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1 RELATED WORK

1.1 Region Proposals Generation

Among various studies Selective search [5] and Edge Boxes [3] are
the standard methods to create candidate proposals. However, later
studies believe that most of them are negative cases, which not only
affect the detection effect but also reduce the prediction speed [10].
With that in mind, they designed the region proposal network (RPN)
[7]. Indeed, it shows a significant speed improvement compared to
traditional methods. Unfortunately, this strategy calls for a large
number of priori parameters such as scales and ratios. Even worse,
the effectiveness of these parameters heavily controls the quality
of the proposals and thereby impacts the detection results. We
statistically correlated information from two publicly available
along with a private polyp dataset.
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Figure 1: The number of ground truth box scales for different
datasets (CVC-ClinicDB, Kvasir, Private). The red arrow indi-
cates the most frequent scale in the dataset and its number
of occurrences.

ClinicDB
Kavsit

Private

Number

Box
02 03 04 05 06 07 08 09 1 LI 12 13 14 15 16 17 18 L9 widtiheight

Figure 2: The number of ground truth box aspect ratio (width:
height) for different datasets (CVC-ClinicDB, Kvasir, Private).
The red arrow indicates the most frequent ratio in the dataset
and its number of occurrences.

As Figure 1 & 2 shows the range of polyp scales and box ratios
in different datasets is extremely variable. These variations in dif-
ferentiation pose a severe challenge to parameter setting, as setting
only the high-frequency parameter will cause a lower recall rate
resulting in missed detections, while resulting in a large number of

redundant candidate proposals and more complex calculations if all
the parameters are set. In addition, these numbers are constantly
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Figure 3: An example of scale change for the same polyp at
different distances with colonoscopy.

LV §

dynamic because they are closely linked to the distance between
the colonoscope and polyps, as shown in Figure 3. Furthermore, to
ensure the high performance of RPN, instance-level annotations
are required to train the network, which not only deviates from the
requirement of weak supervision (WS) but also fails to deliver on
weakly supervised polyp detection (WSPD). Considering these, we
argue that rather than RPN probably traditional methods are more
adequate for WSPD.

2 EXPERIMENTS
2.1 Quantitative Results

Main results: To further demonstrate the average precision (AP)
performance of different comparison methods in each category. We
show the class AP of all comparison methods on CVC-ClinicDB,
Kvasir, and internal dataset, as shown in Table 1, Table 2, Table
3. Among weakly supervised methods, our method outperforms
others (except for the AP of pedicle polyps on CVC-ClinicDB when
the IOU is set to 10%) under different IOU thresholds. In particular,
our method performs much better than the state-of-the-art (both
weakly sup. and fully sup.) on flat polyps, as our approach has
stronger classification ability and fusion feature maps, which can
maintain localization ability, though in most cases instances of
these categories are extremely obvious or camouflaged. Besides, the
performance of our weakly supervised method is even comparable
with the fully supervised methods in some aspects (e.g. the AP of
edge on Kvasir and private with 50% iou threshold), illustrating the
effectiveness of the proposed CBNet.

2.2 Ablation Study

Impact of CBRPN: Weakly supervised networks lack the guid-
ance of the instance boundary box and rely only on the boundary
box’s suggestion generator, which often results in more negative
examples than positive ones. This makes it difficult for the network
to learn positive features, which affects the accuracy of polyp de-
tection. Before training the network, pre-filtering is necessary to
address this imbalance. To evaluate the effectiveness of CBRPN, we
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Methods Supervision 0U@10 10U@30 I0U@30

Flat Pedicle Edge | Flat Pedicle Edge | Flat Pedicle Edge
Faster Renn [7] Fully Sup. - 0.78  0.46 - 0.78  0.46 - 0.76  0.46
Yolo [6] Fully Sup. - 0.82  0.39 - 0.82  0.38 - 0.82  0.35
DiffusionDet50 [2] Fully Sup. - 0.98  0.92 - 0.98  0.92 - 0.96  0.82
DiffusionDet500 [2] Fully Sup. - 094 091 - 094 091 - 0.94 0.82
WSDDN [4] Weakly Sup. | 0.14 0.23  0.13 | 0.07 0.16  0.05 | 0.06 0.11  0.03
OICR [9] Weakly Sup. - 0.05 0.08 - 0.01 - - - -
WSOD2 [11] Weakly Sup. | 0.27 0.52  0.34 | 0.05 0.39  0.34 | 0.03 0.39  0.34
Grad-CAM [8] Weakly Sup. | 0.32 0.74  0.20 | 0.04 0.35 - - 0.12 -
Grad-CAM++ [1] Weakly Sup. | 0.27 0.73  0.46 | 0.04 0.30  0.05 - 0.11  0.02
CBNet(SAM&SSW) Weakly Sup. | 0.86 0.69  0.76 | 0.82 0.63  0.43 | 0.77 0.43  0.36
CBNet(SAM(filter)&SSW) | Weakly Sup. | 0.73 0.47 038 | 0.73 0.45 0.38 | 0.64 045 0.38

Table 1: Average precision for different methods on CVC-ClinicDB test set. The top two results of weakly supervised are marked

in red and blue, respectively.

. I0U@10 I0U@30 10U@50
Methods Supervision Flat Pedicle Edge | Flat Pedicle Edge | Flat Pedicle Edge
Faster Renn [7] Fully Sup. - 0.80 - - 0.79 - - 0.77 -
Yolo [6] Fully Sup. - 0.76  0.07 - 0.75  0.07 - 0.71 0.07
DiffusionDet50 [2] Fully Sup. - 0.74  0.12 - 0.72  0.12 - 0.70  0.09
DiffusionDet500 [2] Fully Sup. - 0.71  0.11 - 0.70  0.11 - 0.67  0.04
WSDDN [4] Weakly Sup. | 0.05 0.17  0.01 | 0.03 0.14 -1 0.03 0.11 -
OICR [9] Weakly Sup. - - - - - - - - -
WSOD2 [11] Weakly Sup. | - 0.05 - - 0.05 - - 0.05 -
Grad-CAM [8] Weakly Sup. | 0.01 0.37 - - 0.11 - - 0.02 -
Grad-CAM++ [1] Weakly Sup. - 0.37 - - 0.11 - - 0.03 -
CBNet(SAM&SSW) Weakly Sup. | 0.10 0.5 -1 0.09 0.39 -1 0.07 0.26 -
CBNet(SAM(filter)&SSW) | Weakly Sup. | 0.16 0.42  0.08 | 0.16 031  0.08 | 0.14 0.18  0.08

Table 2: Average precision for different methods on Kvasir test set. The top two results of weakly supervised are marked in red

and blue, respectively.

. 10U@10 I0U@30 T0U@50
Methods Supervision Flat Pedicle Edge | Flat Pedicle Edge | Flat Pedicle Edge
Faster Renn [7] Fully Sup. - 0.83 - - 0.83 - - 0.83 -
Yolo [6] Fully Sup. - 0.74  0.17 - 0.74  0.15 - 0.74  0.12
DiffusionDet50 [2] Fully Sup. - 0.80 0.33 - 0.80 0.33 - 0.79  0.32
DiffusionDet500 [2] Fully Sup. - 0.84 036 - 0.84 0.34 - 0.81 0.21
WSDDN [4] Weakly Sup. | 0.08 0.30  0.06 | 0.05 0.27 0.03 | 0.03 0.26 0.03
OICR [9] Weakly Sup. | 0.04 - - | 0.04 - - | 0.04 - -
WSOD2 [11] Weakly Sup. - 0.03 - - 0.03 - - 0.03 -
Grad-CAM [8] Weakly Sup. - 0.69  0.03 - 0.40 - - 0.31 -
Grad-CAM++ [1] Weakly Sup. - 0.62  0.03 - 0.39 - - 0.30 -
CBNet(SAM&SSW) Weakly Sup. | 0.54 0.6 0.4 | 0.47 0.6 0.4 | 0.47 0.55 0.4
CBNet(SAM(filter)&SSW) | Weakly Sup. | 0.53 058 04045 058 0.4 |044 058 04

Table 3: Average precision for different methods on Private test set. The top two results of weakly supervised are marked in red

and blue, respectively.

compared the average number of proposals (NP) with or without
CRM, as well as their average overlap (OP, intersection over union)
with ground truth. As shown in Figure 4, when we add ARFM, the
number of generated proposals decreased from 83 to 21 or 24 on the
private dataset, while the overlap increased by §+4.71 or §+4.43.In
addition, we also compared CVC-ClinicDB and Kvasir, NP decreased
from 66 to 15 or 17 (CVC-ClinicDB), from 76 to 16 or 18 (Kvasir),
while OP increased by § +2.33 and d + 2.77 or § + 2.54, respectively.
In addition, we also find that the strategy that directly uses SAM
pseudo-mask to filter SSW is better than SAM self-filtering first.
For example, on the Kvasir dataset, NP of SAM & SSW is 16 v.s.
SAM (filter) & SSW is 18, while OP of SAM & SSW is 0.49 v.s. SAM

(filter) & SSW is 0.46. Therefore, to obtain better performance, we
believe that CBRPN should choose the strategy of direct filtering.
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