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ABSTRACT

The topological structure information of the brain graph is critical in discovering
bio-topological properties that underlie brain function and pathology. Authentic
representations of brain graphs in many clinical applications heavily rely on these
bio-topological properties. While existing studies have made strides in analyzing
brain graph topology, they are often constrained by single-scale structural analysis
and hence fail to extract these properties across multiple scales, thus potentially
leading to incomplete and distorted representations. To address this limitation,
we propose a novel Scalable diffusion model for bio-TOpological REpresenta-
tion learning on Brain graphs (BrainSTORE1). BrainSTORE constructs multiscale
topological structures within brain graphs, facilitating a deep exploration of bio-
topological properties. By embedding these features into the training process and
prioritizing bio-topological feature reconstruction, BrainSTORE learns represen-
tations that are more reflective of underlying brain organization. Furthermore,
BrainSTORE utilizes a unified architecture to integrate these features effectively,
yielding improved bio-topological representations which are more robust and bio-
logically meaningful. To the best of our knowledge, this is the first study to inves-
tigate bio-topological properties in brain graph representation learning. Extensive
experiments demonstrate that BrainSTORE outperforms state-of-the-art methods
in brain disease detection.

1 INTRODUCTION

Advanced multimodal neuroimaging data, such as diffusion tensor imaging (DTI) (Assaf & Paster-
nak, 2008) and functional magnetic resonance imaging (fMRI) (Van Den Heuvel & Pol, 2010), are
used to construct structural and functional brain graphs, respectively (Peng et al., 2024). The topol-
ogy of these multimodal brain graphs provides insights into the brain’s bio-topological properties,
including small-world, rich-club, and modular characteristics (Bullmore & Sporns, 2012). Learning
representations from these properties deepens our understanding of the brain’s complex organiza-
tion, thereby supporting clinical diagnosis, cognitive impairment analysis, and the identification of
new biomarkers (Tang et al., 2023; Yan et al., 2024).

Existing methods focus on learning brain graph representations from local connectivity or high-
order structures (Safai et al., 2022; Zhu et al., 2022; Yang et al., 2023; Ye et al., 2024). While these
approaches effectively analyze brain graph topology at a specific scale, recent studies emphasize the
importance of examining bio-topological properties within modular and regional structures across
multiple scales, particularly in neurological research (Fornito et al., 2015; Yan et al., 2024). Changes
in these bio-topological properties are closely linked to neurological disorders such as Alzheimer’s
and Parkinson’s, which often display disrupted small-world topology and decoupling of functional
modules. These disruptions typically manifest as reduced global connectivity, reflecting significant
alterations in brain organization (Liu et al., 2017; Zhang et al., 2024). Therefore, incorporating
bio-topological properties across multiple scales in brain graph representation learning is essential
for accurately presenting disease-related brain organization. However, the expressiveness of cur-
rent methods is often constrained by single-scale structural analysis, limiting their ability to model
multiscale brain graph topologies and leading to distorted representations.

1The codes are available at: https://anonymous.4open.science/r/BrainSTORE-3CE9/.
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To address the above limitation, we propose a novel scalable diffusion model for bio-topological rep-
resentation learning on brain graphs (BrainSTORE). Specifically, we introduce a scalable learning
strategy designed to integrate remarkable bio-topological properties into the model training pro-
cess, thereby enhancing the model’s representation learning capabilities. This strategy features a
novel multiscale community detection method inspired by brain hierarchy (Betzel & Bassett, 2017),
which accounts for the structural dependencies of community assignments across various scales and
modalities. This results in coherent and realistic multiscale topological structure partitions enabling
detailed exploration of bio-topological properties. Additionally, recent studies have demonstrated
the potential of diffusion models in representation learning (Yang et al., 2024a; Chen et al., 2024).
We extend this approach to multimodal brain graph data by designing a unified architecture with
modality-specific and shared backbone networks. BrainSTORE uniquely integrates bio-topological
properties for scalable joint denoising and implementing a scalable noise schedule during diffu-
sion. This enables BrainSTORE to prioritize the reconstruction of shared and complementary bio-
topological features within multimodal brain graphs, facilitating the comprehensive capture and in-
tegration of these features. These advancements reduce potential biases associated with single-scale
analysis and provide improved bio-topological representations that accurately reflect authentic brain
organizational characteristics.

To summarize, our main contributions are three-fold: 1) We propose a novel BrainSTORE model
that pioneers the exploration of bio-topological properties in brain graph representation learning,
effectively addressing representation distortion by delivering authentic bio-topological representa-
tions. 2) We introduce a novel scalable learning strategy that models biologically realistic multiscale
topological structures in brain graphs, enhancing the model expressiveness through integrating bio-
topological properties into the training process. 3) We conduct extensive experiments on multimodal
brain disease datasets to validate the effectiveness of BrainSTORE, with additional explanation and
ablation studies providing insights into the scalable diffusion mechanism.

2 RELATED WORK

2.1 BRAIN GRAPH REPRESENTATION LEARNING

Graph neural networks (GNNs) offer an effective approach for learning topological information
from graph-structured data and have become widely utilized in modeling and representing brain
network data (Bessadok et al., 2022). Cui et al. (2022) propose a unified brain graph representation
learning framework. Similarly, BrainGNN (Li et al., 2021) further provides explainable biomarkers.
Recently, most methods aim to integrate multimodal brain graph data to obtain improved represen-
tation. Simple methods extract topological features by applying GNNs to node connectivity and
directly incorporate them (Zhu et al., 2022; Cai et al., 2022). Recently, approaches based on indi-
rect interactions, such as Cross-GNN (Yang et al., 2023) and RH-BrainFS (Ye et al., 2024), have
improved representations by considering the structural relationships across modalities, in which
RH-BrainFS specifically extracting subgraph-level topological features. However, these methods
often overlook bio-topological properties within multimodal graphs, limiting their expressiveness.
In contrast, BrainSTORE detects multiscale topological structures across modalities to embed these
properties into model training, achieving bio-topological representation learning.

2.2 DIFFUSION MODELS

Diffusion models are probabilistic generative models (Ho et al., 2020), which excel at learning flex-
ible representations and are widely used in computer vision tasks (Preechakul et al., 2022; Yang &
Wang, 2023). In particular, leveraging multimodal information from multiple tasks and data sources
has proven effective for learning generalized representations. Current approaches can be divided
into conditional models and multimodal models. Conditional models use modality embeddings to
guide modality transformation, enabling tasks like text-to-video and text-to-image generation (Ma
et al., 2023; Ho et al., 2022). Multimodal models, on the other hand, capture and generate data
by integrating shared information across modalities such as MM-Diffusion (Ruan et al., 2023) and
MT-Diffusion (Chen et al., 2024). Although these methods have succeeded, their use in graph
learning is still restricted due to the inherent structural differences between images and graphs. Re-
cently, DDM (Yang et al., 2024a) incorporates directional noise to capture meaningful semantic
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and topological representations. However, DDM is tailored for mono-modal tasks, in contrast to
BrainSTORE, which explores the application of diffusion models to multimodal graph data.

BrainSTORE is also related to community detection works discussed in Appendix A.

3 PRELIMINARIES

Denoising Diffusion Probabilistic Models (DDPM) is a Vallina diffusion model consisting of for-
ward and reverse processes (Ho et al., 2020). In the forward process, Gaussian noise is incrementally
added to the original data point x ∼ q(x) following a Markov chain until it transforms into isotropic
white noise N (0, I). The reverse process uses a neural network to remove the noise and restore
the data to its original distribution. Mathematically, the forward process from step t − 1 to t is
defined as: q(zt|zt−1) =

√
1− βtzt−1 +

√
βtϵ, where ϵ ∈ N (0, I), zt is the noisy representation,

βt controls the noise level, and ϵ is Gaussian noise. The reverse process then iteratively denoises zT
back to its initial state, recovering the original representation z0. With both processes generating a
sequence of noisy representations z0, . . . , zT , the model is optimized by minimizing the variational
lower bound loss: L := Et,z0,ϵ

[
∥ϵ− ϵθ(

√
αtz0 +

√
1− αtϵ, t)∥2

]
, where αt =

∏t
1(1 − βt), and

ϵθ(·) represents the denoising model, typically structured as a U-Net (Ronneberger et al., 2015).

Problem Definition. Given a brain network dataset for M subjects, {G1,G2, . . . ,GM}, where each
G = (Gsc, Gfc) represents multimodal brain graph data comprising both structural and functional
graphs constructed from DTI and fMRI data, respectively. Each modality of the brain graph is
represented as G = (V,A,X), where V is a finite set of nodes with size N , A ∈ RN×N is the
adjacency matrix, and X ∈ RN×N is the node feature matrix. The nodes represent the regions of
interest (ROIs) in brain networks, and the connectivity strengths between paired ROIs are defined
as the elements aij ∈ A, (i, j = 0, . . . , N). The connectivity correlation vector is the node feature
vector, xi ∈ RN . The objective is to learn a network fθ(·, ·), with a series of scale resolutions
{λmin, . . . , λmax}, that capable of encoding multimodal brain graph features into bio-topological
representations Z = [z1, . . . , zN ] ∈ RN×D, where zn ∈ RD represents the feature vector for the
n-th node. These representations are then utilized for graph classification tasks.

4 DESIGN OF BRAINSTORE

This section introduces our novel BrainSTORE, depicted in Figure 1, designed to enhance diffusion
models for multimodal graph data by incorporating structural topological attributes across modali-
ties. This approach facilitates the bio-topological representation learning on brain graph. We begin
by detailing the strategy designed to improve the model’s representation learning capabilities in
Section 4.1. Next, Section 4.2 discusses model training, which leverages this strategy and presents
the scalable joint denoising process within our unified model. Section 4.3 outlines a scalable noise
schedule tailored for this denoising process. Finally, we address the bio-topological representation
learning from the denoising model in Section 4.4.

4.1 SCALABLE LEARNING STRATEGY

Inspired by the hierarchical nature of brain graphs (Betzel & Bassett, 2017), we propose a novel
scalable learning strategy to model multiscale topological structures within brain graphs through a
community detection method. However, this poses two primary challenges when implemented in
multimodal brain graphs: First, the hierarchical structure often results in brain regions displaying
stable allegiance across scales, where the communities at adjacent scales influence node assignments
at a given scale (Uddin et al., 2019; Vaiana & Muldoon, 2020). Second, due to the solid structural
coupling between structural and functional brain graphs (Amico & Goñi, 2018), where community
assignments at the same scales exhibit high correlations, especially at intermediate topological scales
(Ashourvan et al., 2019). Nevertheless, traditional community detection methods independently
identify communities for each modality or scale, leading to potential inconsistencies.

To address these challenges, our method extends the traditional Louvain algorithm (Blondel et al.,
2008) by optimizing the dependencies within and between scales across different modalities. Specif-
ically, it integrates a multiscale connection parameter τ and a multimodal connection parameter κ
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Figure 1: Overview of the BrainSTORE framework: The Scalable Learning Strategy (yellow) de-
tects multiscale topological structures in multimodal brain graphs. These findings guide the Scal-
able Noise Schedule (blue) for performing joint diffusion on brain graph data. The unified model
architecture performs Scalable Joint Denoising (green), enabling the adaptive reconstruction of bio-
topological features in original brain graph data.

to detect topological structures across multiple scales in brain graphs. This approach effectively
ensures a more coherent and integrated representation of the brain organization, revealing bio-
topological properties.

Figure 2: Schematic representation of multi-
scale community detection

As shown in Figure 2, τ adjusts the dependencies of
community assignment across adjacent scales within
each modality. This facilitates the gradual decom-
position of large communities in the initial layer l1
(with minimal scale resolution parameter λl1 ) into
smaller communities in adjacent layers l2 (with a lin-
early increased scale resolution parameter λl2 ). For
parameter κ, it establishes dependencies between
nodes across different modalities at the same scale.
Formally, with the community detection of layer l1
in each modality graph, we define the scalable qual-
ity function for layer l2 in m1 modality graph as fol-
lows:

Qτ,κ(λ) =
1

2η

∑
ij|l1l2m1m2

{
δ(l1m1,l2m1)

(
aij|l1m1

− λl1pij|l1m1

)
+δ(i|l1,j|l2)τj|l1l2m1

+ δ(i|m1,j|m2)κj|l1m1m2

}
δ(ci|l1m2

, cj|l2m1
),

(1)

where aij|l1m1
and pij|l1m1

represent the connection strength and expected strength between
nodes i and j in layer l1, τj|l1l2m1

gives the connection strength from node j in layer l1 to
layer l2 within m1 modality graph, and the κj|l1m1m2

indicates the strength of the connections
for node j at layer l1 across modalities. The total edge weight in the m1 modality graph de-
notes as η = 1

2

∑
j|l2m1

(Aj|l2m1
+ Tj|l2m1

+ Kj|l2m1
), where Aj|l2m1

=
∑

i aij|l2m1
and

Tj|l2m1
=

∑
l1
τj|l1l2m1

are the sum of intra-layer and inter-layer connection strength of j-th node,
and Kj|l2m1

=
∑

m1
κj|l1m1m2

is the sum of connection strength for layer l1 across modalities.
Here, the Kronecker delta function δ(ci|l1m2

, cj|l2m1
) returns 1 if node i (layer l1, modality m2) and

the node j (layer l2, modality m1) belong to the same community (ci|l1m2
= cj|l2m1

), and 0 other-
wise. As τ increases, nodes across adjacent scales exhibit stronger structural dependencies, creating
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a hierarchical organization where smaller topological structures are nested within larger ones. Sim-
ilarly, adjusting κ modifies the similarity of these structures between modalities: a lower κ value
leads to more independent structural partitions, whereas a higher κ enhances structural consistency.
Detailed parameter settings are provided in Appendix B.1. Finally, the bio-topological properties
in these identified structures will be integrated into the joint denoising and diffusion processes for
bio-topological representation learning on brain graphs.

4.2 UNIFIED MODEL WITH SCALABLE JOINT DENOISING

We develop a unified denoising model, fθ(·, ·), tailored to extract bio-topological features from
multimodal brain graphs by integrating the key bio-topological properties into model training. Our
model diverges from traditional approaches that denoise the entire graph. Instead, it focuses on joint
denoising within identified multiscale topological structures, progressing from coarse (λmin) to fine
(λmax) resolutions. This scalable approach effectively allows the model to prioritize reconstructing
bio-topological features of original brain graph data.

Learning Objectives. We follow the standard training protocol for diffusion models, performing de-
noising during the reverse process. Our method uniquely employs scalable joint denoising, adapting
the scale resolution parameter (λmin, . . . , λmax) as defined in Equation 1 dynamically for using the
defined topological structure as a prior during denoising. Specifically, for each modality, we define
the reverse process as pfθ (Gt−1|Gt) = N (Gt−1;µQ(G

sc
t , G

fc
t ;Q(λt), t)), where Q(λt) delineates

the topological structures at the t-th step. Since the learning objective is targeted at multimodal data,
this setup requests for the generation of Gt−1 from a Gaussian distribution jointly informed by the
correlation between Gsc

t and Gfc
t . However, directly optimizing pfθ (·) using the variational lower

bound is often unstable and requires various optimization techniques for stabilization. Drawing from
(Li et al., 2022; Bansal et al., 2024), we adopt an alternative objective where the denoising model
fθ(G

sc
t , G

fc
t ;Q(λt), t) directly predicts Gsc

0 and Gfc
0 . Thus, the optimization objective function is

formulated as follows:

L = EXsc
0 ,X

fc
0 ,t

[
∥fθsc(A

sc,Xsc
t ;Q(λt), t)−Xsc

0 ∥2 + ∥fθfc(A
fc,Xfc

t ;Q(λt), t)−Xfc
0 ∥2

]
, (2)

where Xsc
t and Xfc

t are the noisy brain graph data at step t for each modalities. Meanwhile, Xsc
0

and Xfc
0 represent the corresponding original data. The function fθsc(·) and fθfc(·) are modality-

special networks of our unified denoising model, tailored to handle structural and functional data
respectively. By encoding a series of bio-topological features, our model strives to minimize noise
and enhance the fidelity of the brain graph data reconstructed at each reverse step.

Model Architecture. To parameterize the denoising model, we introduce a symmetric architecture
inspired by U-Net, which features a shared backbone network alongside modality-specific networks
(functional and structural), as depicted in Figure 1. The shared backbone network is the central
hub for integrating and processing information from both modality-specific networks, providing
shared bio-topological features. Each modality-specific network operates independently, focusing
on encoding modality complementary bio-topological features. This dual-branch structure allows
our model to perform joint denoising within defined structures, comprehensively enhancing the
integration of bio-topological features across multimodal brain graphs.

Each network consists of several GNN layers and multilayer perceptrons (MLPs), organized into
down-sampling, mid-sampling, and up-sampling blocks. Initially, modality-specific networks use
GNN layers as down-sampling blocks to encode the input noisy graphs within the topological struc-
ture with resolution λt into low-dimensional embeddings, formulated as GNN(At,Xt;Q(λt), t).
The obtained embeddings Hsc

t ,H
fc
t ∈ RN×dh are then utilized for joint denoising through the

shared backbone network, which processes a coupled graph Gcp
t = (V,Acp

t ,X
cp
t ), constructed

using a linear GNN-based translation module Tran(·, ·). This involves translating from func-
tional to structural brain graphs as Hsc

t
′ = Tranfc→sc(H

sc
t ,H

fc
t ), followed by a bidirectional

translation for Hfc
t
′ = Transc→fc(H

sc
t
′,Hfc

t ), and vice versa. By optimizing the bidirectional
translation loss, ∥Hfc

t − Hfc
t
′∥2 + ∥Hsc

t − Hsc
t
′∥2, we define the optimized linear GNN ma-

trix as the Acp representing their structural correlation. The feature matrix Xcp is defined as
1
2

[
Hfc

t (H
sc
t )

⊤ +Hsc
t (H

fc
t )

⊤] ∈ RN×N , integrating modality-specific features. The shared back-
bone network processes this coupled graph through additional GNN layers and an MLP to encode
shared bio-topological features, outputting the coupled embedding Hcp

t . Skip connections are intro-
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duced here to prevent over-smoothing and enhance information retention. Ultimately, the modality-
specific networks leverage embeddings processed from both the initial downsampling blocks and
the shared backbone network for reconstructing complementary bio-topological features, formu-
lated as GNN(At,Ht + Hcp

t ;Q(λt), t). This process ensures that the reconstructed brain graph
data, denoted as X̂sc

0 and X̂fc
0 , each in RN×N , reflect a refined synthesis of modality-specific and

cross-modality insights enhancing the accuracy and robustness of the denoising output Ĝsc
0 and Ĝfc

0 .

4.3 SCALABLE NOISE SCHEDULE FOR JOINT DIFFUSION

In a standard diffusion framework, the reverse process reconstructs the Gaussian noise added during
the forward process. Building on this, we aim to generate scalable noise under key bio-topological
properties for performing joint diffusion on multimodal brain graphs corresponding to the denoising
process. Given graph data’s unique anisotropic and directional structures, we introduce directional-
ity as a constraint in the noise generation process inspired by the DDM. Specifically, we define each
modality of the noisy brain graph at t-th forward step as Gt = (V,A,Xt), where Xt represent the
noisy feature representations. Taking the forward process of i-th node features xt,i ∈ RN from step
t− 1 to step t in each modality as an example, it can be formulated as:

q(xt,i|x(t−1),i) =
√
1− βtx(t−1),i +

√
βtϵ̂, (3)

ϵ̂ = sgn(x0,i;Q(λt−1))⊙ |µQ + σQ ⊙ ϵ|, (4)

where x0,i is the original node feature vector, and µQ and σQ denote the mean and standard deviation
values of the node features in the identified structure at scale resolution λt−1. The symbol ⊙ rep-
resents the Hadamard product. Equation 4 transforms data-agnostic Gaussian noise into anisotropic
noise, incorporating its correlation within the data batch. Notably, in the direction function sgn(·),
we introduce the topological structures identified by the quality function in Equation 1 as a condi-
tioning factor. Unlike the DDM, which calculates node direction across the entire batch of graphs,
we focus on nodes within the same topological structure in this batch to compute their direction,
along with the shared empirical mean and standard deviation. This approach restricts the forward
diffusion process to the topological structures within the batch, preventing excessive divergence and
ensuring consistency in topological features. Consequently, the reverse process yields a series of
noisy multimodal graphs at various scales, ranging from fine (λmax) to coarse (λmin) granularity. The
detailed training algorithm is summarized in Algorithm 1 in Appendix C.

4.4 REPRESENTATION LEARNING

For a single subject with multimodal graph data Gsc and Gfc, the bio-topological representations
are derived from the activations at selected K time steps within the denoising model. Specifically,
we leverage the activations from the final upsampling blocks of each modality because these layers
encode both modality-specific and shared bio-topological features effectively. The scale resolutions
vary across these K denoising steps, which is crucial to ensure that the representations reflect the
bio-topological properties accurately across different scales. The embeddings from these activations
are represented as Ĥ ∈ RN×dh for each modality. At each selected k-th step, these embeddings are
concatenated to form the multimodal representations, expressed as zk = [Ĥsc

k , Ĥ
fc
k ] ∈ RN×2dh . The

comprehensive bio-topological representations are then assembled by aggregating all K-step repre-
sentations into Z = [z1, z2, . . . , zK ] ∈ RN×D, where D = K × 2dh. This methodology ensures
that the learned representations integrate detailed bio-topological features, enhancing the model’s
efficacy in disease detection through graph classification. The detailed steps of this representation
learning process are outlined in Algorithm 2 in Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our BrainSTORE method on two real-world medical datasets. 1) The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, used for diagnosing Alzheimer’s dis-
ease (AD) progression, which includes 54 AD samples, 195 mild cognitive impairment (MCI) sam-
ples, and 211 normal control (NC) samples, categorized according to standard clinical criteria. 2)

6
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Table 1: Accuracy (%) on the ADNI and PPMI datasets (”FC” and ”SC” are the functional and
structural modality, respectively).

Methods Modality ANDI PPMI
NC vs MCI MCI vs AD NC vs AD HC vs PD

BrainGNN SC 54.3 ± 9.4 57.2 ± 14.7 61.7 ± 8.5 61.5 ± 12.5

BrainGNN FC 51.8 ± 4.3 71.1 ± 3.7 60.0 ± 7.7 64.6 ± 18.4

BrainGB SC 55.8 ± 4.8 74.5 ± 6.9 73.9 ± 7.3 66.8 ± 7.3

BrainGB FC 56.6 ± 2.5 77.3 ± 4.7 61.4 ± 6.5 68.4 ± 10.7

TAN SC,FC 71.5 ± 10.3 81.2 ± 7.2 75.2 ± 9.8 75.1 ± 8.5

Cross-GNN SC,FC 82.8 ± 6.3 83.4 ± 6.1 80.3 ± 8.1 84.6 ± 7.1

RH-BrainFS SC,FC 80.4 ± 7.4 85.3 ± 5.9 82.4 ± 7.9 85.6 ± 7.1

BrainSTORE (ours) SC,FC 85.3 ± 6.4 89.4 ± 4.7 90.9 ± 4.9 88.9 ± 3.4

The Parkinson’s Progression Markers Initiative (PPMI) dataset, used for diagnosing Parkinson’s
disease (PD), contains 41 healthy controls (HC) and 49 PD patients. Detailed information on the
datasets and their preprocessing can be found in Appendix D.1 and Appendix D.2.

Metrics. To ensure fairness, we evaluate all methods using 10-fold cross-validation with the same
training and testing dataset splits. We use the mean and standard deviation of the following metrics
to assess the classification performance: accuracy (ACC), sensitivity (SEN), specificity (SPE), F1-
score, and the area under the ROC curve (AUC).

Implementation Details. For all experiments, we use the Adam optimizer with an initial learning
rate of e−4 and a dropout rate of 0.2, training for 100 epochs. In the BrainSTORE model, we
set the multiscale and multimodal connection parameters, τ and κ, to 0.5 and 1.0. The multiscale
resolutions λ are set to [0.5, 1.5], the number of denoising step K is set to 3, and the shared backbone
network in the U-Net architecture includes 4 GNN layers, with each layer having 4 attention heads.
Our experiments are implemented in PyTorch and trained on an NVIDIA 3090 GPU.

5.2 COMPARISON EXPERIMENTS

Baselines. We select state-of-the-art brain graph representation learning methods as baselines, cat-
egorized into mono-modal and multimodal approaches. For mono-modal methods, we evaluate
BrainGNN (Li et al., 2021) and BrainGB (Cui et al., 2022) using structural and functional brain
graphs. For multimodal methods, we include TAN (Zhu et al., 2022), Cross-GNN (Yang et al.,
2023), and RH-BrainFS (Ye et al., 2024), and test these methods on the same datasets used for our
model evaluation. All baseline implementations are conducted using the original code from their
respective publications.

Results and Analysis. Table 1 shows that our model outperforms others in the ACC metric across
all datasets. Multimodal methods generally exceed mono-modal ones by leveraging topological in-
formation from both modalities. In the ADNI dataset, we achieve a 5.0% average improvement
over other multimodal baselines, with a 3.3% improvement in the PPMI dataset. Notably, our model
demonstrates an 8.5% increase in the NC and AD comparison group, attributed to our scalable learn-
ing strategy’s effective identification of significant topological structure differences (as confirmed in
Section 5.4). These bio-topological features robustly represent authentic brain graph data. Addi-
tionally, BrainSTORE shows improvements in other metrics, with detailed results in Appendix E.

Visualization. We visualize the results of multimodal methods on the ADNI dataset to showcase
their capability in brain graph representation learning. We use t-SNE to visualize graph-level embed-
dings from each method’s final layer. As Figure 3 illustrates, TAN and Cross-GNN formed clusters
that did not separate the classes. While RH-BrainFS showed a similar pattern to our method, it
still displayed significant overlap at class boundaries. In contrast, our method effectively minimized
overlap, resulting in clearer class distinctions.

5.3 ABLATION STUDY

Impact of Scalable Learning Strategy. We assess the effectiveness of the scalable learning strategy
through several metrics: 1) Multiscale community detection methods: We replace it with several re-
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(a) Original (b) TAN (c) Cross-GNN (d) RH-BrainFS (e) Ours

Figure 3: Visualization of classification results for multimodal methods on the ADNI dataset.

cent algorithms, including the Girvan-Newman (Despalatović et al., 2014), spectral clustering (New-
man, 2013), and the Louvain algorithm (Zhang et al., 2021). As shown in Figure 4, our method
outperforms these existing approaches. This demonstrates our method’s potential and advantages in
capturing the complex structure of brain networks, highlighting the importance of exploring com-
munity assignment dependencies across different modalities and scales.

(a) ADNI (b) PPMI

Figure 4: Performance of the model using the scalable learning strategy designed with different
community detection methods.

2) Model comparison under different diffusion time steps: We evaluate model performance trained
with scalable and white noise schedules at each reverse step, as shown in Figure 5. The results
indicate that when combined with the scalable learning strategy, the model enhances the quality of
bio-topological representation learning. Although performance may decline at longer time steps due
to sparser perturbation sampling and increased information-sharing complexity, it still effectively
retains essential information for downstream tasks.

(a) ADNI (b) PPMI

Figure 5: Performance of the model trained using scalable and white noise schedules under different
diffusion time steps.

Effectiveness of Main Modules. In this section, we evaluate the effectiveness of our model’s ar-
chitecture, as shown in Table 2. 1) Modality-specific network: We assess the impact of using only
shared backbone network embeddings. The results indicate that jointly learning from both net-
works effectively provides shared and complementary information across multimodal brain graphs.

8
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2) Skip connections: We analyze the effect of removing skip connections between upsampling and
downsampling layers. Although this did not significantly decrease performance, it increased result
variance, suggesting skip connections stabilize model performance. 3) Scalable learning strategy:
We test this strategy by varying its activation during training. Results show the effects of remov-
ing the strategy in forward and reverse processes, indicated by ”w/o F” and ”w/o R,” respectively,
while ”w/o F&R” denotes removal in both processes. This highlights the benefits of embedding bio-
topological properties in brain graph representation learning, particularly in the forward process.

Table 2: Performance of main modules.

Modules ACC SEN SPE F1-score AUC
w/o Modality-specific network 85.5 ± 7.0 82.4 ± 5.8 84.7 ± 3.8 88.9 ± 4.7 85.9 ± 6.8

w/o Skip connections 86.5 ± 8.5 87.9 ± 8.2 84.2 ± 9.6 87.9 ± 10.9 80.7 ± 8.8

w/o F 78.8 ± 6.3 82.9 ± 5.7 79.4 ± 6.9 80.5 ± 8.7 83.2 ± 7.6

w/o R 82.4 ± 7.9 86.6 ± 7.2 84.9 ± 8.4 87.5 ± 5.9 83.6 ± 8.4

w/o F&R 75.5 ± 7.0 79.6 ± 6.8 73.7 ± 8.5 75.9 ± 7.4 73.2 ± 5.8

BrainSTORE (ours) 88.6 ± 4.8 92.1 ± 6.7 83.1 ± 6.3 89.6 ± 5.6 89.9 ± 7.4

5.4 EXPLANATION OF SCALABLE LEARNING STRATEGY

This strategy identifies multiscale topological structures in brain graphs, which can provide insights
into neurological disorders. To validate this, we present visualizations of identified multiscale topo-
logical structures under a series of resolution parameters λ on functional brain graphs in Figure 6.
Specifically, the AD group has fewer large communities at the small-scale resolution than the NC
group, while the number of communities increases at the larger scale. This indicates changes in the
brain’s overall topological structure, leading to reduced isolation between functional networks and
larger co-classifications during structure partitions, which aligns with current medical research (Con-
treras et al., 2019). Notably, brain graphs in the MCI stage reveal that as clinical symptoms worsen,
connections between multiscale communites become more intertwined, highlighting a clear conti-
nuity in AD progression. More visualization results can be found in Appendix B.2.

(a) NC (b) MCI (c) AD

Figure 6: Visualization of multiscale community detection results on the ADNI dataset.

6 DISCUSSIONS

Conclusion. This paper introduces BrainSTORE, a novel brain graph representation learning model
that addresses the limitations of existing methods in capturing bio-topological representations. By
integrating a scalable learning strategy, BrainSTORE embeds bio-topological properties into model
training, enhancing its representation learning capabilities. It effectively captures and integrates
topological information from multimodal brain graphs within a unified framework, yielding im-
proved bio-topological representations. Our results demonstrate that BrainSTORE outperforms
state-of-the-art methods in disease detection tasks, confirming that the learned representations accu-
rately reflect authentic brain characteristics.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Limitations and Future Work. Due to the scarcity and complexity of medical data acquisition and
processing, the available datasets are limited, which may introduce bias in model learning. In future
work, we will focus on collecting more high-quality data to mitigate this issue. Additionally, while
our model introduces bio-topological representation learning, it does not explain the relationship
between bio-topological features and corresponding structures. Moving forward, we will explore
these explanations and investigate additional bio-topological features.
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A RELATED WORK

A.1 BRAIN GRAPH COMMUNITY DETECTION

Community detection is essential in brain graph analysis, focusing on identifying clusters within
different brain regions to improve our understanding of the brain’s organization and function. Most
research has concentrated on single-scale communities, using algorithms like the Girvan-Newman
method and modularity optimization (Garcia et al., 2018; Sporns & Betzel, 2016). Recent advance-
ments have introduced more complex techniques, such as spectral clustering (Liang et al., 2019) and
hierarchical clustering (Ashourvan et al., 2019), which capture the intricate relationships in brain
networks. For example, spectral clustering uses eigenvalues of the adjacency matrix to identify
topological structures, while hierarchical methods enable multiscale detection, revealing the layered
organization of brain regions. Yang et al. (2024b) propose a transformer-based method novelty
takes the community detection as a token clustering task. Despite these advances, our understanding
is still limited due to the complexities of networks across scales and modalities (Betzel & Bassett,
2017). Thus, we propose a new multiscale community detection method that considers both hierar-
chical structure and structural relationships across different modalities.

B IMPLEMENTATION OF SCALABLE LEARNING STRATEGY

B.1 PARAMETER SETTINGS

In this section, we discuss the settings for the multiscale connectivity parameter τ and the mul-
timodal connectivity parameter κ within the quality function. Figure 7 illustrates the community
partition results of brain graph nodes at different τ settings. As τ increases, the correlations between
hierarchical topological structures become more pronounced, indicating a stronger dependence of
node allocation across scales. However, excessively high parameter values can complicate commu-
nity detection, as shown in Figure 7c, where larger resolution parameters are required for effective
partitioning. Ultimately, we determined the optimal parameter τ value to be 0.5.

(a) τ = 0.2 (b) τ = 0.5 (c) τ = 0.8

Figure 7: Visualization of community detection results under different multimodal connectivity
parameter settings.

To evaluate the effectiveness of our multimodal connectivity parameters, we adjusted the parameter
κ to values of 0.2, 0.5, 0.8, and 1.0 under the mid-scale connectivity settings, where the community
correlation across modalities is most obvious. We assessed the community detection results for the
same nodes across different modality brain graphs using community label differences and commu-
nity assignment similarity. As shown in Figure 9, it is evident that as κ increases, the community
assignments for the same nodes across different modalities become more consistent. To extract the
most representative topological structure partitions, we ultimately set κ to 1.0.

Additionally, we discuss the range of resolution parameter settings for multiscale community detec-
tion, where the complete sample set varies from the minimum setting (with a community count of
one) to the maximum setting (where the community count equals the number of nodes). Combining
these parameters and leveraging existing knowledge of brain functional modules, we identified an
optimal set of multiscale community resolutions, λ = [0.5, 1.5], to ensure clear topological structure
delineation and coherence.
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(a) κ = 0.2 (b) κ = 0.5 (c) κ = 0.8 (d) κ = 1.0

Figure 8: Community detection results under different multimodal connectivity parameter settings.

B.2 VISUALIZATION

We present schematic representations of multiscale topological structures detected in the structural
and functional brain graphs of various populations from the ADNI and PPMI datasets based on
the established multiscale community parameters in Figure 8. The results highlight the consistency
of community partitioning in multimodal brain graphs and the correlations across different scales.
Additionally, communities in both PD and AD patients are more dispersed, with a higher quantity
of smaller communities. This observation aligns with current medical research indicating that these
conditions often exhibit reduced global connectivity and decoupling of functional modules, further
reinforcing the validity of our findings (Fornito et al., 2015; Liu et al., 2017).

(a) ADNI

(b) PPMI

Figure 9: Visualization of multiscale community detection results on sturctual (blue) and functional
(red) brain graphs.

C THE COMPLETE ALGORITHM

This section presents the complete algorithm for our proposed scalable diffusion model.
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Algorithm 1 The training algorithm.

1: Input: A batch of brain graph datasets {G1, . . . ,GB},G = (Gsc, Gfc), a series of scale resolu-
tions {λmin, . . . , λmax}

2: Output: The denoising model fθ
3: Initialize: The model parameters θ
4: Compute structure partition results for each G = (Gsc, Gfc) using Equation 1
5: Compute µQ and σQ for each scale, the mean and standard deviation of node features across

defined structures in graph batch
6: while not converged do
7: for Gi in {G1, . . . ,GB} do
8: for t = 1, . . . , T do
9: Sample scalable noise ϵ̂ using Equation 4

10: Compute loss function L using Equation 2
11: Update model parameters θ ← θ − η∇L
12: end for
13: end for
14: end while
15: return fθ

Algorithm 2 Representation learning.

1: Input: Brain graph data for one subject Gsc, Gfc, forward step {1, . . . ,K}, pre-trained denois-
ing model fθ

2: Output: Brain graph representation Z
3: for k in {1, . . . ,K} do
4: Sample scalable noise ϵ̂ using Equation 4
5: Compute Gsc

k and Gfc
k

6: Ĥsc
k , Ĥ

fc
k ← fθ(G

sc
k , G

fc
k )

7: Concatenate zk = [Ĥsc
k , Ĥ

fc
k ]

8: end for
9: Concatenate Z = [z1, . . . , zK ]

10: return Z

D EXPERIMENTAL SETUP

D.1 DETAILS OF DATASETS

Alzheimer’s disease neuroimaging initiative (ADNI)1: This database originates from over 60 clin-
ical sites across the United States and Canada, aimed at studying the manifestations of Alzheimer’s
disease (AD) at different stages of progression. For this study, we collected neuroimaging data,
including functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), from
460 participants, consisting of 211 normal controls (NC), 195 individuals with mild cognitive im-
pairment (MCI), and 54 patients with AD. Table 3 provides detailed information about the dataset,
including the participants’ scores on the mini-mental state examination (MMSE) and clinical de-
mentia rating (CDR).

Parkinson’s progression markers initiative (PPMI) Dataset2: This database is collected from
over 50 sites across the United States and Europe, focusing on the urgent need to identify biomarkers
for Parkinson’s disease (PD) onset and progression. In this study, we excluded data from repeated
scans and gathered single-timepoint fMRI and DTI scans from 109 participants, including 53 healthy
controls (HC) and 56 patients with PD. Table 3 summarizes this dataset, providing details about the
participants and PD diagnostic criteria, including the Montreal Cognitive Assessment (MOCA) and
the Unified PS Rating Scale (UPDRS).

1http://www.adni-info.org/.
2https://www.ppmi-info.org.
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Table 3: Characteristics of Participants in ADNI and PPMI datasets

Dataset Type Number Age MMSE CDR
NC 211 72.8± 8.3 28.9± 1.7 0.2± 0.8

ADNI MCI 195 72.8± 7.9 27.6± 2.2 1.6± 1.2

AD 54 75.5± 7.0 22.4± 2.8 4.7± 2.0

Dataset Type Number Age MOCA UPDRS

PPMI HC 41 65.1± 11.3 27.9± 2.7 -
PD 49 62.8± 9.3 26.9± 3.7 23.4± 8.8

D.2 DATA PREPROCESSING

In this study, we access the fMRI and DTI data from the ADNI and the PPMI dataset. We preprocess
the fMRI data using the graph theoretical network analysis (GRETNA) toolbox, based on statistical
parametric mapping (SPM12) software3. This preprocessing included slice timing correction, head
motion correction, spatial normalization, and Gaussian smoothing. The AAL atlas is used as the ref-
erence space, dividing the brain into 116 regions of interest (ROIs). Blood oxygen level-dependent
(BOLD) time series corresponding to each ROI are then extracted. For DTI data, we employ the
pipeline for analyzing brain diffusion images (PANDA) toolbox4 for preprocessing, which involved
skull stripping, gap cropping, motion and eddy current correction, and diffusion tensor calculation.
We also use the DTI fitting tool to extract fractional anisotropy (FA) images and match them to the
brain anatomical atlas template used in the fMRI data.

Functional Brain Graph. We construct the functional brain graph Gfc = (V,Afc,Xfc) by cal-
culating the Pearson correlation coefficients between the BOLD signals in each ROI from the pre-
processed fMRI data. Here, V = (v1, . . . , vN ) represents the node-set, where N is the number
of ROIs. The adjacency matrix Afc ∈ RN×N is derived from the Pearson correlation coefficients
between pairs of nodes. Finally, Xfc ∈ RN×N is defined as the correlation vector.

Structural Brain Graph. The structural brain graph Gsc = (V,Asc,Xsc) is constructed from the
preprocessed DTI data. Since we use the same anatomical template for both structural and functional
brain networks, the definition of the node set V is consistent across both graphs. To construct the
graph structure, we perform local diffusion pattern reconstruction and calculate structural connectiv-
ity for each pair of nodes based on the empirical probability of fiber bundles connecting paired ROIs,
resulting in the adjacency matrix Asc ∈ RN×N . The definition of feature matrix Xsc ∈ RN×N fol-
lows the same strategy in the functional brain graph.

E RESULTS OF COMPARISON EXPERIMENTS

Due to text layout and page constraints, the experimental results presented in the main body fo-
cus solely on the accuracy (ACC) metric. To ensure comprehensive reporting of results including
sensitivity (SEN), specificity (SPE), F1-score, and the area under the ROC curve (AUC), Table 4
and Table 5 provide the complete findings of the comparative experiments conducted on the ADNI
and PPMI datasets, respectively. Notably, the most significant results are highlighted in bold, while
results below the optimal threshold are underlined for clarity and emphasis.

Analysis. From the results across the four tables, our BrainSTORE method shows exceptional
performance in both datasets. In the ADNI dataset, it achieves an average increase of 5.0% in ACC,
2.5% in SEN, 2.6% in SPE, 7.2% in F1-score, and 10.4% in AUC on the ADNI dataset. Similarly,
on the PPMI dataset, we note a 3.3% increase in ACC, 5.5% in SEN, 3.4% in F1-score, and 7.6%
in AUC. These results underscore the robust performance of BrainSTORE in classification tasks
related to brain graph representation learning.

3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/.
4https://www.nitrc.org/projects/panda/.
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Table 4: Comparison results (%) on the PPMI dataset.

Methods Modality HC vs PD
ACC SEN SPE F1-score AUC

BrainGNN SC 61.5± 12.5 69.1± 14.9 52.1± 13.5 66.7± 8.0 57.8± 14.8

BrainGNN FC 64.6± 18.4 75.2± 8.4 67.3± 8.9 75.9± 12.2 62.6± 12.9

BrainGB SC 66.8± 7.3 77.8± 11.8 67.9± 12.3 74.4± 6.5 59.9± 10.5

BrainGB FC 68.4± 10.7 75.6± 10.8 56.3± 11.9 74.9± 8.9 66.9± 16.6

TAN SC,FC 75.1± 8.5 79.5± 13.2 68.6± 12.2 76.6± 4.5 66.4± 7.2

Cross-GNN SC,FC 84.6± 7.1 78.2± 12.7 73.6± 8.4 84.5± 7.4 82.2± 8.6

RH-BrainFS SC,FC 85.6± 7.1 84.2± 12.7 78.6± 8.4 86.4± 9.6 87.2± 8.6

BrainSTORE (ours) SC,FC 88.9± 3.4 89.7± 4.6 75.1± 6.1 89.8± 4.2 94.8± 7.4

Table 5: Comparison results (%) on the ADNI dataset.

(a)

Methods Modality NC vs MCI
ACC SEN SPE F1-score AUC

BrainGNN SC 54.3± 9.4 62.9± 10.4 55.4± 11.2 57.6± 11.9 56.7± 8.2

BrainGNN FC 51.8± 4.3 72.8± 1.9 61.3± 6.5 60.1± 8.2 51.9± 4.3

BrainGB SC 55.8± 4.8 75.2± 12.4 63.8± 11.2 66.5± 5.6 58.6± 4.8

BrainGB FC 56.6± 2.5 71.9± 13.3 60.4± 7.1 68.5± 3.7 59.2± 5.9

TAN SC,FC 71.5± 10.3 67.5± 5.7 76.9± 8.4 60.6± 10.5 61.5± 10.2

Cross-GNN SC,FC 82.8± 6.3 86.9± 7.4 80.7± 9.2 76.5± 6.4 78.4± 7.2

RH-BrainFS SC,FC 80.4± 7.4 87.4± 7.1 77.6± 4.2 78.5± 8.1 72.4± 9.3

BrainSTORE (ours) SC,FC 85.3± 6.4 90.2± 8.3 82.9± 5.7 87.9± 5.4 83.9± 8.5

(b)

Methods Modality MCI vs AD
ACC SEN SPE F1-score AUC

BrainGNN SC 57.2± 14.7 69.7± 15.9 62.5± 8.4 66.7± 18.1 51.9± 7.8

BrainGNN FC 71.1± 3.7 89.8± 8.3 72.6± 3.2 81.3± 1.5 62.0± 1.1

BrainGB SC 74.5± 6.9 82.3± 9.9 70.4± 7.2 84.7± 4.9 63.6± 4.8

BrainGB FC 77.3± 4.7 83.7± 6.9 76.4± 5.5 86.5± 3.3 64.2± 9.6

TAN SC,FC 81.2± 7.2 90.9± 10.7 84.6± 9.4 85.6± 11.4 73.9± 8.6

Cross-GNN SC,FC 83.4± 6.1 90.7± 7.4 83.6± 9.3 88.5± 7.9 77.9± 5.7

RH-BrainFS SC,FC 85.3± 5.9 94.1± 3.8 88.3± 6.5 86.3± 5.4 79.4± 6.9

BrainSTORE (ours) SC,FC 89.4± 4.7 95.7± 5.6 86.1± 6.1 88.6± 5.8 91.2± 5.3

(c)

Methods Modality NC vs AD
ACC SEN SPE F1-score AUC

BrainGNN SC 61.7± 8.5 72.8± 12.4 60.4± 7.2 67.5± 5.1 64.8± 13.8

BrainGNN FC 60.0± 7.7 56.0± 12.3 51.3± 7.8 60.3± 8.7 64.7± 11.7

BrainGB SC 73.9± 7.3 80.5± 4.8 72.4± 6.6 73.1± 4.3 72.9± 12.8

BrainGB FC 61.4± 6.5 65.6± 5.6 61.3± 6.5 61.3± 6.5 60.4± 7.2

TAN SC,FC 75.2± 9.8 81.8± 6.6 76.0± 10.7 78.6± 10.4 75.5± 11.0

Cross-GNN SC,FC 80.3± 8.1 84.3± 9.8 78.9± 8.4 78.1± 11.9 70.4± 10.5

RH-BrainFS SC,FC 82.4± 7.9 89.2± 9.3 83.6± 6.5 80.2± 7.9 74.3± 7.4

BrainSTORE (ours) SC,FC 90.9± 4.9 92.5± 8.5 88.3± 7.2 92.4± 6.9 89.5± 6.4
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