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Abstract
Missed polyps are the major risk factor for colorectal cancer. Tomin-
imize misdiagnosis, many methods have been developed. However,
they either rely on laborious instance-level annotations, require
labeling of prompt points, or lack the ability to filter noise proposals
and detect polyps integrally, resulting in severe challenges in this
area. In this paper, we propose a novel Cooperation-Based network
(CBNet), a two-stage polyp detection framework supervised by
image labels that removes wrong proposals through classification
in collaboration with segmentation and obtains a more accurate de-
tector by aggregating adaptive multi-level regional features. Specif-
ically, we conduct a Cooperation-Based Region Proposal Network
(CBRPN) to reduce the negative impact of noises by deleting propos-
als without polyps, enabling our network to capture polyp features.
Moreover, to enhance location integrity and classification precision
of polyps, we aggregate multi-level region of interest (ROI) features
under the guidance of the backbone classification layer, namely
Adaptive ROI Fusion Module (ARFM). Extensive experiments on
the public and private datasets show that our method achieves state-
of-the-art performance for weakly supervised methods and even
outperforms full supervision in some terms. All code is available at
https://github.com/dxqllp/CBNet.
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1 Introduction
Colorectal cancer (CRC) ranks as the third most frequent cancer,
with more than 80% originating from polyps [31]. However, un-
treated polyps might become malignant and life-threatening cancer
[22]. In clinical practice, the colonoscopy procedure is regarded
as the golden standard for detecting and removing polyps. Unfor-
tunately, the method highly depends on the experience and profi-
ciency of the medical practitioner that suffers a high miss rate (as
much as 30%) [37]. Fortunately, computer-aided detection (CAD)
has been proven to help doctors detect polyps and reduce the inci-
dence of missed diagnoses [20]. Although CAD has demonstrated

Figure 1: The schematic diagram of the previous works
with separable mechanism and our proposed collaboration
approach. And four extremely challenging scenarios, i.e.,
missed flat polyp, non-entire polyp, low-quality proposals
with unfilterable noise and wrong polyp mask with point
annotations existed in polyp detection.

impressive capabilities in polyp detection [4, 15, 19, 24, 26, 33, 36],
they need to be combined with instance-level bounding box an-
notations, which are very laborious and challenging owing to the
complexity of colonic images and the diversity of polyps. To reduce
the labeling burden, researchers hope to make detectors in a weakly
supervised (WS) fashion. For example, several promising works
combining multiple instance learning (MIL) with deep learning
[21, 25, 39] have greatly pushed the boundaries of natural images to
successfully apply WS to the medical field. Unfortunately, accurate
and reliable polyp detection can be easily fooled by flat polyps
because they lack clearly visible borders and exhibit a similar aspect
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to the surrounding colorectum, which makes the network struggle
to accurately distinguish polyps from backgrounds. In addition,
most of these studies directly use coarse proposals generated by
standard methods for training, yet most of them are negative cases
(noise) that do not contain the target, which affects the learning of
the target features while lowering the performance of the detection.

Worse still, they severely rely on region-level classifiers that
overly focus on themost discriminatory local regions (over-fitting),
which not only reduces classification accuracy but also results in
over-fitting, as shown in Figure 1 (a) left. More recently, some high-
profile works hope to solve this task through transfer learning,
such as weakly supervised polyp segmentation (WSPS) with the
help of the Segment Anything Model (SAM). But it is essentially a
promotable method, which needs point annotations and will lose
the ability to accurately identify polyps if there are no additional
point annotations as shown in Figure 1 (a) right. Additional points
not only increase the burden of annotation but also deviate from the
requirements of only image labels. Therefore, a further mechanism
is necessary for a more reasonable inference.

Through deeper study, we find that the MIL-based and SAM-
aided approaches have complementary advantages and disadvan-
tages. For instance, the classifiers among MIL tend to focus on parts
of objects that match the need for prompts in SAM, because it can
automatically generate point prompts based on the focused region,
and eliminate the burden for additional point annotations. Mean-
while, the high-quality polyp masks produced from point prompts
can not only ensure the integrity of the target to avoid over-fitting
but also filter the noise in the proposal so that the network can
better learn polyp features and gain inspiring performance. In a
word, instead of working separately, they should cooperate with
each other to overcome their internal weaknesses.

As a result, in this work, we innovatively come up with a new so-
lution, namely CBNet, as shown in Figure 1 (b), a weakly supervised
polyp detection model is designed to solve the above challenges: (1)
over-fitting polyp detection. (2) unfilterable noise. (3) failed polyp
maskwithout point annotation. (4) missed flat polyps. Our approach
mainly includes two innovative modules: Cooperation-Based Re-
gion Proposal Network (CBRPN), Adaptive ROI Fusion Module
(ARFM), and a common module: Multiple Instance Detection Net-
work (MIDN). Specifically, inspired by the complementary strengths
and weaknesses, we design CBRPN mainly for challenges (2) -
(3) while initially addressing challenge (1), which includes a pro-
posal generator and SAM. The former generates a series of rough
proposals by graph-based segmentation and merging strategies.
The latter generates pseudo masks based on point prompts (derived
from the gradient matrix of the backbone). After that masks and
proposals are computed intersection over union (IOU) one by one
to leave proposals that contain relatively full polyps and remove
the noise without polyps. Furthermore, we employ ARFM to solve
challenge (4) and further address challenge (1), which consists of
two parts: classification layer and ROI fusion. During the training
of the module, the parameters of the classification layer are frozen
to ensure that the backbone network can focus on polyps from the
whole image for further completeness, and judge the morphology of
them from the global features to improve classification accuracy. In
the fusion part, the differences between polyps and background will
be refined by combining deep-shallow region features to improve

the detection of flat polyps. This module adaptively adjusts features
learned in the second stage, resulting in a more comprehensive
global-local feature. Finally, we introduce MIDN for setting the tar-
get existence and category possibility scores of the proposal region
to achieve weakly supervised detection under the supervision of
image-level labels.

In summary, our main contributions are listed four-fold:
• We give a new solution under the weakly supervised, CBNet,
a framework that employs the collaborative mechanism to
detect polyps with only image-level annotation.

• In the proposals generation stage, we confirm the collabora-
tive nature of the classifier and SAM. Accordingly, we con-
duct a cooperation-based region proposal network, which
implements proposal noise filtering to ensure the correct-
ness of feature extraction, and removes the proposal with
incomplete polyp to reduce the risk of over-fitting.

• To better capture the flat polyps and further ensure positional
integrity, we design the adaptive ROI fusion module to learn
polyp features from the global-local level and refine slight
disparities between polyps & background from deep-shallow
level.

• Ourmethod is conducted on three datasets (i.e. CVC-ClinicDB,
Kvasir, private), which not only obtains state-of-the-art per-
formance in weakly supervised methods but also exceeds
fully supervised performance in some respects.

2 Related Work
2.1 Region Proposals Generation
Region proposal generation methods could be categorized into tra-
ditional methods and CNN-based ones where the former category
can be further divided into two approaches, i.e., edge-based [8] and
superpixel-based [14, 16]. Edge-based methods evaluate window
boxes by image edges to refine their location, which struggles in
dealing with boundary-blurred polyps. Superpixel-based methods
such as Selective Search (SS), can adapt to polyps with blurred
boundaries but have a high false alarm rate in complex polyps
with various variations. And due to the similarity between polyp
and background, the locality of these methods leads to high false
alarms and low detection rates. CNN-based methods such as Region
Proposal Network (RPN) [1, 28] have been proposed to optimize
and filter proposals for faster detection and made great progress
in this area. Nevertheless, to ensure high performance, it requires
bounding box annotations and sets a large number of hyperpa-
rameters for training, which deviates from the weak supervision
requirement that only image-level annotations are available (see
supplementary material for more information). Different from
them, we explore new ways to generate proposals and propose a
novel CBRPN that can take advantage of both SS and RPN and show
a better result in the same network.

2.2 Weakly Supervised Cooperation Detection
Due to the absence of instance-level annotations, weakly super-
vised detection methods are easy to over-fit on object parts. To
address this issue, many cooperation-based works such as C-MIDN
[12], P-MIDN [38], WS-JDS [30] and NDI-WSOD [35], have been
proposed. Despite achieving promising results, over-fitting is still a
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Algorithm 1 The first (1) & second (2) stages training
Input: 1: training set with polyp image label T1 = {(I, y)}.
1: forward CBNet: 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 (I) → {𝐹5, 𝑋 𝑖𝑚𝑔 , (𝑥𝑝𝑜𝑖𝑛𝑡 , 𝑦𝑝𝑜𝑖𝑛𝑡 )}.
2: generate proposals sets: 𝑆𝐴𝑀(𝐼 , (𝑥𝑝𝑜𝑖𝑛𝑡 , 𝑦𝑝𝑜𝑖𝑛𝑡 ))→ 𝐵𝑆𝐴𝑀 ,

𝑆𝑆𝑊 (I)→ 𝐵𝑆𝑆𝑊 .
3: generate scores: 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋 𝑖𝑚𝑔) → 𝑆𝑖𝑚𝑔 .
4: generate refined proposals set: ITF (𝐵𝑆𝑆𝑊 , 𝐵𝑆𝐴𝑀 ) →

𝐵𝐶𝐵𝑅𝑃𝑁 .
5: compute and backward 𝐿𝑖𝑚𝑔 in Eq. 12 for CBNet.
6: continue until convergence.

Output: 1: fixed parameters 𝐶𝑜𝑛𝑣_𝑃 ; refined proposals 𝐵𝐶𝐵𝑅𝑃𝑁 .
Input: 2: training set T2 = {(I, 𝐵𝐶𝐵𝑅𝑃𝑁 , y)} and fixed parameters

𝐶𝑜𝑛𝑣_𝑃 .
1: forward CBNet: 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 (I) → {{𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5}, 𝑋 𝑖𝑚𝑔}.
2: generate aggregated feature maps: 𝐴𝑔𝑔(𝐹𝑖 ) → 𝐹𝑖 ; crop roi

(𝑅𝑖 ) according to 𝐵𝐶𝐵𝑅𝑃𝑁 .
3: generate fusion feature maps: 𝑓 𝑢𝑠𝑖𝑜𝑛(𝑅𝑖 ) →

{𝑋 𝑓 𝑢𝑠𝑖𝑜𝑛

𝑅
, 𝑋

𝑓 𝑢𝑠𝑖𝑜𝑛

𝐶
}.

4: generate image feature maps: 𝐺𝐴𝑃 (𝐶𝑜𝑛𝑣_𝑃 (𝐹5)).
5: generate scores: 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋 𝑖𝑚𝑔) → 𝑆𝑖𝑚𝑔 , 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥𝐶 (𝑋 𝑖𝑚𝑔)

→ 𝑆𝑀𝐼
𝐶

, 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥𝑅 (𝑋 𝑖𝑚𝑔) → 𝑆𝑀𝐼
𝑅

.
6: combine region score to image scores according to Eq. 10.
7: compute and backward 𝐿𝑖𝑚𝑔 + 𝐿𝑀𝐼 in Eq. 12 for CBNet.
8: continue until convergence

Output: 2: the optimized CBNet for polyp detection.

challenging task because segmentation networks in collaboration
are explicitly tailored for the specific domain and their performance
can degrade significantly when applied to different types of imaging
data. Recently, SAM attracted a lot of attention and was introduced
into the medical area [17, 19, 41], owing to the excellent ability of
generality. However, it is still unexplored to employ SAM in weakly
supervised polyp segmentation only with image annotations. To-
wards the same goal, we propose the novel CBRPN reduces the
possibility of over-fitting and successfully employs SAM for image-
supervised WSPS. Meanwhile, ARFM is also designed to further
avoid over-fitting while better detecting flat polyps. Both of them
have less complexity and particularity while performing better.

3 Method
3.1 Overview
With the aim of high-quality proposals under image annotations
and more accurate detection, we designed CBNet. The overall archi-
tecture of our network is shown in Figure 2. The proposed CBNet
consists of two stages during training and testing, where the first
stage is the region proposal network (CBRPN, see Section 3.3) for
proposal generation and the second stage is theWS network (ARFM,
see Section 3.4 & MIDN, see Section 3.5) of polyp detection. For
more clarity, the training and the testing of our CBNet are summa-
rized in Algorithm 1.

First Stage: Given input image I ∈ R𝐶×𝐻×𝑊 (C: channels, H:
height, W: width), it is simultaneously fed into SSW (Selective
Search Windows), pre-trained backbone (see Section 3.1) and SAM
for generating a coarse set of window boxes 𝐵𝑆𝑆𝑊 , obtaining the

most significant point in the polyp, and producing the other box
set 𝐵𝑆𝐴𝑀 (according to the pseudo-mask) for filtering, respectively.
After that, 𝐵𝑆𝑆𝑊 and 𝐵𝑆𝐴𝑀 will be sent to iou threshold filter (ITF)
to remove noise, and the retained proposals form 𝐵𝐶𝐵𝑅𝑃𝑁 .

Second Stage: Features 𝐹1-𝐹5 from the backbone and refined
proposals 𝐵𝐶𝐵𝑅𝑃𝑁 from the first stage are processed by ARFM,
which contains three cross-layer aggregation blocks stacked se-
quentially and the following fusion operation to get 𝑋 𝑓 𝑢𝑠𝑖𝑜𝑛 . In
addition, a convolution layer with fixed parameters𝐶𝑜𝑛𝑣_𝑃 and the
global average pooling are added in parallel for 𝑋 𝑖𝑚𝑔 to enable the
accuracy of classification. Finally, the features 𝑋 𝑓 𝑢𝑠𝑖𝑜𝑛 and 𝑋 𝑖𝑚𝑔

further go through the MIDN and a common softmax to set pro-
posal scores and obtain the detection results through non-maximum
suppression.

3.2 Pre-trained Backbone
As CNN can gradually extract features at different levels in the
image (e.g. from edges and textures to semantic features of ob-
jects) by stacking convolutional and pooling layers, and pre-trained
weights can speed up the learning of the network. Therefore, we
built our method on the pre-trained CNN that has been trained on
the ImageNet [23], and fine-tuned it on polyp data with only image-
level supervision (i.e. no bounding box annotations) to get features
𝐹 = {𝐹1, 𝐹2, ..., 𝐹𝑁 } (where N is the number of feature blocks and
N=5 in this study) and 𝐶𝑜𝑛𝑣_𝑃 . We will give details of usage (𝐹 &
𝐶𝑜𝑛𝑣_𝑃 ) in other Sections.

3.3 Cooperation-Based RPN
Since the purpose consistency between weakly supervised polyp de-
tection and multi-instance learning, it is usually treated as MIL that
requires previous proposals for the training data. Superpixel-based
SSW is commonly used to generate the initial candidate boxes due
to their ability to adapt to targets with blurred edges and does not
require any annotation. However, they are rough because many of
them have only the background or contain only a small percentage
of polyps. Fortunately, SAM can generate accurate pseudo-masks
for polyps to optimize the proposal but requires additional point
prompts. In the classification task, pixels will respond according to
their relevance with the target class, so there must be a pixel with
the highest response in the object, and the coordinate of this point
can exactly be used as a prompt for SAM. Therefore, we design
the CBRPN to take advantage of both SSW and SAM to filter back-
ground noise as well as reduce incomplete polyp proposals before
training to reduce the over-fitting risk.

In detail, the CBRPN takes the image I and feature 𝐹1-𝐹5 as input.
𝐼 is used to generate an initial set proposals 𝐵𝑆𝑆𝑊 ∈ R𝐵1×4 (𝐵1:
the number of proposals from SSW, 4: coordinates of each proposal
for top, left, right and bottom) through SSW, and 𝐹1-𝐹5 are used to
produce the coordinate (𝑥𝑝𝑜𝑖𝑛𝑡 , 𝑦𝑝𝑜𝑖𝑛𝑡 ) for point according to the
predicted category, formulated as below:

𝑥_𝑝𝑜𝑖𝑛𝑡,𝑦_𝑝𝑜𝑖𝑛𝑡 = 𝑓𝑢_𝑖 (𝑎𝑟𝑔𝑚𝑎𝑥 (𝑅𝑒𝐿𝑈 (
∑︁
𝑘

𝜔𝑐
𝑘
𝐹𝑘 ))) (1)

where 𝑦_𝑝𝑜𝑖𝑛𝑡&𝑥_𝑝𝑜𝑖𝑛𝑡 ∈ R, 𝐹𝑘 & 𝜔𝑐
𝑘
denotes the 𝑘𝑡ℎ feature

maps and their weights corresponding to class c, 𝑎𝑟𝑔𝑚𝑎𝑥 (·) is the
operation to find the max pixel, 𝑓𝑢_𝑖𝑖 is the unrval_index function
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Figure 2: Overview of the proposed CBNet with a two-stage training and testing strategy. Black arrows indicate feature flow.
We use the Cooperation-Based Region Proposals Network (RPN) & Adaptive ROI (Region Of Interest) Fusion Model to generate
high-quality proposals for training and enhance the ROI feature maps for accurate classifications. Multiple Instance Detection
Network follows the same classification head as WSDDN for implementing the mapping of region scores to category scores.

to find the coordinate of the max pixel. 𝜔𝑐
𝑘
is defined as:

𝜔𝑐
𝑘
=

1
𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑐

𝜕𝐹𝑘
𝑖 𝑗

(2)

where Z represents the number of pixels in the feature map, 𝜕 is
the derivation operation. 𝑦𝑐 and 𝐹𝑘

𝑖 𝑗
are the gradient of the 𝑐𝑡ℎ

score and the pixel value of the 𝐾𝑡ℎ feature map at coordinates (i,
j), respectively.

Since (x_point, y_point) can be regarded as the input prompt of
the SAM, thereby another set of candidate boxes for filtering can
be defined as:

𝐵𝑆𝐴𝑀 = 𝑓𝑆𝐴𝑀 (𝐼 , 𝑥_𝑝𝑜𝑖𝑛𝑡,𝑦_𝑝𝑜𝑖𝑛𝑡) (3)

where 𝐵𝑆𝐴𝑀 ∈ R𝐵2×4 (𝐵2:number of proposals from SAM, 4:coor-
dinates of each proposal for top, left, right and bottom). 𝑓𝑆𝐴𝑀 is the
segment anything model with pre-training weights loaded. Thus,
the significant noise can be filtered by ITF. The processes and rules
can be formulated as:

𝐵𝐶𝐵𝑅𝑃𝑁 =

{
𝜅 (𝑚𝑖 ,𝑤 𝑗 ), 𝑖 𝑓

|𝑚𝑖∩𝑤𝑗 |
|𝑚𝑖 |+|𝑤𝑗 | > 𝜏

𝑠𝑘𝑖𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4)

where 𝐵𝐶𝐵𝑅𝑃𝑁 ∈ R𝐵×4 (B: number of proposals after filtering,
4: coordinates of each proposal for top, left, right, and bottom),
𝑚𝑖 & 𝑤 𝑗 are the proposals from 𝐵𝑆𝐴𝑀 and 𝐵𝑆𝑆𝑊 , respectively. ∩
is the intersection of two sets, |𝑚𝑖 ∩𝑤 𝑗 |, |𝑚𝑖 | and |𝑤 𝑗 | represent
the number of pixels in 𝑚𝑖 ∩ 𝑤 𝑗 , 𝑚𝑖 and 𝑤 𝑗 , respectively. 𝜏 is a
threshold for the judgement of trade-offs, and 𝜅 denotes the stack of
proposals. Since the classification network may learn data bias [11]
during training, the prompt point may appear in the background,
which causes 𝐵𝐶𝐵𝑅𝑃𝑁 to be empty. When this occurs, Eq. 4 can be
re-written as 𝐵𝐶𝐵𝑅𝑃𝑁 = 𝐵𝑆𝑆𝑊 .

By calculating the IOU between 𝐵𝑆𝑆𝑊 and 𝐵𝑆𝐴𝑀 and then re-
moving proposals with low overlap through the ITF, the 𝐵𝐶𝐵𝑅𝑃𝑁
can suppress noise without polyps while strengthening the target
learning by reducing false positives proposals.

3.4 Adaptive ROI Fusion Module
The ROI feature in the existingWS network typically is directly gen-
erated by the last convolution layer and then sent to region softmax
to calculate the probability score. However, the features of this layer

Figure 3: Overview of the visualization feature maps (a) and
the ARFM block. The ARFM contains an aggregation module
to enhance extracted features and a fusion operation (b) to
combine features at different levels.

are limited and inaccurate, shown in Figure 3 (a), 2𝑡ℎ row Conv_5,
which is inappropriate for medical images, e.g., the polyp images
with a typical resolution of 224 × 224 in the morphological classifi-
cation task. In addition, the flat polyp is usually small, and constant
down-sampling will drown it in the background, and it is often
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ignored due to the unclear boundary. To address the above problem,
we develop an adaptive ROI fusion module (ARFM) inspired by
the path aggregation mechanism (Refine-FPN) [18]. Specifically,
ARFM has an agg and a fusion structure with detailed configuration
inside as shown in Figure 3 (b), (c). We use {𝐹2, 𝐹3, 𝐹4, 𝐹5} to denote
feature levels generated by the backbone. The aggregated mecha-
nism starts from the lowest level 𝐹2 and gradually approaches 𝐹5.
From 𝐹2 to 𝐹5, the spatial size is gradually being halved. We use
{𝐹2, 𝐹3, 𝐹4, 𝐹5} to denote newly produced feature maps correspond-
ing to {𝐹2, 𝐹3, 𝐹4, 𝐹5}. Note that 𝐹2 = 𝐹2, without any processing.
The calculation process is as follows:

𝐹𝑖 = 𝑅𝑒𝐿𝑈 (𝑐𝑜𝑛𝑣𝑘=3
𝑠=1 (𝑓1 + 𝑓2))

𝑓 1 = 𝑅𝑒𝐿𝑈 (𝑐𝑜𝑛𝑣𝑘=3
𝑠=2 (𝐹𝑖−1))

𝑓 2 = 𝑅𝑒𝐿𝑈 (𝑐𝑜𝑛𝑣𝑘=1
𝑠=1 (𝐹𝑖 ))

(5)

where 𝐹𝑖 ∈ R𝑏×𝐶′×𝐻 ′×𝑊 ′
(𝑖 = {2, 3, 4, 5} denote 𝑖𝑡ℎ aggregation

feature map, b is the batch_size, 𝐶
′
= {128, 256, 512, 512}, 𝐻 ′

=

{𝐻/2, 𝐻/4, 𝐻/8, 𝐻/16},𝑊 ′
= {𝑊 /2,𝑊 /4,𝑊 /8,𝑊 /16}), 𝑐𝑜𝑛𝑣𝑘𝑠 is

convolution operation with specific kernel k and stride s.
Further, we pool features from all levels for proposals to the

same size 7 × 7 as:
𝑅𝑖 = 𝑟𝑜𝑖_𝑎𝑙𝑖𝑔𝑛(𝑅𝑖 ) (6)

where 𝑅𝑖 ∈ R𝑏×128×7×7 ( b: batch_size ), 𝑅𝑖 is the 𝑖𝑡ℎ region feature
cropped according to the proposal from 𝐵𝐶𝐵𝑅𝑃𝑁 , roi_align is an
adaptive pooling operation to adjust 𝑅𝑖 to a uniform size 7 × 7.
Then, they are fused for the following prediction. Considering the
influence of position information on subsequentmodules, we design
different fusion strategies: cnn-based and vector-based, detailed
formulas are described as:

𝑋
𝑓 𝑢𝑠𝑖𝑜𝑛

𝐶
= 𝐺𝐴𝑃 (∑5

𝑖=2𝑐𝑜𝑛𝑣
𝑘=3
𝑠=1 (𝑅𝑖 ))

𝑋
𝑓 𝑢𝑠𝑖𝑜𝑛

𝑅
= 𝐹𝐶 (∑5

𝑖=2𝐹𝐶 (𝑅𝑖 ))
(7)

where 𝑋 𝑓 𝑢𝑠𝑖𝑜𝑛

𝐶
, 𝑋 𝑓 𝑢𝑠𝑖𝑜𝑛

𝑅
∈ R𝐵×𝐶 (B: the number of proposals from

𝐵𝐶𝐵𝑅𝑃𝑁 , C: the number of categories), GAP is the global average
pooling (GAP), FC is the fully connected layer, 𝑐𝑜𝑛𝑣𝑘𝑠 follow the
same definition as Eq. 6.

Since ROI features only contain the local region of the image,
this reduces classification accuracy and leads to over-fitting. To
overcome this problem, we add the specific classification layer from
the backbone to this module in parallel for global image feature
𝑋 𝑖𝑚𝑔 , which is calculated according to:

𝑋 𝑖𝑚𝑔 = 𝐺𝐴𝑃 (𝐶𝑜𝑛𝑣_𝑃 (𝐹5)) (8)

where 𝑋 𝑖𝑚𝑔 ∈ R𝐶 (C is the number of morphological categories),
𝐶𝑜𝑛𝑣_𝑃 denotes the convolution that loads and freezes the pre-
trained weights.

3.5 Multiple Instance Detection Network
Current WS object detection methods usually choose WSDDN as
the criterion, which solves the problem that maps proposal scores
at the instance level to image labels at the image level. Following
the same double branch, we build a multiple instance detection

network (MIDN) to set scores for proposals. Specifically, MIDN
consists of a location branch and a classification branch, the former
selects which proposal region is more likely to contain the entire
polyp fragment while the latter predicts which class to associate
with the proposal region. Hence, the different scores of proposals
can be represented:

𝑆𝑀𝐼
𝐶

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥𝐶 (𝑋
𝑓 𝑢𝑠𝑖𝑜𝑛

𝐶
, 𝑑𝑖𝑚 = 1)

𝑆𝑀𝐼
𝑅

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥𝑅 (𝑋
𝑓 𝑢𝑠𝑖𝑜𝑛

𝑅
, 𝑑𝑖𝑚 = 0)

(9)

where 𝑆𝑀𝐼
𝐶
, 𝑆𝑀𝐼

𝑅
∈ [0, 1]𝐵×𝐶 , 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥𝐶 and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥𝑅 are both

softmax operation that is responsible formapping the featurematrix
to the category dimension (dim=1) and the proposal dimension
(dim=0), respectively. Finally, these score vectors are element-wise
producted and added to obtain the image-level classification scores.
The rule can be formulated as:

𝑆𝑀𝐼
𝐶•𝑅 = 𝑆𝑀𝐼

𝐶𝑖
𝑗

• 𝑆𝑀𝐼

𝑅𝑖
𝑗

𝑆𝑀𝐼 =
∑𝐵
𝑟=1 𝑆

𝑀𝐼
𝐶•𝑅

(10)

where 𝑆𝑀𝐼
𝐶•𝑅 ∈ [0, 1]𝐵×𝐶 , 𝑆𝑀𝐼 ∈ [0, 1]𝐶 . Additionally, the feature

𝑋 𝑖𝑚𝑔 of the whole image also be fed to a softmax to get the image-
level 𝑆𝑖𝑚𝑔 ∈ [0, 1]𝐶 :

𝑆𝑖𝑚𝑔 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋 𝑖𝑚𝑔, 𝑑𝑖𝑚 = 1) (11)

3.6 Loss Function
BCE Loss: Binary Cross Entropy Loss is a measure used to evaluate
the distance between the prediction and image label. We employ it
as the loss function to train our network:

𝐿 = 𝐿𝑖𝑚𝑔 + 𝐿𝑀𝐼

𝐿𝑖𝑚𝑔 = − 1
𝑁

∑𝑁
𝑖=1 𝑦𝑖 • 𝑙𝑜𝑔(𝑝 (𝑆

𝑖𝑚𝑔

𝑖
)) + (1 − 𝑦𝑖 ) • 𝑙𝑜𝑔(1 − 𝑝 (𝑆𝑖𝑚𝑔

𝑖
))

𝐿𝑀𝐼 = − 1
𝑁

∑𝑁
𝑖=1 𝑦𝑖 • 𝑙𝑜𝑔(𝑝 (𝑆𝑀𝐼

𝑖
)) + (1 − 𝑦𝑖 ) • 𝑙𝑜𝑔(1 − 𝑝 (𝑆𝑀𝐼

𝑖
))

(12)

where N indicates the number of predicted object groups, 𝑦𝑖 is the
one-hot label of 𝑖𝑡ℎ category, 𝑝 (𝑆𝑖𝑚𝑔

𝑖
) and 𝑝 (𝑆𝑀𝐼

𝑖
) are the probabil-

ities belong to 𝑖𝑡ℎ class predicted by model.

4 Experiments
4.1 Datasets
CVC-ClinicDB1 [3]: The dataset comprises 612 images

sourced from 29 colonoscopy video sequences, each with a
resolution of 288× 384. It was developed in partnership with
the Hospital Clinic of Barcelona, Spain, and consists of 322
flat, 282 pedicle, and 66 edge polyps.

Kvasir2 [9]: This dataset was assembled by Vestre Viken
Health Trust in Norway which includes 1,000 polyp images
along with their ground truth annotations from colonoscopy
videos. The bounding boxes for ground truth were initially

1https://polyp.grand-challenge.org/CVCClinicDB/
2https://datasets.simula.no/downloads/kvasir-seg.zip

https://polyp.grand-challenge.org/CVCClinicDB/
https://datasets.simula.no/downloads/kvasir-seg.zip
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marked by medical doctors and later confirmed by experi-
enced gastroenterologists. The images span a range of reso-
lutions from 332 × 487 to 1920 × 1072 pixels. The number of
three morphologies is 255, 851, and 53, respectively.

Private: Our internal dataset extracted 290 static images
fromOlympiusEurope colonoscopy videos at a hospital, which
consists of 177 patients, annotated and validated by expe-
rienced endoscopists. We rejected all the images with ex-
tremely high patient preparation or bad visualization quality
due to image blurring and each image in the dataset is paired
with a morphological image label (87 flat, 158 pedicle, 45
edge) to guide the training. The images vary in resolution
spanning from 564×480 to 600×530 pixels. To assess the loca-
tion of polyps, experts also provided ground truth (bounding
boxes) for all images. In addition, to keep the dataset up-to-
date we are still continuously collecting updated data.

4.2 Implementation Details
Training Details. The slightly modified classifier layer

of VGG16 serves as our backbone. Specifically, we replace
the classifier of three FC operations with a GAP layer and
reshape after the original last feature layer. In the first stage,
we only train the backbone for a total of 25 epochs with a
learning rate of 1e-4 and a batch size of 32. And the trained
weight sam_vit_b_01ec64 3 on nature images is used as the
parameter of SAM. In the second stage, we train the CBNet
for a weight decay of 5e-4, a batch size of 1, and 15 epochs
with a learning rate 1e-5 following 5 epochs with 1e-6. As
discussed in Eq 4, we empirically set 𝜏 as 0.5. We divided
data into two splits on each dataset: training, and test. The
training split comprises about 80% of data; the test about 20%
each.
Evaluation Metric. To evaluate detection performance,

we employ three performancemeasures. The first one follows
the standard PASCAL VOC protocol, calculating average
precision (AP) and mean AP (mAP) at IOU thresholds of
10%, 30%, 50% between the detected boxes and the ground
truth ones. Additionally, we report CorLoc for location, a
commonly used weakly supervised detection measure [10],
which means the percentage of images where at least one
instance of the target object class is correctly localized with
the most confident detected bounding box overlapping at
least 50%. Detailed explanations of all evaluation indicators
can be found in the cited references.

4.3 Quantitative Results
Compared Methods: Some well-performed detection

methods are selected for comparison. They are categorized
into fully and weakly supervision (Fully sup. and Weakly
sup.). methods. In the fully sup. methods, we choose Faster

3https://dl.fbaipublicfiles.com/segment_anything/

Rcnn [28], Yolo [27] and Diffusion [6] with dynamic boxes
50 & 500. In the weak sup. methods, we chooseWSDDN [13],
OICR [32],WSOD2 [40], Grad-CAM [29], Grad-CAM++
[2], IDC [34] and LPCAM [7]. Unfortunately, the last two
methods don’t work very well, so we only list the results of
other methods. The results of Faster RCNN, Yolo, Diffusion-
Det are given from mmdetection4 [5], WSOD2 are referred
from codes 5 and the rest are implemented by ourselves with
source codes.

Main Results: For a clearer comparison, we represent
the best indicator of CBNet as red and the best indicator of
weak supervision as blue. As shown in Table 1, traditional
weakly supervised methods have a limited ability to deal
with challenging polyps, thereby having much worse scores
than fully supervised methods and ours. For example, the
best mAP of weakly sup. is only 0.3 (IOU@10-50) on CVC-
ClinicDB but full supervision can reach 0.6. Even better, our
method reaches 0.64, which not only exceeds weak supervi-
sion or even due to full supervision. In comparison with CVC-
ClinicDB and private dataset, the best mAP (IOU@10) on
Kvasir is only 0.22, which is 55% lower than CVC-ClinicDB,
and 30% lower than private. Besides, we also find that al-
though the full-supervision methods have the high CorLoc,
mAP does not have the same advantages, e.g. 1.0 CorLoc v.s.
0.39 mAP (IOU@30) on the private of DiffusionDet, which
indicates that they are inefficient in learning discriminative
category representation, leading to false detection or missed
detection. Compared with them, our proposed CBNet offers
higher mAP despite having slightly low CorLoc due to the
lack of instance-level annotations, which shows that CB-
Net can learn a better target representation to deal with flat
polyps and background noise issues. More detail for each
category can be seen in supplementary material.
Precision-Recall Curves: We also plot the Precision-

Recall (P-R) curves of differentmethods on the CVC-ClinicDB
dataset and private dataset for flat polyps in Figure 4. As can

Figure 4: P-R curves of different methods on the CVC-
ClinicDB (a) and private dataset (b) for flat polyps.

be seen, the performance of our CBNet is significantly bet-
ter than all other methods, where the area under the P-R
4https://github.com/open-mmlab/mmdetection
5https://github.com/researchmm/WSOD2

https://dl.fbaipublicfiles.com/segment_anything/
https://github.com/dxqllp/CBNet
https://github.com/open-mmlab/mmdetection
https://github.com/researchmm/WSOD2
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Table 1: Quantitative comparisons with eight methods on three polyp datasets in terms of mAP and CorLoc from different iou
thresholds. The top two results in weakly sup. methods are marked in red and blue font, respectively.

CVC-ClinicDB Kvasir Private
IoU@10-50 IoU@10 IoU@30 IoU@50 IoU@10-50 IoU@10 IoU@30 IoU@50 IoU@10-50 IoU@10 IoU@30 IoU@50Methods Supervision

mAP mAP CorLoc mAP CorLoc mAP CorLoc mAP mAP CorLoc mAP CorLoc mAP CorLoc mAP mAP CorLoc mAP CorLoc mAP CorLoc
Faster Rcnn [28] Fully Sup. 0.41 0.41 0.94 0.41 0.91 0.41 0.90 0.26 0.27 0.96 0.26 0.95 0.26 0.92 0.28 0.28 0.97 0.28 0.97 0.28 0.94
Yolo [27] Fully Sup. 0.40 0.41 0.99 0.40 0.96 0.39 0.89 0.27 0.28 0.95 0.27 0.93 0.26 0.88 0.29 0.30 0.84 0.30 0.76 0.28 0.74
DiffusionDet50 [6] Fully Sup. 0.62 0.63 0.97 0.63 0.97 0.59 0.96 0.28 0.29 0.97 0.28 0.96 0.26 0.94 0.37 0.38 1.00 0.38 1.00 0.37 1.00
DiffusionDet500 [6] Fully Sup. 0.61 0.62 0.98 0.62 0.98 0.59 0.97 0.26 0.27 0.96 0.27 0.94 0.24 0.89 0.38 0.40 1.00 0.39 1.00 0.34 1.00
WSDDN [13] Weakly Sup. 0.11 0.17 0.35 0.09 0.14 0.07 0.05 0.06 0.08 0.37 0.06 0.13 0.05 0.05 0.12 0.15 0.24 0.12 0.08 0.11 0.04
OICR [32] Weakly Sup. 0.02 0.04 0.09 0.00 0.02 0.00 0.02 - - - - - - - 0.01 0.01 0.05 0.01 0.04 0.01 0.04
WSOD2 [40] Weakly Sup. 0.30 0.38 0.59 0.26 0.36 0.25 0.32 0.02 0.02 0.10 0.02 0.08 0.02 0.07 0.01 0.01 0.04 0.01 0.04 0.01 0.04
Grad-CAM [29] Weakly Sup. 0.20 0.42 0.51 0.13 0.24 0.04 0.08 0.06 0.12 0.37 0.04 0.16 0.01 0.06 0.16 0.24 0.31 0.13 0.20 0.10 0.17
Grad-CAM++ [2] Weakly Sup. 0.22 0.49 0.54 0.13 0.24 0.04 0.08 0.06 0.12 0.36 0.04 0.17 0.01 0.08 0.15 0.22 0.28 0.13 0.19 0.10 0.15
CBNet(SAM&SSW) Weakly Sup. 0.64 0.77 0.93 0.62 0.85 0.52 0.74 0.16 0.20 0.95 0.16 0.80 0.11 0.64 0.49 0.52 0.90 0.49 0.88 0.48 0.84
CBNet(SAM(filter)&SSW) Weakly Sup. 0.51 0.53 0.91 0.52 0.88 0.49 0.81 0.18 0.22 0.91 0.18 0.79 0.13 0.63 0.49 0.51 0.88 0.48 0.84 0.47 0.82

curve of our CBNet is much larger than those of both the
fully supervised methods and weakly supervised methods,
e.g. 0.6029 area of CBNet v.s. 0.0565 area of WSDDN on the
CVC-ClinicDB dataset.

4.4 Visual Results
In Figure 5, we present some visual detection results of dif-
ferent methods. As we can see, the 9𝑡ℎ column test image
contains a flat polyp, all the methods including both fully
supervised and weakly methods falsely detect or miss the
polyp as a target except our CBNet, which shows that our
CBNet has more excellent representation ability in complex
flat polyps. We attribute this success to the unique structure
of our ARFM, i.e., it aggregates different level features such
that it has the ability to provide more information for fol-
lowing modules and recognize polyp as target rather than
background. Moreover, the last two rows show that overall
our method has better performance, and different proposal
filtering strategies will make a negative or positive impact
on the results.
To gain more in-depth in-sight into what backbone has

learned, we also visualize the gradient-weighted class activa-
tion mapping (Grad-CAM), as in Figure 6. It can be observed
that baseline has the ability to successfully locate polyps but
only focus on a small part of the target e.g., 1𝑡ℎ row & 2𝑡ℎ
column, and may occasionally fail e.g., 1𝑡ℎ row & 1𝑡ℎ column,
2𝑡ℎ row & 3𝑡ℎ row.

4.5 Ablation Study
Considering that the detection of backbone is CAM-based
and has a nature performance gap (e.g. the performance
of WSDDN v.s. Grad-CAM in Table 1) with the MIL-based
method, we selected WSDDN as the reference in order to
ensure the fairness of comparison.

Impact of CBRPN: To investigate the impact of the pro-
posed CBRPN, we conduct ablation studies by using SAM’s
proposal as a result, directly using proposals from SAM and
filtering them based on the area before using. The results are
summarized in Table 2. As can be seen, compared to other
proposal generation methods, CBRPN achieves higher mAP.
And the lower flat AP is due to insufficient learning ability

Table 2: The impact of CBRPN with different proposal gener-
ation strategies on Kvasir.

Proposal Source mAP(%) Flat AP(%) Pedicle AP(%) Edge AP(%)
SSW 4.71 2.79 11.36 -
SAM 5.55 - 16.64 -
SAM(filter) 7.29 - 21.86 -
SAM&SSW 10.38 1 30.16 -
SAM(filter)&SSW 10.84 0.18 26.45 5.9

Table 3: Performance of our ablation experiments for ARFM
with different strategy CBRPN.

Strategies Datasets mAP(%) Flat AP(%) Pedicle AP(%) Edge AP(%)

1) SSW CVC-ClinicDB 6.69 5.65 11.45 2.99
Kvasir 4.71 2.79 11.36 -

2) SSW+ARFM CVC-ClinicDB 35.54 50.37 20.68 35.38
Kvasir 7.18 4.88 16.65 -

3) SAM&SSW+ARFM CVC-ClinicDB 51.94 77.29 42.97 35.58
Kvasir 11.02 6.58 26.48 -

4) SAM(filter)&SSW+ARFM CVC-ClinicDB 49.17 63.88 45.15 38.46
Kvasir 13.44 14.25 18.33 7.74

in the subsequent modules, as demonstrated in ablation ex-
periments of the ARFM module. ’ - ’ represents 0.0, and the
possible reasons for this result are as follows: 1) more nega-
tive samples (compared with those related to SSW) which
affect the learning of positive samples; 2) backbone network
lacks the ability to learn small differences among classes.

In addition, we also compared the average number of pro-
posals used for training and the average overlap with ground
truth boxes. The detailed results are in supplementary ma-
terial.

Impact of the design of ARFM:We investigate the ef-
fect of ARFM on the original reference network as well as
different proposal filtering strategies. The results on CVC-
ClinicDB and Kvasir are shown in Table 3. Comparing strat-
egy 1 v.s. 2, we can find that the addition of ARFM contributes
to a gain of about 28.85% mAP for CVC-ClinicDB and 2.47%
mAP for Kvasir, as well as increasing the AP of each mor-
phology in different degree. Again, from the 3𝑡ℎ strategy
to 4𝑡ℎ strategy ARFM outperforms 1𝑡ℎ & 2𝑡ℎ strategy in all
metrics. Finally, comparing strategies 3 and 4 we find that
SAM self-filtering based on the area can further improve
performance on Kvasir, but is negative on CVC-ClinicDB.

https://github.com/dxqllp/CBNet
https://github.com/dxqllp/CBNet
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Figure 5: Qualitative comparison with different methods. Rows 2 to 5 are fully supervised methods, the others are weakly
supervised methods.

Figure 6: The grad class activation maps of backbone, which include three location case error, right and miss.

Table 4: The evaluation results of each component.

Module Strategies Datasets mAP(%) Module Strategies Datasets mAP(%)

CBRPN

w/ SSW CVC-ClinicDB 6.69 ↓ 7.14

ARFM

w/ CG CVC-ClinicDB \
Kvasir 4.71 ↓ 5.67 Kvasir \

w/ SAM CVC-ClinicDB 8.33 ↓ 5.5 w/ AF CVC-ClinicDB 49.95 ↓ 1.99

Kvasir 5.55 ↓ 4.83 Kvasir 9.88 ↓ 1.14

w/ (SSW + SAM) CVC-ClinicDB 13.83 ↓ 7.14 w/ (CG + AF) CVC-ClinicDB 51.94 ↓ 7.14

Kvasir 10.38 ↓ 7.14 Kvasir 11.02 ↓ 7.14

The probable reason for this is that the latter has many small
polyps and the inappropriate area threshold filters them out.
In a word, the proposed ARFM can help the network achieve
better performance in all metrics.
Impact of the components of CBRPN & ARFM:We

further performed ablation experiments on the components
within each module to verify their role for the module. The
results of CBRPN {𝑆𝑆𝑊 , 𝑆𝐴𝑀} and ARFM {𝐶𝐺 : 𝐶𝑜𝑛𝑣_𝑃 +
𝐺𝐴𝑃 ,𝐴𝐹 :𝐴𝑔𝑔 + 𝐹𝑢𝑠𝑖𝑜𝑛} are reported in Table 4. ’ / ’indicates
that it cannot be evaluated because the input of subsequent
modules is the output of AF. We can find that all components
are beneficial to our framework because the performance

decreases (4.83 ˜ 7.14 for CBRPN, 1.14 ˜ 1.99 for ARFM) while
removing each component.

5 Conclusion
In this paper, we propose a novel CBNet for image-level
weakly supervised polyp detection. CBNet adopts CBRPN
to automatically generate point prompts for SAM taking ad-
vantage of the local properties in the classification and adds
iou threshold filter to improve the quality of proposals. We
also propose the ARFM to enhance the region feature, which
further helps to detect flat polyps and avoid over-fitting. Ex-
periments on public datasets and internal demonstrate the
superiority of our CBNet.
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