This bounds
1 + E [

Pm
i=1 (p(i) = p,p 2 S(pmin(p)); nest

i (pmin(p)) < S)] by S.

Wrapping up: Proof of Theorem 5.1. Following the similar analysis in Section 3, we can also
get an instance-dependent regret bound for history-dependent bandits:
Lemma E.5. Following the UCB designed in Algorithm 3, we have following instance-dependent
regret on discretized arm space for history-dependent bandits:

Reg✏(T) O
✓

K�max

L✏⇢2

◆
+
X

pk

✓
9K ln (T⇢)

⇢

✓
�pk

min

(�pk
min/2 � err)2

+
2

�pk
min/2 � err

◆◆
.

Proof. For notation simplicity, we include all initialization rounds to phase 0 and suppose the time
horizon T = ML. Note that by definitions, we can compute the regret Reg✏(T) as follows:

Reg✏(T) =
X

p2P✏

E[NT (p)]�p
X

pk

X

pl2S(pk)

E[NT (pl)]�
pk

l . (20)

where Nt(p) = K + L
PM

m=1 (p(m) = p), where K here accounts for the initialization. Follow
the same analysis in action-dependent bandits, we can also define a counter cest(pk) for each
discretized arm pk and the value of cest(pk) at phase m is denoted by cestm (pk). But different from
the action-dependent bandit setting, we update the counter cest(pk) only when we start a new phase.
In particular, for a phase m � 1, let p(m) be the meta arm selected in the phase m by the algorithm.
Let pk = arg minpk2p(m) cestm (pk). We increment cestm (pk) by one, i.e., cestm (pk) = cestm�1(pk) + 1.
In other words, we find the discretized arm pk with the smallest counter in p(m) and increment its
counter. If such pk is not unique, we pick an arbitrary discretized arm with the smallest counter. Note

29

that the initialization gives
P

pk
cest0 (pk) = dK/✏e. It is easy to see that for any pk = pmin(p), we

have nm(pk) = L⇢ · cm(pk).

Like in action-dependent bandits, we also define Cest
M (�) := 9K ln(ML⇢)

L⇢(�/2�err)2 , the number of selection
that is considered sufficient for a meta arm with reward � away from the optimal strategy p⇤

✏ with
respect to phase horizon M . With the above notations, we define following two situations for the
counter of each discretized arm:

cest,l,sufM (pk) :=
MX

m=1

�
p(m) = pl, c

est
m (pk) > cestm�1(pk) > Cest

M (�pk

l)
�

(21)

cest,l,undM (pk) :=
MX

m=1

�
p(m) = pl, c

est
m (pk) > cestm�1(pk), cestm�1(pk) Cest

M (�pk

l)
�
. (22)

Clearly, we have cestM (pk) = 1 +
P

l2I(pk)

�
cest,l,sufM (pk) + cest,l,undM (pk)

�
. With these notations, we

can write (20) as follows:

Reg✏(T) E

2

4
X

pk

0

@�pk
max + L ·

X

l2[I(pk)]

⇣
cest,l,sufM (pk) + cest,l,undM (pk)

⌘
· �pk

l

1

A

3

5 . (23)

We now first show that for any m � 1, we have following upper bound over counters of sufficiently
selected discretized arms:

E

L ·
X

pk

X

l2[I(pk)]

cl,suf
M (pk)

�
 O

✓
K

L✏⇢2

◆
. (24)

To see this, by definition of cest,l,sufM (pk), it reduces to show that for any M � m > 1,

E

L ·
X

pk

X

l2[I(pk)]

�
p(m) = pl, c

est
m (pk) > cestm�1(pk) > Cest

M (�pk

l)
� �

= L ·
X

pk

X

l2[I(pk)]

P
✓
p(m) = pl, pk = pmin(pl); 8p 2 pl, L⇢ · cestm�1(p) >

9K ln (ML⇢)
�
�pk

l /2 � err
�2

◆

(a)
 d12LK/✏e · (ML⇢)�2,

where the last step (a) is due to Lemma E.3, thus (24) follows from a simple series bound.

We now proceed to analyze the discretized arms that are not sufficiently included in the meta arm
chosen by the algorithm. For any under-selected discretized arm pk, its counter cest(pk) will increase
from 1 to Cest

M (�pk
min). To simplify the notation, we set Cest

M (�pk
0) = 0. Suppose that at phase

m � 1, cest(pk) is incremented, and cestm�1(pk) 2 (Cest
M (�pk

j�1), C
est
M (�pk

j)] for some j 2 [I(pk)].
Notice that we are only interested in the case that pk is under-selected. In particular, if this is indeed
the case, p(m) = pl for some l � j. (Otherwise, p(m) is sufficiently selected based on the counter
value cestm�1(pk).) Thus, we will suffer a regret of �pk

l �pk
j (step (a)). As a result, for counter

cestm (pk) 2 (Cest
M (�pk

j�1), C
est
M (�pk

j)/L], we will suffer a total regret for those playing suboptimal
meta arms that include under-selected discretized arms at most (Cest

M (�pk
j) � Cest

M (�pk
j�1)) · �pk

j

in rounds that cestm (pk) is incremented (step (b)). In what follows we establish the above analysis

30

rigorously.
X

l2[I(pk)]

cest,l,undM (pk)�pk

l

=
MX

m=1

X

l2[I(pk)]

�
p(m) = pl, c

est
m (pk) > cestm�1(pk), cestm�1(pk) Cest

M (�pk

l)
�

· �pk

l

=
MX

m=1

X

l2[I(pk)]

lX

j=1

�
p(m) = pl, c

est
m (pk) > cestm�1(pk), cestm�1(pk) 2 (Cest

M (�pk
j�1), C

est
M (�pk

j)]
�

· �pk

l

(a)

MX

m=1

X

l2[I(pk)]

lX

j=1

�
p(m) = pl, c

est
m (pk) > cestm�1(pk), cestm�1(pk) 2 (Cest

M (�pk
j�1), C

est
M (�pk

j)]
�

· �pk
j

MX

m=1

X

l,j2[I(pk)]

�
p(m) = pl, c

est
m (pk) > cestm�1(pk), cestm�1(pk) 2 (Cest

M (�pk
j�1), C

est
M (�pk

j)]
�

· �pk
j

=
MX

m=1

X

j2[I(pk)]

�
p(m) 2 S(pk), cestm (pk) > cestm�1(pk), cestm�1(pk) 2 (Cest

M (�pk
j�1), C

est
M (�pk

j)]
�

· �pk
j

(b)

X

j2[I(pk)]

(Cest
M (�pk

j) � Cest
M (�pk

j�1)) · �pk
j .

Now, we can compute the regret incurred by selecting the meta arm which includes under-selected
discretized arms:

L ·
X

pk

X

l2[I(pk)]

cest,l,undM (pk) · �pk

l

 L ·
X

pk

X

j2[I(pk)]

(Cest
M (�pk

j) � Cest
M (�pk

j�1)) · �pk
j

= L ·
X

pk

✓
Cest

M (�pk
min)�

pk
min +

X

j2[I(pk)�1]

Cest
M (�pk

j) · (�pk
j � �pk

j+1)

◆

 L ·
X

pk

✓
Cest

M (�pk
min)�

pk
min +

Z �
pk
max

�
pk
min

Cest
M (x)dx

◆

=
X

pk

9K ln (ML⇢)

⇢ (�pk
min/2 � err)2

· �pk
min + 9K ln (ML⇢) /⇢ ·

Z �
pk
max

�
pk
min

1

(x/2 � err)2
dx

!

=
X

pk

9�pk

minK ln (ML⇢)

⇢ (�pk
min/2 � err)2

+
9K ln (ML⇢)

⇢

2

�
pk
min
2 � err

� 2

�pk
max/2 � err

!!

X

pk

9K ln (ML⇢)

⇢

�pk

min

(�pk
min/2 � err)2

+
2

�pk
min/2 � err

!!
.

Combing the bound established in (24) will complete the proof.

The instance-independent regret on discretized arm space is summarized in following lemma:
Lemma E.6. Following the UCB designed in Algorithm 3, the instance-independent regret is given as
Reg✏(T) O

⇣
K ·

p
T ln(T⇢)/(⇢✏) + K/(L✏⇢2)

⌘
.

Proof. Following the proof action-dependent bandits, we only need to consider the meta arms that
are played when they are under-sampled. We particularly need to deal with the situation when �pk

min
is too small. We measure the threshold for �pk

min based on cestM (pk), i.e., the counter of disretized

31

arm pk at phase horizon M . Let {M(pk), 8pk} be a set of possible counter values at time horizon
M . Our analysis will then be conditioned on the event that E(pk) := {cestM (pk) = M(pk)}. By
definition,

E
⇥ X

l2[I(pk)]

cest,l,undM (pk) · �pk

l | E(pk)
⇤

=
MX

m=1

X

l2[I(pk)]

�
p(m) = pl, c

est
m (pk) > cestm�1(pk), cestm�1(pk) Cest

M (�pk

l) | E(pk)
�

· �pk

l .

(25)

We define �⇤(M(pk)) := 2
⇣

9K ln(ML⇢)
L⇢·M(pk)

⌘1/2
+ 2err. thus we have Cest

M (�⇤(M(pk))) = M(pk).
To achieve instance-independent regret bound, we consider following two cases:
Case 1: �pk

min > �⇤(M(pk)), clearly we have �pk
min/2 > err. Thus,

L · E
⇥ X

l2[I(pk)]

cest,l,undM (pk) · �pk

l | E(pk)
⇤

 O
 s

K ln(T⇢) · LM(pk)

⇢

!
. (26)

Case 2: �pk
min < �⇤(M(pk)). Let l⇤ := min{l 2 I(pk) : �pk

l > �⇤(M(pk))}. Observe that we
have �pk

l⇤ �⇤(M(pk)) and the counter cest(pk) never go beyond M(pk), we thus have

L · (25) L(Cest
M (�⇤(M(pk))) � Cest

M (�pk

l⇤�1)) · �⇤(M(pk)) +
X

j2[l⇤�1]

L(Cest
M (�pk

j) � Cest
M (�pk

j�1)) · �pk
j

 LCest
M (�⇤(M(pk))) · �⇤(M(pk)) + L

Z �
pk
max

�⇤(M(pk))
Cest

M (x)dx

 O
 s

K ln(T⇢) · LM(pk)

⇢

!
. (27)

Combining (26) and (27), and with Jesen’s inequality and
P

pk
M(pk) KM/✏ will give us desired

result. Put all pieces together, we have the instance-independent regret bound as stated in the lemma.
The final inequality does not depend on the event E(pk), we thus can drop this conditional expectation.

Combining with the discretization error, we have

Reg(T) O
⇣
K ·

p
T ln(T⇢)/(⇢✏) + K/(L✏⇢2)

⌘
+ O(K✏T).

Picking

✏ = O
✓

ln(T⇢)

T⇢

◆1/3

; sa = O

0

@
1/3 ln

⇣
ln(T⇢)

T⇢

⌘
� ln(L⇤K)

ln �

1

A .

We will obtain the results as stated in the theorem.

F Lower Bound of Action-Dependent Bandits

In this section, we derive the lower regret bound of bandits with action-dependent feedback, showing
that the upper regret bound of our Algorithm 1 is optimal in the sense that it matches this lower
bound in terms of the dependency on T and K. Note that, by importance-weighting technique, we
can construct an unbiased estimation of each base arm’s reward. In the below discussion, we rephrase
our problem as the combinatorial Lipschitz bandit with constraint, henceforth called CombLipBwC,
which directly operates on the observations of all base arms:
Definition F.1 (CombLipBwC). Let action set P available to the learner be a continuous space,
consisted of K unit-range base arms, i.e., P ⇢ [0, 1]K . At each time, the learner needs to select a
meta arm p(t) = {p1(t), . . . , pK(t)} in which each discretized arm pk(t) 2 [0, 1] is selected from
k-th unit range, with the constraint such that

P
k pk(t) = 1. And then the learner will observe

rewards {r̃t(pk(t))}k2[K] for all base arms with the mean of each E[r̃t(pk(t))] = rk(pk(t)).

32

Our main result of this section is summarized in the following theorem:
Theorem F.2. Let T >2K and K �4, there exists a problem instance such that for any algorithm A
for our action-dependent bandits , we have infA Reg(T) � ⌦(KT 2/3).

The high-level intuition for deriving the above lower bound is that we first construct a reduction from
CombLipBwC to a discretized combinatorial bandit problem with the action constraint

P
k pk(t) = 1

- we refer to this latter problem setting as CombBwC. Then we show that the regret incurred within
CombLipBwC is lower bounded by the regret incurred with CombBwC. To finish the proof, we bound
the worst-case regret from below of CombBwC by taking an average over a conveniently chosen class
of problem instances.

F.1 Randomized problem instances and definitions

We now construct a reduction for proving the lower bound of CombLipBwC. Specifically, we will
construct a distribution D over a set of problem instances (we also call each instance an adversary,
since the instances are adversarially constructed) of CombLipBwC, while each problem instance will
be uniquely mapped to a problem instance in CombBwC. The construction is similar to the one used
in [39].

These new instances are associated with 0� 1 rewards. For each base arm k 2 [K], all the discretized
arms p have mean reward rk(p) = 1/2 except those near the unique best discretized arm p⇤k with
rk(p⇤k) = 1/2 + ✏. Here ✏ > 0 is a parameter to be adjusted later in the analysis. Due to the
requirement of Lipschitz condition, a smooth transition is needed in the neighborhood of each p⇤k.
More formally, we define the following function rk(·) for base arm k:

rk(p) =

⇢
1/2, 8p 2 [0, 1] : |p � p⇤k| � ✏/Lk

1/2 + ✏ � Lk · |p � p⇤k|, 8p 2 [0, 1] : |p � p⇤k| < ✏/Lk
(28)

Fix Np 2 N and partition all base arms [0, 1] into Np disjoint intervals of length 1/Np. Then the
above functions indicate that each interval with the length of 2✏ will either contain a bump or be
completely flat. For the sake of simplifying presentation, in the analysis below, we’ll focus on the
case where the Lipschitz constant is Lk = 1, 8k 2 [K]. Formally,
Definition F.3. We define 0-1 rewards problem instances I(p⇤, ✏) for CombLipBwC indexed by a
random permutation p⇤ = {p⇤k}k2[K], which satisfies following property:

•
P

k p⇤k = 1 and each p⇤k takes the value from {(2j � 1)✏}j2[Np].
• The reward function of base arm k is defined in (28), and the optimal action of arm k is p⇤k.

In combinatorial bandits, the learner selects a subset of ground arms subject to some pre-defined
constraints. Adapting to our model, we denote this discretized action space M as the set of K ⇥ Np
binary matrices {0, 1}K⇥Np :

M = {a 2 {0, 1}K⇥Np : 8k 2 [K],

NpX

j=1

ak,j = 1},

where ak,j 2 {0, 1} is the indicator random variable such that ak,j = 1 means that the j-th discretized
arm probability is selected for the k-th base arm. Note that this space has not included the action
constraint that we’re planning to impose on CombLipBwC.

We now construct the problem instances for CombBwC such that each problem instance I(p⇤, ✏) in
CombLipBwC has a corresponding problem instance in CombBwC.
Definition F.4. We define 0-1 rewards problem instances J (l⇤, ✏) for CombBwC indexed by l⇤ =
{l⇤k}k2[K], such that l⇤k = (p⇤k/✏ + 1)/2. Therefore, l⇤k 2 [Np] and the mean reward of J (l⇤, ✏) is
defined as follows: for any t 2 {1, . . . , T},

E[r̃t(lk(t))] =

⇢
1/2, lk(t) 6= l⇤k
1/2 + ✏, lk(t) = l⇤k

(29)

Observe that with one more action constraint, the feasible action space of CombBwC will be a
constrained space of M, which we denote by ⇧ = {a 2 {0, 1}K⇥Np : 8k 2 [K],

PNp
j=1 ak,j =

1,
PK

i=1 lk,jak,j = K � 1 + Np}.

33

We now next show that for any algorithm AI trying to solve the problem instance I(p⇤, ✏) in
CombLipBwC, we can construct an algorithm AJ that needs to solve a corresponding problem
instance J (p⇤, ✏) in CombBwC.

The intuition of the construction routine is as follows. With the above defined KNp intervals in
hand and the deliberately designed reward structure, whenever an algorithm chooses a meta arm
p = {p1, . . . , pK} such that each discretized arm pk falls into an interval of this base arm k, choosing
the center of this interval is best. Thus, if we restrict to discretized arms that are centers of the
intervals of all base arms, we then have a family of problem instances of CombBwC, where the reward
function is exactly defined in (29).

Routine A routine inbetween AI and AJ

Input: A CombLipBwC instance I, a CombBwC instance J and an algorithm AI for solving I.
for round t = 1, . . . do

AI selects a meta arm p(t) = {p1(t), . . . , pK(t)};
AJ selects arm l(t) = {l1(t), . . . , lK(t)} such that pk(t) 2

⇥
(2lk(t) � 1)✏ � ✏, (2lk(t) � 1)✏ +

✏
�
, 8k 2 [K];

AJ observes {r̃(lk(t))};
AI observes {r̃(pk(t))};

end for

Furthermore, with above construction routine, we have following guarantee:

Lemma F.5. The regret incurred by AI , which is for the problem instance I(p⇤, ✏), is lower bounded
by the regret incurred by AJ for the problem instance J (l⇤, ✏):

E[Reg2✏(T)|I, AI] � E[Reg2✏(T)|J , AJ]. (30)

Proof. As we can see, each instance J (l⇤, ✏) corresponds to an instance I(p⇤, ✏) of CombLipBwC.
In particular, each k-th base arm in J corresponds to the base arm k in I , and more specifically, each
discretized arm j 2 [Np] in k-th base arm corresponds to the all possible discretized arms p such that
p 2 [(2j � 1) · ✏ � ✏, (2j � 1) · ✏ + ✏). In other words, we can view J as a discrete version of I. In
particular, we have rk(j|J) = rk(p), 8p 2 [(2j � 1)✏ � ✏, (2j � 1)✏ + ✏), where rk(·) is the reward
function for base arm k in I, and rk(·|J)is the reward function for base arm k in J .

Given an arbitrary algorithm AI for a problem instance I of CombLipBwC, we can use it to construct
an algorithm AJ to solve the corresponding problem instance J in CombBwC. To see this, at each
round, AI is called and an action is selected p(t). This action corresponds to an action l(t) in
CombBwC such that for each discretized arm pk(t) 2 p(t), it falls into the interval [(2lk(t) � 1)✏ �
✏, (2lk(t) � 1)✏ + ✏) where lk(t) 2 l(t). Then algorithm AJ will observe {r̃(lk(t))} and receive
the reward

P
k r̃(lk(t)). After that,

P
k r̃(lk(t)) and p(t) will be further used to compute rewardP

k r̃(pk(t)) such that E[
P

k r̃(pk(t))] =
P

k2[K] r(lk(t)), and feed it back to AI .

At each round, let p(t) and l(t) denote the action chosen by the AI and AJ , since we have
rk(lk(t)) � rk(pk(t)) and best arm of the problem instance I and J has the same mean reward
K(1/2 + ✏), this completes the proof.

F.2 Lower bound the E[Reg2✏(T)|J , AJ]

With Lemma F.5 stating the relationship between E[Reg2✏(T)|I, AI] and E[Reg2✏(T)|J , AJ]
as derived in (30), we can lower bound the E[Reg2✏(T)|AI] via deriving the lower bound for
E[Reg2✏(T)|AJ].

The structure of the proof is similar to that of [2], while the main difference is that we construct a
different set of adversaries to bound the probability of the learner on achieving “good event” (will be
specified later). At a high level, our proof builds on the following 4 steps: from step 1 to 3 we restrict
our attention to the case of deterministic strategies for the learner, and then we show how to extend
the results to arbitrary and randomized strategies by Fubini’s theorem in step 4.

34

Step 1: Regret Notions. We will also call that the learner is playing against the l⇤-adversary when
the current instance is J (l⇤, ✏). We denote by El⇤ [·] the expectation with respect to the reward
generation process of the l⇤-adversary. Without the loss of generality, we assume K is an even
number. We write P(2h�1,2h),l⇤ for the probability distribution of (j2h�1,t, j2h,t) when the learner
faces the l⇤-adversary. Thus, against the l⇤-adversary, we have

El⇤ [Reg2✏(T)] = El⇤

TX

t=1

K/2X

h=1

2✏ ({j2h�1,t 6= l⇤2h�1, j2h,t 6= l⇤2h}) = T · 2✏

K/2X

h=1

✓
1 � P(2h�1,2h),l⇤(GT)

◆
,

where GT denotes the good event such that {j2h�1,T = l⇤2h�1, j2h,T = l⇤2h} holds simultaneously
for base arm 2h � 1 and 2h. For a particular distribution l⇤ ⇠ D for all random adversaries, and let
P(l⇤) denote the support of the adversary l⇤. Because the maximum value is always no less than the
mean, we have

sup
l⇤2J✏

El⇤ [Reg2✏(T)] � T · 2✏

K/2X

h=1

✓
1 �

X

l⇤2J✏

P(l⇤) · P(2h�1,2h),l⇤(GT)

◆
. (31)

Step 2: Information Inequality Let P�(2h�1,2h),l⇤ be the probability distribution of
(j2h�1,t, j2h,t) against the adversary which plays like the l⇤-adversary except that in the (2h �
1, 2h)�th base arms, where the rewards of all discretized arms are drawn from a Bernoulli distribu-
tion of parameter 1/2. We refer to it as (�h, l⇤)-adversary. Let J✏ denote the set of all possible l⇤

adversaries and D be the distribution over l⇤ in which l⇤ is sampled uniformly at random.

Lemma F.6. Let n�h(K � 1 + Np � m), 8m 2 {2, . . . , 1 + Np} denote the total number of the
combinations of

�
jk

�
k 6=2h�1,2h

such that
P

i 6=2h�1,2h jk = K � 1 + Np � m. Then we have

1

|J✏|
X

l⇤2J✏

P(2h�1,2h),l⇤(GT)
Np+1X

m=2

n�h(K�1+Np�m)

|J✏|
+ c✏

vuut T

|J✏|

Np+1X

m=2

n�h(K�1+Np�m),

(32)

where c is a constant.

Proof. Let KL(·) be the Kullback-Leibler divergence operator. By Pinsker’s inequality, we have

P(2h�1,2h),l⇤(GT) P�(2h�1,2h),l⇤(GT) +

r
1

2
KL(P�(2h�1,2h),l⇤ ,P(2h�1,2h),l⇤), 8l⇤ 2 J✏.

Then by the concavity of the square root,

1

|J✏|
X

l⇤2J✏

P(2h�1,2h),l⇤(GT)

 1

|J✏|
X

l⇤2J✏

P�(2h�1,2h),l⇤(GT) +

s
1

2|J✏|
X

l⇤2J✏

KL(P�(2h�1,2h),l⇤ ,P(2h�1,2h),l⇤).

We introduce nh(m), 8m 2 {2, . . . , 1 + Np} to denote the total number of combinations of
(j2h�1, j2h) such that j2h�1 + j2h = m. Then by definition, it is easy to see that nh(m) = m � 1,
and furthermore

Np+1X

m=2

nh(m) · n�h(K � 1 + Np � m) = |J✏|. (33)

35

Let D be the distribution over l⇤ in which l⇤ is sampled uniformly at random, i.e., P(l⇤) = 1
|J✏| , then

by the symmetry of the adversary (�h, l⇤), we have

X

l⇤2J✏

P(l⇤) · P�(2h�1,2h),l⇤(GT) =

Np+1X

m=2

X

l⇤:
P

k 6=2h�1,2h l⇤k=K�1+Np�m

P(l⇤) · P�(2h�1,2h),l⇤(GT)

=

Np+1X

m=2

1

nh(m)

X

l⇤:
P

k 6=2h�1,2h l⇤k=K�1+Np�m

P(l⇤)

=

Np+1X

m=2

1

nh(m)

nh(m) · n�h(K � 1 + Np � m)

|J✏|

=

Np+1X

m=2

n�h(K � 1 + Np � m)

|J✏|
. By (33)

Step 3: Bounding KL(P�(2h�1,2h),l⇤ ,P(2h�1,2h),l⇤) via the chain rule. We now proceed to bound
the value of KL(P�(2h�1,2h),l⇤ ,P(2h�1,2h),l⇤).

Lemma F.7. KL(PT
�(2h�1,2h),l⇤ ,PT

(2h�1,2h),l⇤) c✏2T
1�4✏2P�(2h�1,2h),l⇤(GT), where c is the constant

value.

Proof. Given any sequence of observed rewards up to time T , which denoted by WT 2 {1, . . . , K}T ,
the empirical distribution of plays, and, in particular, the probability distribution of (j2h�1,t, j2h,t)
conditional on the fact that WT will be the same for all adversaries. Thus, if we denote by
PT
(2h�1,2h),l⇤ (or PT

�(2h�1,2h),l⇤) the probability distribution of WT when the learner plays against the
l⇤-adversary (or the (�h, l⇤)-adversary), we can easily show that KL(P�(2h�1,2h),l⇤ ,P(2h�1,2h),l⇤)
KL(PT

�(2h�1,2h),l⇤ ,PT
(2h�1,2h),l⇤). Then we apply the chain rule for Kullback-Leibler divergence

iteratively to introduce the probability distributions Pt
(2h�1,2h),l⇤ of the observed rewards Wt

up to time t and then will arrive desired result. More formally, we reduce to bound the
KL(PT

�(2h�1,2h),l⇤ ,PT
(2h�1,2h),l⇤),

KL(PT
�(2h�1,2h),l⇤ ,PT

(2h�1,2h),l⇤)

= KL(P1
�(2h�1,2h),l⇤ ,P1

(2h�1,2h),l⇤)+

TX

t=2

X

wt�12{1,...,K}t�1

Pt�1
�(2h�1,2h),l⇤(wt�1)KL

�
P�(2h�1,2h),l⇤(·|wt�1),P(2h�1,2h),l⇤(·|wt�1)

�

= KL(B;, B
0

;) (j2h�1,1 = l⇤2h�1, j2h,1 = l⇤2h)+
TX

t=2

X

wt�1:j2h�1,t�1=l⇤2h�1,j2h,t�1=l⇤2h

Pt�1
�(2h�1,2h),l⇤(wt�1)KL(Bwt�1 , B

0

wt�1
)

= KL(B;, B
0

;) (G1) +
TX

t=2

X

wt�1:Gt�1

Pt�1
�(2h�1,2h),l⇤(wt�1)KL(Bwt�1 , B

0

wt�1
),

where Bwt�1 and B0

wt�1
are two Bernoulli random variables with parameters in {1/2, 1/2 + ✏}. Due

to the fact that KL(p, q) (p�q2)
q(1�q) , we will have

KL(Bwt�1 , B
0

wt�1
) c

✏2

1 � 4✏2
,

where c is a constant. Taking the summation will complete the proof.

36

Wrapping up: Proof of Theorem F.2 on Deterministic Strategies. Observe that we can bound
Np+1X

m=2

n�h(K � 1 + Np � m)/|J✏| = ⌦(1/Np),

which follows the fact that: given a1 a2 . . . an and b1 b2 . . . bn, one will have
n
P

aibi �
P

ai
P

bi. Plugging back into Eqs. (32) and (31) and substituting ✏ = ⇥(T�1/3) will
get the desired result.

Step 4: Fubini’s theorem for Random Strategies. For a randomized learner, let Erand denote the
expectation with respect to the randomization of the learner. Then

1

|J✏|
X

l⇤2J✏

E
TX

t=1

�
l(t)T rt � (l⇤)T rt

�
= Erand

1

|J✏|
X

l⇤2J✏

El⇤

TX

t=1

�
l(t)T rt � (l⇤)T rt

�
.

where rt = (r1(l1(t), . . . , rK(lK(t))), and value of the reward for not realized arms are computed
from Eq (5). The interchange of the integration and the expectation is justified by Fubini’s Theorem.
For every realization of learner’s randomization, the results of all earlier steps still follow. This will
give us the same lower bound for Erand

1
|J✏|

P
l⇤2J✏

El⇤
PT

t=1

�
l(t)T rt � (l⇤)T rt

�
as we have shown

above.

G Proof of the lower bound in history-dependent bandits

For history-dependent bandits, we show that for a general class of utility function which satisfies the
strictly proper property (we will shortly elaborate this property), solving history-dependent bandits is
as least hard as solving action-dependent bandits. Armed with the above derived lower bound of
action-dependent case, we can then conclude the lower bound of history-dependent case. Strictly
Proper Utility Function is defined as below.
Definition G.1 (Strictly Proper Utility). For any mixed strategy p 2 P and any q 6= p, the functions
{rk} are strictly proper if following holds,

X

pk2p

pkrk(pk) >
X

pk2p,qk2q

pkrk(qk). (34)

With above defined strictly proper utility at hand, we now ready to prove the Theorem 6.1 for
history-dependent case.

Proof. Let Ih denote a history-dependent bandits instance whose utility function satisfies above
defined strictly proper property, and Ia denote the associated action-dependent bandit instance whose
utility function is the same as that in Ih. Let f⇤(t) = {f⇤

k }k2[K] be the discounted frequency at time
t when the learner keeps deploying the best-in-hindsight strategy p⇤ and L⇤ = max Lk. Then we
can show that

E[Reg(T)|Ih] =
TX

t=1

Ut(p
⇤) �

TX

t=1

Ut(p(t))

=
TX

t=1

X

p⇤
k2p⇤

p⇤k · rk(f⇤
k (t)) �

TX

t=1

X

k

pk(t) · rk(fk(t))

>
TX

t=1

X

p⇤
k2p⇤

p⇤k · rk(f⇤
k (t)) �

TX

t=1

X

k

pk(t) · rk(pk(t))

�
TX

t=1

X

p⇤
k2p⇤

p⇤k · rk(p⇤k) � �2(1 � �2T�2)KL⇤

1 � �2
�

TX

t=1

X

k

pk(t) · rk(pk(t))

= E[Reg(T)|Ia] � �2(1 � �2T�2)KL⇤

1 � �2
= ⌦(KT 2/3),

37

where the first inequality is due to the strict proper property of utility function, and the third inequality
is due to the fact that the history-dependent bandits shares the same best-in-hindsight strategy as that
in the action-dependent bandit and Lemma E.1. By the regret reduction from the history-dependent
bandits to the action-dependent bandit, we can conclude the lower bound of the history-dependent
case.

H Optimal dynamic policy v.s. best policy in hindsight

As we mentioned, for action-dependent bandits, the optimal dynamic policy can be characterized by
a best-in-hindsight (mixed) strategy computing from following constrained optimization problem:
maxp2P

PK
k=1 pkrk(pk). While for history-dependent bandits, it is possible that the optimal policy

p⇤ may not be well-defined due to the fact of reward dependence on action history. However, we
argue that when competing against with best-in-hindsight policy, notwithstanding in the face of this
kind of reward-history correlation, the value of the optimal strategy is always well-defined in the
limit, and this limit value is also characterized by the best-in-hindsight (mixed) strategy computed
from action-dependent bandits. To gain intuition, note that the time-discounted frequency f(t) will
be exponentially approach to the fixed strategy p the learner deploys. As we explain in Section 5,
after consistently deploying p with s rounds, the frequency f(t + s) will be converging to p with the
exponential decay error �s. Thus, to achieve highest expected reward, the learner should deploy the
optimal strategy computed as in action-dependent case.

I EVALUATIONS

We conducted a series of simulations to empirically evaluate the performance of our proposed solution
with a set of baselines.

I.1 Evaluations for action-dependent bandits

We first evaluate our proposed algorithm on action-dependent bandits against the following state-of-
the-art bandit algorithms.

• EXP3: One natural baseline is applying EXP3 [4] on the space of base arms. While EXP3 is
designed for adversarial rewards, it is competing with the best fixed arm in hindsight and might
not work well in our setting since the optimal strategy is randomized.

• EXP3-Meta-Arm (mEXP3): To make a potentially more fair comparison, we also implement
EXP3 on the meta-arm space. We denote it as mEXP3 in the following discussion.

• CUCB [13, 65]: This algorithm is designed to solve combinatorial semi-bandit problem, which
chooses m arms out of M arms at each round and receives only the rewards of selected arms.
Mapping to our setting, M = K/✏ represents the total number of discretized arms, m = K is the
number of base arms, and the selection of m arms is constrained to satisfy the probability simplex
constraint.

In the simulations, we set K = 2 for simplicity. Moreover, rk(pk) is chosen such that rk(pk) is
maximized when 0 < pk < 1. In particular, we define rk(pk) as a scaled Gaussian function :
rk(pk) = f(pk|⌧k, 0.5)/Ck, where f(x|⌧, �2) is the pdf of Gaussian distribution with the mean ⌧
and variance �2, and Ck = f(⌧k|⌧k, �2) is a constant ensuring rk(pk) 2 [0, 1], 8pk 2 [0, 1]. For
each arm k, ⌧k is uniformly draw from 0.45 to 0.55 and the instantaneous reward is drawn from a
Bernoulli distribution with the mean of rk(pk(t)), i.e., r̃t(pk(t)) ⇠ Bernoulli(rk(pk(t))). And the
ratio ⇢ is set to 0.2. For each algorithm we perform 40 runs for each of independent 40 values of the
corresponding parameter, and we report the averaged results of these independent runs, where the
error bars correspond to ±2 standard deviations.

The results, shown in Figure 2(a), demonstrate that our algorithm significantly outperforms the
baselines. As expected, mEXP3 works better than EXP3 algorithm when T is large, since the former
searches the optimal strategies in the meta arm space. Our algorithm outperforms mEXP3 and CUCB
since we utilize the problem structure, which reduces the amount of explorations.

38

I.2 Evaluations for history-dependent bandits

We now evaluate our proposed algorithm for history-dependent bandits via comparing against the
following baselines from non-stationary bandits. Note that, while CUCB performs reasonably well
in action-dependent case, it does not apply in history-dependent case, since we cannot select the
time-discounted frequency (which maps to the arm in CUCB) as required in CUCB.

• Discounted UCB [25, 40]: Discounted UCB (DUCB) is an adaptation of the standard UCB poli-
cies that relies on a discount factor �DUCB 2 (0, 1). This method constructs an UCB : r̄t(k, �DUCB) +
ct(k, �DUCB) for the instantaneous expected reward, where the confidence is defined as ct(k, �DUCB) =

2
q

⇠ ln(nt)
Nt(k,�DUCB)

, for an appropriate parameter ⇠, Nt(k, �DUCB) =
Pt

s=1 �t�s
DUCB (as=k), and the dis-

counted empirical average is given by r̄t(k, �DUCB) = 1
Nt(k,�DUCB)

·
Pt

s=1 �t�s
DUCBr̃s(k) (as=k).

• Sliding-Window UCB [25]: Sliding-Window UCB (SWUCB) is a modification of DUCB, instead
of averaging the rewards over all past with a discount factor, SWUCB relies on a local empirical
average of the observed rewards, for example, using only the ⌧ last plays. Specifically, this
method also constructs an UCB : rt(k, ⌧) + ct(k, ⌧) for the instantaneous expected reward. The
local empirical average is given by rt(k, ⌧) = 1

Nt(k,⌧)

Pt
s=t�⌧+1 r̃s(k) (as=k), Nt(k, ⌧) =

Pt
s=t�⌧+1 �t�s

DUCB (as=k) and the confidence interval is defined as ct(k, �DUCB) = 2
q

⇠ ln(min(t,⌧))
Nt(k,⌧) .

We use grid searches to determine the algorithms’ parameters. For example, in DUCB, the discount
factor was chosen from �DUCB 2 {0.5, 0.6, . . . 0.9}, while the window size of SWUCB was chosen
from ⌧ 2 {102, . . . , 5 ⇥ 102}. Besides above algorithms, we also implement the celebrated non-
stationary bandit algorithm EXP3.

We chose K and rk(pk) to be the same as the experiments in action-dependent case. And the discount
factor is chosen as �DUCB = 0.8 and the window size for SWUCB is chosen as 200 via the grid
search, and ⇠ is set to 1. We examine the algorithm performances under different � (the parameter
in time-discounted frequency), with smaller � indicating that arm rewards are more influenced by
recent actions. As seen in Figures 2(b)-2(d), our algorithm outperforms all baselines in all � but
the improvement is more significant with small �. This is possibly due to that most non-stationary
bandit algorithms have been focusing on settings in which the change of arm rewards over time is not
dramatic.

We also examine our algorithm with larger number of base arms K with comparing to above baseline
algorithms and the performance of our algorithm on different ratios ⇢. The results are presented in
Figure 3 and show that our algorithm consistently performs better than other baselines when K goes
large. The results also suggest that our algorithm is not sensitive to different ⇢, though one could see
the regret is slightly lower when ⇢ is increasing, which is expected from our regret bound.

39

	Introduction
	Problem Setting
	Exemplary Application of Our Setup

	Overview of Main Results
	Action-Dependent Bandits
	History-Dependent Bandits
	History-Dependent UCB
	Extension to General Impact Functions

	Matching Lower Bounds
	Numeric Experiments
	Conclusion and Future Work
	Related Work
	Lagrangian Formulation
	Negative Results
	Missing Proofs for Action-Dependent Bandits
	The naive method that directly utilize techniques from Lipschitz bandits
	Missing Discussions and Proofs of Theorem 4.2
	Regret Bound Comparison with chen2016combinatorial

	Proof of Theorem 5.1 for History-dependent Bandits
	Lower Bound of Action-Dependent Bandits
	Randomized problem instances and definitions
	Lower bound the Lg

	Proof of the lower bound in history-dependent bandits
	Optimal dynamic policy v.s. best policy in hindsight
	EVALUATIONS
	Evaluations for action-dependent bandits
	Evaluations for history-dependent bandits

