
A Proofs and additional analysis in Section 2

A.1 Proofs in Section 2.3

Remark A.1 (Biased and unbiased MMD estimators). The exact NTK-MMD statistic (9) is a biased
estimator [23]. The unbiased estimator is by excluding the diagonal terms of kernel matrix in the
summation and normalizing by “1/n(n− 1)” instead of “1/n2”. We consider biased estimator for
simplicity, and also because the testing power analysis gives similar results, c.f. the comment beneath
Theorem 3.1. In addition, the “asymmetric MMD statistic” (16) (with training-test splitting and used
in many practical situations) is an unbiased estimator.

Proof of Lemma 2.1. By (3),

∂L̂

∂θ
= −

∫
X
∇θf(x; θ)(p̂− q̂)(x)dx. (22)

By the GD training dynamic,

∂

∂t
u(x, t) = 〈∇θf(x, θ(t)), θ̇(t)〉 (23)

=

〈
∇θf(x, θ(t)),−∂L̂

∂θ

〉
(24)

=

∫
X
〈∇θf(x; θ(t)),∇θf(x′; θ(t))〉(p̂− q̂)(x′)dx′. (25)

This proves the lemma by definition of K̂t(x, x
′) in (6).

Proof of Lemma 2.2. To prove Part (1): The initial weights θ(0) ∈ Θ, and by Taylor expansion,

θ(t) = θ(0) + tθ̇(t′),

from 0 < t′ < t < tf,r. By definition,

θ̇(t′) = −∂L̂
∂θ

∣∣∣∣∣
θ=θ(t′)

=

∫
X
∇θf(x; θ(t′))(p̂− q̂)(x)dx, (26)

and thus by that ‖∇θf‖X ,Θ ≤ Lf .
‖θ̇(t′)‖ ≤ 2Lf ,

This give that ‖θ(t)− θ(0)‖ ≤ t2Lf , which proves Part (1).

To prove Part (2): Note that for any x, x′, and t < tf,r,

∂

∂t
K̂t(x, x

′) = Rt(x, x
′) +Rt(x

′, x), Rt(x, x
′) := 〈D2

θf(x, θ(t))(θ̇(t)),∇θf(x′, θ(t))〉.

By Taylor expansion, for some 0 < t′ < t,

K̂t(x, x
′) = K0(x, x′) + t(Rt′(x, x

′) +Rt′(x
′, x))

where by part (1), θ(t′) ∈ Br. Again by (26), this gives that

‖θ̇(t′)‖ ≤ 2‖∇θf‖X ,Br
,

where note that the domain of θ is Br ⊂ Θ, and thus the constant ‖∇θf‖X ,Br
can potentially be

smaller than Lf . Then,

‖D2
θf(x, θ(t′))(θ̇(t′))‖ ≤ 2‖D2

θf‖X ,Br
‖∇θf‖X ,Br

.

As a result,

|Rt′(x, x′)| ≤ ‖D2
θf(x, θ(t′))(θ̇(t′))‖‖∇θf(x′, θ(t′))‖ ≤ 2‖D2

θf‖X ,Br‖∇θf‖2X ,Br
.

The same bound holds for |Rt′(x, x′)|, and the above bounds are uniformly for all x, x′. Putting
together, this proves Part (2).

14

Proof of Proposition 2.1. By definition,

T̂net(t)− T̂NTK =

∫
X

∫
X

1

t

∫ t

0

(
K̂s(x, x

′)−K0(x, x′)
)
ds(p̂− q̂)(x′)dx′(p̂− q̂)(x)dx

=

∫
X

∫
X
E(x, x′)p̂(x′)p̂(x)dx′dx−

∫
X

∫
X
E(x, x′)p̂(x′)q̂(x)dx′dx

−
∫
X

∫
X
E(x, x′)q̂(x′)p̂(x)dx′dx+

∫
X

∫
X
E(x, x′)q̂(x′)q̂(x)dx′dx (27)

where we define

E(x, x′) :=
1

t

∫ t

0

(
K̂s(x, x

′)−K0(x, x′)
)
ds.

By Lemma 2.2, for t < tf,r and for any x, x′ ∈ X

|E(x, x′)| ≤ 1

t

∫ t

0

∣∣∣K̂s(x, x
′)−K0(x, x′)

∣∣∣ ds ≤ 1

t

∫ t

0

Cf,rsds =
t

2
Cf,r.

Thus the four terms in (27) in absolute value are all upper bounded by Cf,rt/2, and thus |T̂net(t)−
T̂NTK| is upper bounded by the sum of the absolute values of the four terms which is less than or
equal to 2Cf,rt.

A.2 Extension to SGD training

Consider the online setting of training the network by minimizing the loss L̂(θ) in (3) on n = nX+nY
samples. We write the training set Dtr = {(zi, li)}ni=1, where zi is from X or Y , and li = 1 or 2 is
the class label. Let bi = 1/nX if li = 1, and 1/nY if li = 2. The loss can be written as

L̂(θ) =

n∑
i=1

f(zi; θ)bi, bi =

{
−1/nX , li = 1,

1/nY , li = 2.

For simplicity, assume that nX = nY = n/2. We define li(θ) = bif(zi; θ), which is the loss from
the i-th sample.

Suppose we train the network with batch size =1 and 1 epoch. The learning rate is α, that is, for k-th
iteration in the SGD, k = 1, · · · , n,

θk = θk−1 − α∇θlk(θk−1),

from some θ0 ∈ Θ. Note that∇θlk(θ) = bk∇θf(zk; θ), and thus

‖θk − θk−1‖ = α‖∇θlk(θk−1)‖ = α|bk|‖∇θf(zk; θk−1)‖ ≤ 2Lf
α

n
. (28)

This implies that

‖θk − θ0‖ ≤ 2Lf
k

n
α, (29)

and in particular, ‖θn − θ0‖ ≤ 2Lfα. Thus, θk for all k up to n stays in a r-Euclidean ball of θ0 if
2Lfα < r.

We write the network function at k-th step as uk, uk(x) = f(x; θk).

uk(x)− uk−1(x) = f(x; θk)− f(x; θk−1)

= ∇θf(x; θk−1)T (θk − θk−1) +O(‖θk − θk−1‖2)

= −αbk∇θf(x; θk−1)T∇θf(zk; θk−1) +O
(

(
α

n
)2
)
, (30)

where we treat Lf as O(1) constant, and the same with other constants which depend on the infinity
norm of derivatives of f .

We analyze how ∇θf(x; θk−1)T∇θf(zk; θk−1) differs from ∇θf(x; θ0)T∇θf(zk; θ0). For any
x ∈ X ,

∇θf(x; θk−1) = ∇θf(x; θ0) +O(‖θk−1 − θ0‖),

15

and by (29),

∇θf(x; θk−1) = ∇θf(x; θ0) +O

(
k − 1

n
α

)
.

Thus,

∇θf(x; θk−1)T∇θf(zk; θk−1) =

〈
∇θf(x; θ0) +O

(
k − 1

n
α

)
,∇θf(x; θ0) +O

(
k − 1

n
α

)〉
= ∇θf(x; θ0)T∇θf(zk; θ0) +O

(
k − 1

n
α

)
.

Back to (30), we have

uk(x)− uk−1(x) = −αbk
(
∇θf(x; θ0)T∇θf(zk; θ0) +O

(
k − 1

n
α

))
+O

(
(
α

n
)2
)

= −αbk∇θf(x; θ0)T∇θf(zk; θ0) +O

(
k − 1

n2
α2

)
+O

(
(
α

n
)2
)
.

This give that

un(x)− u0(x) = −α
n∑
k=1

bk∇θf(x; θ0)T∇θf(zk; θ0) +

n∑
k=1

O

(
k
α2

n2

)
= α

∫
X
K0(x, x′)(p̂− q̂)(x′)dx′ +O(α2),

where recall that K0(x, x′) = ∇θf(x; θ0)T∇θf(x′; θ0) is the NTK at time zero. This proves that

ĝ(x) :=
1

α
(un(x)− u0(x)) =

∫
X
K0(x, x′)(p̂− q̂)(x′)dx′ +O(α).

Comparing to the continuous time training dynamic, we see that α corresponds to training time t,
and with batch size 1 the SGD training the NTK approximation has the same O(α) error as with the
continuous time GD training.

B Proofs and additional theoretical results in Section 3

B.1 Proofs in Subsection 3.1

The proof of Theorem 3.1 uses the U-statistic concentration analysis, which was used in Theorem 3.5
in [12]. The analysis in [12] is for the local RBF kernel, and we need to extend to the general PSD
kernel here.

The concentration argument is by Proposition B.1. Note that the concentration can be derived using
the boundedness (11) alone, while the Bernstein-type control here is sharper when the squared
integrals upper bound ν is much smaller than 1.

Proposition B.1 (Concentration of T̂NTK). Assuming (11), (14) and the conditions (i) and (ii) in
Theorem 3.1,

(1) Under H0, when 0 < λ < 3
√
cνn, w.p. ≥ 1− 3e−λ

2/8, T̂ ≤ 4
cn + 4λ

√
ν
cn .

(2) Under H1, when 0 < λ < 3
√
cνn, w.p. ≥ 1− 3e−λ

2/8, T̂ ≥ δK − 4λ
√

ν
cn .

The proof of Theorem 3.1 is a direct application of the proposition.

Proof of Theorem 3.1. Note that condition (15) ensures that

max{λ1, λ2} < 3
√
νcn,

4

cn
< 0.5δK , 4(λ1 + λ2)

√
ν

cn
< 0.5δK , (31)

and the bounds in Proposition B.1 parts (1) and (2) hold with λ1 and λ2 respectively.

16

To verify that P[T̂ > tthres] ≤ αlevel under H0: Observe that 3e−λ
2
1/8 = αlevel by the definition of

λ1, and then the claim follows by Proposition B.1 Part (1) since λ1 < 3
√
νcn.

To bound P[T̂ ≤ tthres] under H1: Since λ2 < 3
√
νcn, by Proposition B.1 Part (1), the claim holds

if

tthres =
4

cn
+ 4λ1

√
ν

cn
< δK − 4λ2

√
ν

cn
, (32)

which is guaranteed by (31).

Remark B.1 (Asymptotic choice of tthres). The optimal tthres in Theorem 3.1 as the (1 − αlevel)-
quantile of the distribution of T̂ under H0 can be obtained potentially analytically according to
the limiting distribution of the MMD statistic: The asymptotic distribution of (squared) empirical
MMD statistic has been derived using the spectral decomposition of the (centered) kernel function
k̃(x, x′) := K(x, x′)−Ey∼pK(x, y)−Ey∼pK(y, x′) +Ey,y′∼pK(y, y′) in [23, 11], among others,
following techniques in Chapter 6 in [42]. Specifically, by Theorem 3.3 in [11], as n = nX + nY →
∞ and nX/n → ρX ∈ (0, 1), nT̂ under H0, q = p, converges in distribution to the weighted
χ2 distribution

∑∞
k=1 λ̃kξ

2
k, where ξk ∼ N (0, 1/ρX + 1/(1− ρX)) i.i.d, and λ̃k ≥ 0 are the

eigenvalues of the integral operator with kernel k̃(x, x′) in L2(X , p(x)dx). This provides the
asymptotic value of the quantile of T̂ under H0, when the eigenvalues are computable, which can be
useful, e.g., for low-dimensional data.

Proof of Proposition B.1. The proof follows the approach in Proposition. 3.4 in [12]. By definition,

T̂ :=
1

n2
X

nX∑
i,j=1

K(xi, xj) +
1

n2
Y

nY∑
i,j=1

K(yi, yj)−
2

nXnY

nX∑
i=1

nY∑
j=1

K(xi, yj), (33)

and equivalently,

T̂ = T̂X,X + T̂Y,Y − 2T̂X,Y , (34)

T̂X,X =
1

n2
X

nX∑
i,j=1

K(xi, xj), T̂Y,Y =
1

n2
Y

nY∑
i,j=1

K(yi, yj), T̂X,Y =
1

nXnY

nX∑
i=1

nY∑
j=1

K(xi, yj).

(35)

The terms T̂X,X and T̂Y,Y contain diagonal entries of the kernel matrix which have different marginal
distributions from the off-diagonal entries. Define

DX :=
1

nX

nX∑
i=1

K(xi, xi), VX,X :=
1

nX(nX − 1)

nX∑
i6=j,i,j=1

K(xi, xj),

then
T̂X,X =

1

nX
DX + (1− 1

nX
)VX,X = VX,X +

1

nX
(DX − VX,X). (36)

Observe that

|VX,X | ≤
1

nX(nX − 1)

nX∑
i 6=j,i,j=1

|K(xi, xj)|

≤ 1

nX(nX − 1)

nX∑
i 6=j,i,j=1

√
K(xi, xi)

√
K(xj , xj) (K(x, x′) is PSD)

≤ 1

nX(nX − 1)

nX∑
i 6=j,i,j=1

1

2
(K(xi, xi) +K(xj , xj))

=
1

nX

nX∑
i=1

K(xi, xi) = DX ,

17

and, in addition, by (11),
0 ≤ DX ≤ 1.

Thus (36) gives that

VX,X ≤ T̂X,X ≤ VX,X +
2

nX
DX ≤ VX,X +

2

nX
. (37)

The random variable VX,X is a U-statistic, where for i 6= j,
EK(xi, xj) = Ex∼p,y∼pK(x, y),

and by condition (ii),
Var(K(xi, xj)) ≤ Ex∼p,y∼pK(x, y)2 = νp,p ≤ ν.

As for the boundedness of the r.v. K(xi, xj), by (11),
|K(xi, xj)| ≤ 1 = L.

By the de-coupling of U-statistic in Proposition. 3.4 in [12], we obtain the Bernstein-type control of
the tail probability, that is

P [VX,X − Ex∼p,y∼pK(x, y) > t] ≤ exp{−
nX−1

2 t2

2ν + 2
3 tL
}, ∀t > 0.

Let t = λ
√

ν
nX−1 , to obtain the sub-Gaussian tail we need tL < 3ν, that is, t < 3ν by that L = 1.

This gives that when 0 < λ < 3
√
ν(nX − 1),

P
[
VX,X − Ex∼p,y∼pK(x, y) > λ

√
ν

nX − 1

]
≤ exp{− (nX − 1)t2

8ν
} = e−λ

2/8.

The same holds for P
[
VX,X − Ex∼p,y∼pK(x, y) < −λ

√
ν

nX−1

]
. Meanwhile, by (14),

cn ≤ nX − 1.

Together with (37), this gives that when 0 < λ < 3
√
νcn,

T̂X,X ≤ Ex∼p,y∼pK(x, y) + λ

√
ν

cn
+

2

cn
, w.p. ≥ 1− e−λ

2/8,

T̂X,X ≥ Ex∼p,y∼pK(x, y)− λ
√

ν

cn
, w.p. ≥ 1− e−λ

2/8.

(38)

The similar bound can be proved for T̂Y,Y , by defining DY and VY,Y similarly, and using that
νq,q ≤ ν and cn ≤ nY − 1.

To analyze the concentration of T̂X,Y , which consists of the summation over the nX -by-nY array,
the de-coupling argument gives that for M := min{nX , nY }, and any 0 < λ < 3

√
νM ,

P
[
T̂X,Y > Ex∼p,y∼qK(x, y) + λ

√
ν

M

]
≤ e−λ

2/8,

and same for P
[
T̂X,Y < Ex∼p,y∼qK(x, y)− λ

√
ν
M

]
. By that cn ≤M , when 0 < λ < 3

√
νcn,

T̂X,Y ≤ Ex∼p,y∼qK(x, y) + λ

√
ν

cn
, w.p. ≥ 1− e−λ

2/8,

T̂X,Y ≥ Ex∼p,y∼qK(x, y)− λ
√

ν

cn
, w.p. ≥ 1− e−λ

2/8.

(39)

Finally, to prove Part (1) of the proposition, use the upper bound in (38), the corresponding upper
bound for T̂Y Y , and the lower bound in (39). This gives that, when 0 < λ < 3

√
νcn, under the

intersection of the three good events, which happens w.p. ≥ 1− 3e−λ
2/8, we have that

T̂X,X + T̂Y,Y − 2T̂X,Y ≤ (Ex∼p,y∼p + Ex∼q,y∼q − 2Ex∼p,y∼q)K(x, y) + 4λ

√
ν

cn
+

4

cn
,

where the first term vanishes since p = q under H0. To prove part (2), use the lower bounds in (38),
in the counterpart of (38) for T̂Y Y , and the upper bound in (39).

18

B.2 Proof of Theorem 3.2

In the proof of Theorem 3.2 and 3.3 which involves training and testing splitting, we use subscript (1)

to denote the randomness over Dtr, and subscript (2) that over Dte, possibly conditioned on Dtr. We
use the notations P(i), E(i) and Var(i), for i = 1, 2. We say E is a good event in P(1) which happens
w.p. ≥ 1− δ in P(1) if P(1)[E

c] ≤ δ, where 0 < δ < 1 is a small number.

Theorem 3.2 is based on Lemma B.1 which establishes the concentration of the conditional expectation
E[T̂a|Dtr], and Proposition B.2 on the concentration of T̂a under good events of Dtr.

Proof of Theorem 3.2. We first consider under H0, where δK = 0. Let γ = 8δ, and applying Lemma
B.1 with λ(1) such that

e−λ
2
(1)/4 = δ,

which gives the same value of λ(1) as in the statement of the theorem. We have that there is a good
event E1 in P(1), which happens w.p. ≥ 1− 4δ, such that under E1,

Ĉ ≤ δK + 4λ(1)

√
ν

can
= 4λ(1)

√
ν

can
, (40)

and this requires
λ(1) < 3

√
νcan. (41)

Applying Proposition B.2 (1), there is another good event E2 in P(1), which happens w.p. ≥ 1− 4δ,
such that under E2,

P(2)

[
T̂a > Ĉ + 4λ(2),1

√
1.1ν

can

]
≤ 4e−λ

2
(2),1/4, (42)

as long as

λ(2),1 < 3
√

1.1νcan,
√

log(1/δ)/(2can) =
√
λ2

(1)/(8can) ≤ 0.1ν. (43)

We thus set

4e−λ
2
(2),1/4 = αlevel, tthres = 4λ(1)

√
ν

can
+ 4λ(2),1

√
1.1ν

can
,

which gives the same values of λ(2),1 and tthres as in the statement of the theorem. Then, under the
intersection event E1 ∩ E2 which happens w.p. ≥ 1− 8δ = 1− γ in P(1), combining (40) and (42)
gives that

P[T̂a > tthres] ≤ αlevel.

Next, under H1, similarly, there are good events E′1 and E′2, the intersection of which happens w.p.
≥ 1− γ in P(1), and under E′1 ∩ E′2,

Ĉ ≥ δK − 4λ(1)

√
ν

can
,

and

P(2)

[
T̂a < Ĉ − 4λ(2),2

√
1.1ν

can

]
≤ 4e−λ

2
(2),2/4,

and this requires
λ2,(2) < 3

√
1.1νcan. (44)

This means that the Type-II error bound under H1 in the theorem holds as long as

δK − 4λ(1)

√
ν

can
− 4λ2,(2)

√
1.1ν

can
> tthres. (45)

Collecting the needed requirements (41) (43) (44) (45), and they are satisfied by (20) and the
assumption of the theorem.

In both Lemma B.1 and Proposition B.2, suppose that (11), (19) and the conditions (i) and (ii) in
Theorem 3.1 hold. We define the witness function of exact NTK-MMD as

ĝNTK(x) :=

∫
X
K(x, x′)(p̂(1) − q̂(1))(x

′)dx′. (46)

19

Lemma B.1. Denote the conditional expectation E[T̂a|Dtr] as

Ĉ :=

∫
X
ĝNTK(x)(p− q)(x)dx, (47)

then for any 0 < λ(1) < 3
√
νcan,

P(1)

[
Ĉ − δK > 4λ(1)

√
ν

can

]
≤ 4e−λ

2
(1)/4,

and same with P(1)[Ĉ − δK < −4λ(1)

√
ν
can

].

Proposition B.2. Suppose 0 < δ < 1 and
√

log(1/δ)/(2can) ≤ 0.1ν, then under both H0 and
H1, there is a good event which happens w.p. ≥ 1− 4δ over the randomness of Dtr, under which,
conditioning on Dtr,

(1) Under H0, P(2)[T̂a > Ĉ + 4λ
√

1.1ν
can

] ≤ 4e−λ
2/4 if 0 < λ < 3

√
1.1νcan;

(2) Under H1, P(2)[T̂a < Ĉ − 4λ
√

1.1ν
can

] ≤ 4e−λ
2/4 if 0 < λ < 3

√
1.1νcan.

Proof of Proposition B.2. In this proof we write ĝNTK defined in (46) as ĝ for shorthand notation.
We have that ĝ = ĝX − ĝY , where

ĝX(x) :=

∫
X
K(x, x′)p̂(1)(x

′)dx′ =
1

nX,(1)

nX,(1)∑
i=1

K(x, x
(1)
i),

ĝY (x) :=

∫
X
K(x, x′)q̂(1)(x

′)dx′ =
1

nY,(1)

nY,(1)∑
i=1

K(x, y
(1)
i),

(48)

and both ĝX and ĝY are determined by Dtr. By definition,

T̂a =

∫
X

(ĝX − ĝY)(x)(p̂(2) − q̂(2))(x)dx

=
1

nX,(2)

∑
i

ĝX(x
(2)
i)− 1

nY,(2)

∑
i

ĝX(y
(2)
i)− 1

nX,(2)

∑
i

ĝY (x
(2)
i) +

1

nY,(2)

∑
i

ĝY (x
(2)
i)

:= SX,X − SX,Y − SY,X + SY,Y . (49)

Conditioning on a realization of Dtr, due to the independence of Dte from Dtr, the four terms in
(49) are independent sums of random variables over the randomness of Dte. Again, we analyze the
concentration of these four terms respectively, conditioned on Dtr and we will restrict to good events
in P(1).

We start from SX,X . Again by (11), we have |ĝX(x)| ≤ 1 for any x ∈ X . Meanwhile, ∀x ∈ X ,

ĝX(x)2 =

(
1

nX,(1)

∑
i

K(x, x
(1)
i)

)2

≤ 1

nX,(1)

∑
i

K(x, x
(1)
i)2,

and thus, conditioning on Dtr,

Var(2)(ĝX(x
(2)
i)) ≤ Ex∼pĝX(x)2 ≤ 1

nX,(1)

∑
i

Ex∼pK(x, x
(1)
i)2 =

1

nX,(1)

∑
i

ψp(x
(1)
i) =: ν̂p,X ,

(50)
where we define

ψp(x
′) :=

∫
X
K(x, x′)2p(x)dx,

and ν̂p,X is a random variable determined by Dtr. One can verify that by restricting to large
probability event in P(1), ν̂p,X concentrates at the mean value

E(1)ν̂p,X =

∫
X
ψp(x

′)p(x′)dx′ =

∫
X

∫
X
K(x, x′)2p(x)dxp(x′)dx′ = νp,p ≤ ν. (51)

20

Specifically, (11) implies that 0 ≤ ψp(x′) ≤ 1, and then by Hoeffding’s inequality,

P(1)[ν̂p,X − E(1)ν̂p,X > t] ≤ e−2nX,(1)t
2

≤ e−2cant
2

, ∀t > 0.

Let e−2cant
2

= δ, where δ is as in the statement of the proposition, then w.p. ≥ 1− δ in P(1),

ν̂p,X ≤ E(1)ν̂p,X + t = E(1)ν̂p,X +

√
log(1/δ)

2can
≤ ν + 0.1ν, (52)

and the last inequality is by (51) and the condition of the proposition. We call this good event EX,X
in P(1), under which (52) holds.

Back to SX,X , we have that under EX,X in in P(1), and conditioning on the realization of Dtr,
ĝX(x

(2)
i) as r.v. in P(2) are bounded as |ĝX(x

(2)
i)| ≤ 1; Meanwhile, by (50) and (52),

Var(2)(ĝX(x
(2)
i)) ≤ ν̂p,X ≤ 1.1ν.

Then the classical Bernstein gives that ∀0 < λ < 3
√

1.1νnX,(2),

P(2)

[
SX,X − E(2)SX,X > λ

√
1.1ν

nX,(2)

]
, P(2)

[
SX,X − E(2)SX,X < −λ

√
1.1ν

nX,(2)

]
≤ e−λ

2/4.

By that nX,(2) ≥ can, we have that ∀0 < λ < 3
√

1.1νcan, under the good event EX,X which
happens w.p. ≥ 1− δ in P(1) and conditioning on Dtr,

P(2)

[
SX,X − E(2)SX,X > λ

√
1.1ν

can

]
, P(2)

[
SX,X − E(2)SX,X < −λ

√
1.1ν

can

]
≤ e−λ

2/4. (53)

Similarly, we can show that, there are good events EX,Y , EY,X , and EY,Y over randomness of Dtr,
where each happens in P(1) w.p. ≥ 1− δ, and under which the similar bound as (53) holds for SX,Y ,
SY,X , and SY,Y respectively as long as 0 < λ < 3

√
1.1νcan. Thus, under the intersection of the

four good events, which happens in P(1) w.p. ≥ 1− 4δ,

P(2)

[
T̂a − E(2)T̂a > 4λ

√
1.1ν

can

]
, P(2)

[
T̂a − E(2)T̂a < −4λ

√
1.1ν

can

]
≤ 4e−λ

2/4.

The above holds under both H0 and H1. Finally, by that E(2)T̂a = Ĉ as defined in (47), this proves
parts (1) and (2) of the proposition.

Proof of Lemma B.1. Note that Ĉ is a random variable over the randomness of Dtr only. By defini-
tion,

Ĉ =

∫
X

∫
X
K(x, x′)(p̂(1) − q̂(1))(x

′)dx′(p− q)(x)dx =

∫
X

(ϕp − ϕq)(x′)(p̂(1) − q̂(1))(x
′)dx′,

where
ϕp(x

′) :=

∫
X
K(x, x′)p(x)dx, ϕq(x

′) :=

∫
X
K(x, x′)q(x)dx.

Because only nX,(1) and nY,(1) are involved here, in this proof we write nX,(1) as nX and nY,(1)

as nY for notation convenience, and we also denote samples from X(1) and Y(1) by xi and yi
respectively. By (19), we then have

nX , nY ≥ can. (54)

We then equivalently write Ĉ as

Ĉ =
1

nX

nX∑
i=1

ϕp(xi)−
1

nX

nX∑
i=1

ϕq(xi)−
1

nY

nY∑
i=1

ϕp(yi) +
1

nY

nY∑
i=1

ϕq(yi)

:= CX,X − CX,Y − CY,X + CY,Y , (55)

and we use concentration argument on the four terms respectively.

21

Due to (11),
|ϕp(x)| ≤ 1, |ϕq(x)| ≤ 1, ∀x ∈ X .

Starting from CX,X which is an independent sum of i.i.d. rv’s, where |ϕp(xi)| ≤ 1 := L; By that

ϕp(x)2 =

(∫
X
K(x, x′)p(x′)dx′

)2

≤
(∫
X
K(x, x′)2p(x′)dx′

)(∫
X
p(x′)dx′

)
=

∫
X
K(x, x′)2p(x′)dx′

we have

Var(1)(ϕp(xi)) ≤ Ex∼pϕp(x)2 ≤
∫
X

∫
X
K(x, x′)2p(x′)dx′p(x)dx = νp,p ≤ ν,

where the last inequality is by condition (ii) in Theorem 3.1. The classical Bernstein then gives that
∀0 < λ < 3

√
νnX ,

P(1)

[
CX,X − E(1)CX,X > λ

√
ν

nX

]
, P(1)

[
CX,X − E(1)CX,X < −λ

√
ν

nX

]
≤ e−λ

2/4.

The similar bounds can be derived for CX,Y , and for CY,X and CY,Y where nX is replaced with nY .
By (54), this gives that when 0 < λ < 3

√
νcan ≤ 3

√
νnX and 3

√
νnY ,

P(1)

[
Ĉ − E(1)Ĉ > 4λ

√
ν

can

]
, P(1)

[
Ĉ − E(1)Ĉ < −4λ

√
ν

can

]
≤ 4e−λ

2/4.

Observing that E(1)Ĉ = δK which is defined in (12) finishes the proof.

B.3 Test power of T̂a with full-bootstrap

We derive here the testing power of the statistic T̂a computed on split training/testing sets in Subsection
3.2, with a theoretical choice of tthres, similar to as in Theorem 3.1. In practice, the full-bootstrap
estimation of tthres can obtain better power than the theoretical one.

Proof of Theorem 3.3. Similar to the proof of Theorem 3.1 by applying Proposition B.3. Due to that
the upper bound of T̂a under H0 does not have the 4

cn term, c.f. Proposition B.3 Part (1) (because
the asymmetric kernel MMD is computed from an off-diagonal block of the kernel matrix and the
summation in T̂a does not involve diagonal terms), the value of tthres does not have the 4

cn term, and
the condition (21) has one term less on the r.h.s. than (15).

Proposition B.3 (Concentration of T̂a). Assuming (11), (19) and the conditions (i) and (ii) in Theorem
3.1,

(1) Under H0, when 0 < λ < 3
√
caνn, w.p. ≥ 1− 4e−λ

2/8, T̂a ≤ 4λ
√

ν
can

.

(3) Under H1, when 0 < λ < 3
√
caνn, w.p. ≥ 1− 4e−λ

2/8, T̂a ≥ δK − 4λ
√

ν
can

.

The proof makes use of the independence of the four datasets X(1), X(2), Y(1) and Y(2), and the
concentration of the double summation over the four blocks of the asymmetric kernel matrix.

Proof of Proposition B.3. By definition,

T̂a =
1

nX,(2)nX,(1)

nX,(2)∑
i=1

nX,(1)∑
j=1

K(x
(2)
i , x

(1)
j)− 1

nX,(2)nY,(1)

nX,(2)∑
i=1

nY,(1)∑
j=1

K(x
(2)
i , y

(1)
j)

− 1

nY,(2)nX,(1)

nX,(1)∑
i=1

nY,(2)∑
j=1

K(x
(1)
i , y

(2)
j) +

1

nY,(2)nY,(1)

nY,(2)∑
i=1

nY,(1)∑
j=1

K(y
(2)
i , y

(1)
j).

(56)

22

Then, equivalently,

T̂a = TX,X − TY,X − TX,Y + TY,Y (57)

TX,X :=
1

nX,(2)nX,(1)

nX,(2)∑
i=1

nX,(1)∑
j=1

K(x
(2)
i , x

(1)
j), TY,X :=

1

nX,(2)nY,(1)

nX,(2)∑
i=1

nY,(1)∑
j=1

K(x
(2)
i , y

(1)
j)

(58)

TX,Y :=
1

nY,(2)nX,(1)

nX,(1)∑
i=1

nY,(2)∑
j=1

K(x
(1)
i , y

(2)
j), TY,Y :=

1

nY,(2)nY,(1)

nY,(2)∑
i=1

nY,(1)∑
j=1

K(y
(2)
i , y

(1)
j).

(59)

We analyze the concentration of the four terms respectively, all similarly to the analysis of the “T̂X,Y "
term in the proof of Proposition B.1, Specifically, for TX,X : Define M := min{nX,(1), nX,(2)}, and
by (19),

M ≥ can.

By that νpp ≤ ν and that the kernel is bounded in absolute value by 1, we have that ∀0 < λ < 3
√
νM ,

P
[
TX,X − Ex∼p,y∼pK(x, y) > λ

√
ν

M

]
,P
[
TX,X − Ex∼p,y∼pK(x, y) < −λ

√
ν

M

]
≤ e−λ

2/8,

and M can be replaced to be can where the claim remains to hold. Similar bounds hold for TY,X ,
TX,Y , TY,Y , since

min{nX,(1), nX,(2), nY,(1), nY,(2)} ≥ cn.

Putting together, to prove (1) under H0, use the concentration bounds for the 4 quantities and under
the joint good events, plus that MMD2

K(p, q) = 0. Part (2) under H1 is proved similarly.

C Experimental details and additional results

C.1 Gaussian mean and covariance shifts

The neural network has 2 fully-connected (fc) layers, i.e. 1 hidden layer, and has the following
architecture: the input data dimension d = 100, the hidden layer width m = 512,

fc (d, m) - softplus - fc (m, 1) - loss as in (3)

where (fin, fout) stand for dimensionality of input and output features respectively.

The network mapping f(x; θ) can be equivalently written as

f(x; θ) =

m∑
k=1

akσ(wTk x+ bk), θ = {(wk, bk, ak)}mk=1. (60)

The neural network parameters are initialized such that ak ∼ N (0, 1/m), wk ∼ N (0, Id), and
bk = 0. For simplicity, we leave the 2nd layer parameters ak fixed after initialization and only train
the 1st layer parameters wk and bk.
Remark C.1 (Effective learning rate). The network is trained for 1 epoch (1 pass of the training
set) and batch-size 1, using basic SGD. In the notation of Remark 2.2, the theoretical learning rate
α = 0.1. Note that the definition of loss (3) contains normalization 1/nX and 1/nY , and here
nX,(1) = nY,(1) = 100. Comparing to training objective which is usually defined as the summation
(with out normalizing by sample size), the effective learning rate here (lr) is α/100 = 10−3. Using
smaller values of lr produces similar results, but note that reducing lr to be too small may cause
numerical issue, due to that the deep learning programs use single precision floating point arithmetic.

The testing powers are approximately computed over nrun random replicas. For Figure 1, the most
right plot is produced by nrun = 200, and all other plots by nrun = 500. In the most right plot,
nX,(1) = nY,(1) = 250, and the effective lr is 0.1/250 = 4× 10−4.

23

Neural network configuration \ width m 256 512 1024
2-layer softplus 82.0 81.6 82.0
2-layer relu 79.8 84.4 82.8
3-layer relu 85.8 88.4 91.0

Table A.1: NTK-MMD with relu activation, different width m, and more layers (to compare to Figure 1, which
is computed with 2 fc-layers, softplus activation, width m=512). Numbers in the table are testing power (in %).

SGD configuration Test power of NTK-MMD
Batch-size = 1, epoch= 1 (10) 84.2 (85.0)
Batch-size = 20, epoch= 1 (10) 82.8 (81.6)

Table A.2: NTK-MMD trained with different numbers of epochs and batch sizes. The example of gaussian
covariance shift in Section 4.1, ρ = 0.12. Test power (in %) with epoch=1 outside brackets, with epoch=10 in
brackets.

C.2 Experiments of varying neural network hyperparameters

We conducte additional experiments to investigate the influence of neural network architecture and
training hyperparameters.

• Different activation functions, network depths and widths

Table A.1 shows that increasing the network depth can improve testing power, and changing from
softplus to relu obtains similar results. We also find in experiments that relu can obtain more
robustness of testing power performance with respect to different weight initialization schemes. We
observe that the performance with wider networks is generally better, though no longer sensitive
beyond a certain m. Theoretically, the convergence to infinite-width limiting NTK may lead to
further analysis of the discriminative power of the kernel to distinguish p and q, see the comments in
Subsection 4.3.

• General SGD with varying batch-size, epochs, and batch-size

Theoretically, the analysis covers general SGD (more than one epoch and different batch size): The
proof in Appendix A.2 generalizes to such cases because the residual error of the Taylor expansion of
the network mapping f(x; θ) still applies.

Empirically, we verify that the testing power of NTK-MMD is not sensitive to batch size nor a few
more epochs, as illustrated in Table A.2. This agrees with the theory that T̂net computed with different
batch-size and small number of epochs all approximate the exact NTK-MMD at time zero. In other
experiments in the paper, we focus on batch-size =1 to show that NTK-MMD allows extremely small
batch-size. Note that the advantage of NTK-MMD is particularly pronounced in the one-pass training,
i.e., we can only visit the data in one-pass, which commonly appears in the streaming data setting.

C.3 Computation of the exact NTK-MMD

The neural network setting is the same as in Subsection 4.1, and here we derive the expression of the
NTK kernel at t = 0, which was used to compute the “ntk1” and “ntk2” statistics.

-1.5 -1 -0.5 0
-4

-3.5

-3

-2.5

-2

-1.5 -1 -0.5 0
-3.2

-3

-2.8

-2.6

-2.4

-2.2

Figure A.1: Numerical computation of the (relative) approximation error err = |T̂net(t)− T̂NTK|/|T̂NTK|. The
network has 2-fc layers with softplus (or relu) activation and width m = 512, and the simulated data distribution
is Gaussian covariance shift in dimension 100.

24

For the network function as in (60),

K0(x, x′) =

(
m∑
k=1

a2
kσ
′(wTk x+ bk)σ′(wTk x

′ + bk)

)(
1 + xTx′

)
, (61)

where σ(z) = log(1 + ez) is the softplus function, and is differentiable on R. Thus the kernel for
any pair of samples x and x′ is analytically computable once the network parameters are initialized.
In our experiments, we compute K0(x, x′) as in (61) with finite hidden-layer width m and given
realizations of the t = 0 network parameters.

C.4 Comparison to neural network classification tests

The network is fc 3-layer with relu activation and width m = 512. Two C2ST baselines are trained
with Adam and SGD respectively, and trained for 1 and 10 epochs. (By SGD, we mean vanilla SGD
with constant step-size and no momentum.) NTK-MMD uses SGD, epoch = 1. We also experiment
under H0 to verify that the Type-I error achieves αlevel = 0.05.

Since [36] already compared C2ST’s with optimization-based linear time kernel tests, namely ME
and SCF tests [14, 29] and showed that C2ST’s are generally better, we cite the results therein for
comparison.

C.5 MNIST distribution abundance change

The neural network has two convolutional (conv) layers:

conv 5x5x1x16 - relu - maxpooling 2x2

- conv 5x5x16x32 - relu - maxpooling 2x2

- fc (·,128) - relu - fc (128, 1) - loss

where the dimension of fin in the 1st fc layer is by flattening the input feature, which gives fin = 42 ·32
in this case.

In the online training of the network, we use batch size = 1, theoretical lr α = 0.01, and SGD with
momentum 0.9, Adding momentum to SGD is common in neural network practice, and we adopt it
here as to examine the behavior of the model: theoretically, under the NTK assumption, we expect
similar behavior with and without momentum in short-time training with SGD. As has been explained
in Appendix C.1, by that nX,(1) = nY,(1) = 103, the effective lr is α/103 = 10−5.

C.6 Human activity change-point detection

The (MSRC-12) Kinect gesture dataset consists of sequences of human skeletal body part movements
(represented as body part locations) collected from 30 people performing 12 gestures. There are 18
sensors in total, and each sensor records the coordinates in the three-dimensional Cartesian coordinate
system at each time.

The net MMD statistic is computed using a 2-layer fc network having 512 hidden nodes and soft-plus
activation. We use effective lr 0.0015 and SGD with momentum 0.9 in the 1-pass training with
batch-size 1.

C.7 Comparison to linear time MMD

The test power comparison of NTK-MMD, Gaussian kernel MMD and the linear-time version as
in [23, Section 6], on the example of MNIST data in Section 4.4 is given in Table A.3. In both the
full and linear-time Gaussian kernel MMD tests, median-distance kernel bandwidth is used, and
the test has access to all the samples in training and testing sets (no splitting). On the examples in
Section 4.1 (Figure 1) linear-time gaussian MMD baseline gives inferior power (all less than 10%,
details omitted). This version of linear-time MMD only provides a global test statistic but not directly
a witness function (to indicate where p and q differ), while NTK-MMD training obtains network
witness function which approximates the kernel witness function of NTK.

As alternative linear-time MMD tests, the ME and SCF tests [14, 29] involve additional gradient-
based optimization of model parameters and may not have optimization convergence guarantee for

25

Test statistics \ ntr 100 200 300 500 1000 2000
gmmd 62.0 93.2 99.6 - - -
gmmd-lin 7.0 10.8 12.6 16.0 24.4 36.4
NTK-MMD 35.4 67.6 86.2 98.2 100.0 100.0

Table A.3: Testing power (in %) of MNIST density departure example in Subsection 4.4. gmmd is Gaussian
kernel MMD, and gmmd-lin the linear-time version. Results of gmmd for ntr greater than 300 are omitted due
to slow computation.

general data distributions. NTK-MMD has comparable computational and memory complexity to
classification neural network tests (the order is the same, but only one epoch is needed and batch size
can be as small as one), and has learning guarantee via NTK approximation as shown in Section 2.3
and Section 3.

26

