
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Cross-View Consistency Regularisation for Knowledge
Distillation

Anonymous Author(s)

ABSTRACT
Knowledge distillation (KD) is an established paradigm for trans-
ferring privileged knowledge from a cumbersome model to a more
lightweight and efficient one. In recent years, logit-based KD meth-
ods are quickly catching up in performance with their feature-based
counterparts. However, existing research has pointed out that logit-
based methods are still fundamentally limited by two major issues
in their training process, namely overconfident teacher and con-
firmation bias. Inspired by the success of cross-view learning in
fields such as semi-supervised learning, in this work we introduce
within-view and cross-view regularisations to standard logit-based
distillation frameworks to combat the above cruxes. We also per-
form confidence-based soft label selection to improve the quality
of distilling signals from the teacher, which further mitigates the
confirmation bias problem. Despite its apparent simplicity, the pro-
posed Consistency-Regularisation-based Logit Distillation (CRLD)
significantly boosts student learning, setting new state-of-the-art
results on the standard CIFAR-100, Tiny-ImageNet, and ImageNet
datasets across a diversity of teacher and student architectures,
whilst introducing no extra network parameters. Orthogonal to on-
going logit-based distillation research, our method enjoys excellent
generalisation properties and, without bells and whistles, boosts
the performance of various existing approaches by considerable
margins. Our code and models will be released.
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1 INTRODUCTION
Deep neural networks (DNNs) have achieved tremendous success
across a plethora of computer vision, natural language processing,
and multimedia tasks [17, 21, 44]. Behind their widespread applica-
tions, high-performance DNNs are often associated with larger if
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Figure 1: A schematic comparison of logit-based distillation
methods from a cross-view learning perspective. (a): Methods
mimicking logits in an unitary view [10, 24, 28, 31, 36, 60, 69].
(b) Methods optimising and mimicking contrastive relations
[54]. (c) Our CRLD which involves within-view and cross-
view logit transfer.

not prohibitive model sizes and computational overheads, which
render them hard to implement on resource-constrained devices
and platforms. Towards computation-efficient, storage-friendly, and
real-time deployment of DNNs, a viable solution is knowledge dis-
tillation (KD), which was first proposed by Hinton et al. [24] for
model compression. KD works by transferring the advanced capa-
bility of a larger, cumbersome teacher model to a more lightweight
and efficient student model. Since its proposal, KD has witnessed
significant advancements in the past decade as a range of feature-
based [7, 8, 20, 23, 34, 38, 41, 49, 50, 59, 61, 64] and response-based
(logit-based) [10, 24, 28, 36, 54, 60, 69] KD algorithms are proposed
for diverse tasks and applications [24, 25, 35, 52, 58, 71]. State-
of-the-art KD methods have largely reduced the teacher-student
performance gap. For instance, top-performing methods [10, 28, 69]
are capable of training students that are on par with or even sur-
pass their corresponding teacher models on smaller datasets such
as CIFAR-100 (see Table 1), and are not far behind on larger datasets
[16] (Tables 3 and 4).

In this paper, our goal is to further advance the capability of
knowledge distillation by addressing two long-standing problems in
existing KD methods. Previous research has reported that stronger
teacher models and more accurate teacher predictions do not neces-
sarily lead to better distilled students [11, 24, 36, 62]. This counter-
intuitive observation points to a prominent and fundamental prob-
lem in knowledge distillation — overconfident teacher. In the
pioneering work of KD [24], Hinton et al. argued that valuable
information is hidden in teacher’s predictions of the non-target
classes. These predictions, known as the “dark information”, are
however largely suppressed when the teacher make predictions
with an overly-high confidence. Hence, regularisation of teacher
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predictions is essential to distilling knowledge with greater gener-
alisation capabilities to the student [18, 24, 37].

In their work [24], Hinton et al. propose to mitigate the over-
confidence problem by softening the predicted probabilities after
Softmax using the temperature hyperparameter. This practice is
inherited by many later works [10, 28, 31, 47, 60, 69]. Some methods
[36] produce smoothed teacher predictions by introducing auxiliary
teacher networks with smaller capacity. More straightforward tech-
niques have also been investigated, including label smoothing [37]
and early stopping [37]. These works also highlighted overfitting as
another detrimental phenomenon closely related to overconfident
teacher. These efforts motivate us to look at consistency regularisa-
tion via view transformation — another viable solution to combat
overconfidence and overfitting. Although widely explored in the
semi-supervised learning (SemiSL) literature [45, 53], consistency
regularisation and view transformation have received little atten-
tion in knowledge distillation research. According to [57], strong
augmentation amplifies the dark information that is insignificant in
the weak view. As such, in this paper we reframe these techniques
for KD by designing a novel set of within-view and cross-view
consistency regularisation objectives and achieve state-of-the-art
KD performance.

On the other hand, teacher’s predictions are not always cor-
rect. Confirmation bias [2] arises when erroneous pseudo-labels
predicted by the teacher is used to teach the student. In existing
logit-based methods [10, 24, 31, 60, 69], the student is designated
to faithfully learn whatever supervision the teacher has to pro-
vide. Such blind mimicking neglects a key fact that the teacher’s
predictions may be erroneous and misleading, thereby exacerbat-
ing the confirmation bias phenomenon. It has been pointed out
in recent research [57] that strong perturbation helps mitigate
such confirmation bias, which also supports our introduction of
a strongly augmented view of the input image. To further miti-
gate confirmation bias, we draw inspiration from state-of-the-art
SemiSL frameworks whose success is partially attributed to their
confidence-aware pseudo-labelling [45, 53, 57]. As such, we pro-
pose to selectively pick the more reliable predictions made by the
teacher for the student to learn, which is proven beneficial in our
experiments.

The considerations and designs described above altogether lead
to a novelConsistency-Regularisation-based LogitDistillation frame-
work, dubbed “CRLD”. By drawing inspiration and reaping the fruits
from orthogonal research on semi-supervised learning (SemiSL),
CRLD presents a simple yet highly effective and versatile solution
to knowledge distillation. It easily boosts advanced KD methods,
including DKD [69], MLLD [28], and NormKD [10], without in-
troducing extra network parameters. When applied to existing
top-performing methods [10, 28], CRLD establishes new state-of-
the-art results across different datasets. A schematic comparison
of CRLD against prior logit-based approaches from a cross-view
learning perspective is presented in Figure 1

In summary, the contributions of this paper include:

(1) We introduce extensive within-view and cross-view consis-
tency regularisation to combat the overconfident teacher
and over-fitting problems common in KD.

(2) We design a reliable pseudo-label mining module to avoid
the negative impact of unreliable and erroneous supervisory
signals from the teacher, thereby mitigating the confirma-
tion bias in KD.

(3) We present the simple, versatile, and highly effective CRLD
framework. CRLD achieves new state-of-the-art results on
multiple benchmarks across diverse network architectures
and readily boosts existing logit-based methods by consid-
erable margins.

2 RELATEDWORK
2.1 Knowledge Distillation
Knowledge distribution (KD) is first proposed in [24] as a model
compression technique. It transfers advanced knowledge from a
larger, cumbersome “teacher” model to a smaller, lightweight “stu-
dent” model. Following its initial success in image classification [24]
and object detection [52, 58, 70], KD has quickly swept over many
more challenging tasks in 3D scene understanding [19, 25, 66, 71].
Existing KD methods are primarily divided into feature-based and
logit-based distillation according to where in the network knowl-
edge transfer takes place — the feature space or the logit space.
Feature-based Distillation. As its name suggests, feature-based
distillation transfers knowledge in the intermediate feature space
of the teacher and student models. A most straightforward way
is to simply let the student mimic the features of the teacher, as
is done in many early works [1, 23, 41, 49]. Some methods also
mine and transfer higher-order information from the teacher’s
feature maps to the student, including inter-channel [34], inter-
pixel [50], inter-layer [61], inter-class[27], intra-class[27], and inter-
sample [38–40] correlations, inter-sample distance [38], as well
as the teacher network’s attention [20, 64]. Generative modelling
has also been leveraged for feature-based distillation [59], where
randomly masked student features are required to re-generate full
teacher features. In addition, cross-stage distillation paths [7, 8] and
one-to-all pixel paths [32] have also been proposed for improved
feature-based distillation.
Logit-based Distillation. Logits are the prediction output by a
neural network before its final Softmax layer. Distillation methods
that perform knowledge transfer in the prediction space are referred
to as logit-based or response-based distillation. Pioneering methods
KD [24] and DML [68] directly transfer the teacher’s predictions
to the student by minimising the Kullback-Leibler (KL) divergence
between their predictions. Similar to advances in feature-based dis-
tillation, intra-sample and inter-sample relations are also exploited
for transfer within the logit space in several works [28, 54]. Instead
of treating all logits indifferently, DKD [69] and NKD [60] decom-
pose all logits into target-class and non-target class logits and treat
them separately and demonstrate higher knowledge transfer per-
formance. More recent methods such as CTKD [31] and NormKD
[10] adopt dynamic Softmax temperature, as opposed to a de facto
fixed temperature value in previous works [24, 36, 68, 69], reporting
state-of-the-art performance. Another branch of methods [36, 46]
introduce assistant networks between the teacher and the student
to aid the former’s imparting of logit-space knowledge to the latter.
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Figure 2:The CRLD framework. An input image is transformed into a weak view and a strong view, both fed into the teacher and
the student separately, yielding four predictions of the same instance. Amongst them, two types of consistency regularisation
are enforced: within-view (¬­) and cross-view (®¯) consistency. Besides, student’s prediction of the weak view is supervised
by ground-truths (°) as per standard practice.

2.2 Consistency Regularisation
Consistency regularisation is at the core of the recent success of
state-of-the-art semi-supervised learning algorithms [3, 4, 30, 42,
45, 48, 53]. It involves enforcing invariant representations across
different views of the same unlabelled input image to improve the
generalisation of learnt representations on unseen data and dis-
tribution. The different views of an input image are generated by
semantic-preserving transformations, from simple operations such
as random crop, horizontal flip, and MixUp [65] as weak transfor-
mations, to more sophisticated [13, 22] or even adaptive [3, 12]
augmentation strategies for producing strongly augmented views.
Given these artificially generated views, representation consistency
can be enforced across two stochastical weak views as is done in
[4, 53], or a pair of strong and weak views as in [3, 45]. To our best
knowledge, beyond SemiSL, the idea of consistency regularisation
has not been explored within the context of knowledge distillation.

2.3 Data Augmentation for KD
Data augmentation has served as a main pillar to the triumph of
deep learning. It transforms training samples into augmented ver-
sions whilst preserving their semantic connotation. This results
in an abundant if not unlimited amount of extra training data to
improve the generalisation of deep neural networks. In the context
of knowledge distillation, data augmentation is yet to receive con-
siderable attention, and only a handful of preliminary studies are
conducted [5, 14, 15, 51]. Specifically, Das et al. [15] studies the ef-
fect of data augmentation in training the teacher model. SSKD [54]
and HSAKD [55] incorporate elements of contrastive learning.They
apply simple rotation to establish a self-supervised pretext task for
improved student learning. Wang et al. [51] and IDA [14] design
data augmentation strategies tailored to to boost KD. In contrast,
our focus is not the design of a data augmentation strategy itself
but to leverage the idea of consistency regularisation to improve
student’s learning. Data augmentation is simply our tool to allow
the formulation of consistency regularisation objectives, as is done
in advanced SemiSL methods, and we simply use RandAugment as
our strong view transformation following them.

3 METHODOLOGY
3.1 Knowledge Distillation
Knowledge distillation (KD) involves the student model learning
from both ground-truth labels and distillation signals from a pre-
trained teacher. For the image classification task, ground-truth
supervisions are widely enforced via a cross-entropy minimisation
objective L�� ; the distillation objective L � is enforced by min-
imising the distance between either the intermediate features or
the final predictions of the teacher and the student. Thus, KD in
its simplest form has L = L�� + _ �L � as its objective, where
_ � is a balancing scalar. In this paper, we investigate logit-based
distillation, where L � minimises the discrepancy between pre-
dicted probabilities by the teacher and the student, and is commonly
implemented as the Kullback-Leibler (KL) divergence loss.

3.2 Logit-Space Consistency Regularisation
Consistency regularisation has been widely employed in SemiSL
research [3, 4, 42, 45, 48]. It involves creating different views of
the same unlabelled image, which are separately fed into a neural
network to obtain a pair of network predictions. Consistency reg-
ularisation is enforced between the pair of predictions given the
prior knowledge that both views fundamentally represent the same
high-level information such as the object category.

In CRLD, we employ one weak view and one strong to set the
stage for our set of within-view and cross-view consistency crite-
rion. Specifically, we adopt RandAugment [13] with random magni-
tude alongside random crop, random horizontal flip, and Cutout as
our strong data augmentation policy. A full list of RandAugment’s
transformation operations is provided in Supplementary Material.
For the weak augmentation, we simply apply random crop and
random horizontal flip, which is the standard data augmentation
in previous logit-based KD methods [10, 24, 60, 69]. We denote our
weak and strong view transformation functions by )F (·) and )B (·),
respectively.

Concretely, given a batch of � training samples x = {G1 : 1 ∈
(1, ..., �)}, we separately apply )F (·) and )B (·) to each sample to
obtain a weakly augmented and a strongly augmented view of G1 ,

3
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Table 1: Top-1 accuracy (%) on CIFAR-100 with homogeneous-architecture teacher-student pairs.

Method
Teacher ResNet56 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13

Avg.72.34 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8
69.06 71.14 72.50 73.26 71.98 70.36

Feature KD

RKD [38] 69.61 71.82 71.90 73.35 72.22 71.48 71.73
FitNets [41] 69.21 71.06 73.50 73.58 72.24 71.02 71.77
AT [64] 70.55 72.31 73.44 74.08 72.77 71.43 72.43
OFD [23] 70.98 73.23 74.95 75.24 74.33 73.95 73.78
CRD [49] 71.16 73.48 75.51 75.48 74.14 73.94 73.95
SRRL [56] 71.13 73.48 75.33 75.59 74.18 73.44 73.86
ICKD [34] 71.76 73.89 75.25 75.64 74.33 73.42 74.05
PEFD [9] 70.07 73.26 76.08 76.02 74.92 74.35 74.12

CAT-KD [20] 71.05 73.62 76.91 75.60 74.82 74.65 74.44
TaT [32] 71.59 74.05 75.89 76.06 74.97 74.39 74.49

ReviewKD [8] 71.89 73.89 75.63 76.12 75.09 74.84 74.58
SimKD [6] 71.05 73.92 78.08 75.53 74.53 74.89 74.67

Logit KD

KD [24] 70.66 73.08 73.33 74.92 73.54 72.98 73.09
TAKD [36] 70.83 73.37 73.81 75.12 73.78 73.23 73.36
CTKD [31] 71.19 73.52 73.79 75.45 73.93 73.52 73.57
NKD [60] 70.40 72.77 76.35 75.24 74.07 74.86 73.95

NormKD [10] 71.40 73.91 76.57 76.40 74.84 74.45 74.60
DKD [69] 71.97 74.11 76.32 76.24 74.81 74.68 74.69
CRLD 72.06 74.59 78.31 76.47 75.71 75.20 75.39

MLLD † [28] 72.19 74.11 77.08 76.63 75.35 75.18 75.09
CRLD † 72.57 75.08 78.53 76.95 76.42 75.63 75.86

denoted as GF
1

and GB
1
, respectively. Next, we feed both views of the

input image individually to the teacher and the student, obtaining
four network predictions, namely p)F , p)B , p(F , and p(B , where we
drop subscript 1 for brevity.

We define within-view consistency regularisation as the consis-
tency criterion between teacher’s and student’s predictions of the
same weak or strong view. The within-view consistency objective
is therefore computed as:

L,+
 �

= KLD(p(F , p)F) + KLD(p(B , p)B ) (1)

Next, we design a novel cross-view consistency regularisation. It
demands the teacher and student to receive differently augmented
views of an image and yet produce logit predictions as similar as
possible. Formally, this cross-view objective is given by:

L�+
 �

= KLD(p(F , p)B ) + KLD(p(B , p)F) (2)

The overall KD objective is a sum of the within-view and cross-
view consistency losses, that is, L � = L,+

 �
+ L�+

 �
. Note that

although one may tune the weighting of each of the four constitut-
ing objective terms, for simplicity we choose to let them share the
same weighting in this work. A schematic diagram of the pipeline
is provided in Figure 2 .

Furthermore, a previous work [5] reported that teacher and stu-
dent shall receive an identical view of the same input using the
same image transformation for maximal knowledge distillation per-
formance. With our specific design, however, we will demonstrate
that the teacher and student receiving different views of an input
using different view transformations leads to optimal performance. In
Section 4.4, we conduct extensive ablation experiments to verify

whether and when the proposed cross-view learning really works.
As we will show, cross-view consistency regularisation using differ-
ent views of the same input image is key to the strong performance
of the proposed CRLD framework.

3.3 Confidence-based Soft Label Mining
Confirmation bias harms distillation when the student learns from
erroneous soft labels provided by the teacher. By introducing the
more challenging strongly augmented views, we are also increasing
the likelihood that the well-trained teacher produces misleading
predictions that undermine student learning. We experimentally
observe that strongly-augmented samples generated by our strong
view transformation policy can sometimes be almost unintelligi-
ble (refer to Appendix for examples), with false predictions made
by the teacher. Therefore, we are motivated to refrain unreliable
teacher predictions from forming the consistency regularisation
pairs. To this end, we propose a simple thresholding mechanism by
considering the highest class probability in teacher’s per-instance
prediction as an indicator of teacher’s uncertainty about this predic-
tion. Teacher predictions whose highest class probability is below
a given threshold are discarded.

In practice, we apply two thresholds gF and gB for teacher’s
predictions of the weak and strong views, respectively. Different
from the common practice in SemiSL [45, 53], we do not convert
the preserved predictions into hard, one-hot pseudo-labels. This
is due to the nature of the KD task, whose success hinges on the
dark knowledge carried within the non-target class predictions
[24, 60, 69]. Instead, we keep teacher’s soft predictions as they are
as supervision. As an example, objective term KLD(p(F , p)B ) with

4
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Table 2: Top-1 accuracy (%) on CIFAR-100 with heterogeneous-architecture teacher-student pairs.

Method
Teacher ResNet32×4 ResNet32×4 WRN-40-2 WRN-40-2 VGG13 ResNet50

Avg.79.42 79.42 75.61 75.61 74.64 79.34

Student ShuffleNetV2 WRN-16-2 ResNet8×4 MobileNetV2 MobileNetV2 MobileNetV2
71.82 73.2 72.50 64.60 64.60 64.60

Feature KD

AT [64] 72.73 73.91 74.11 60.78 59.40 58.58 66.59
RKD [38] 73.21 74.86 75.26 69.27 64.52 64.43 70.26

FitNets [41] 73.54 74.70 77.69 68.64 64.16 63.16 70.32
CRD [49] 75.65 75.65 75.24 70.28 69.63 69.11 72.59
OFD [23] 76.82 76.17 74.36 69.92 69.48 69.04 72.63

ReviewKD [8] 77.78 76.11 74.34 71.28 70.37 69.89 73.30
SimKD [6] 78.39 77.17 75.29 70.10 69.44 69.97 73.39

CAT-KD [20] 78.41 76.97 75.38 70.24 69.13 71.36 73.58

Logit KD

KD [24] 74.45 74.90 73.97 68.36 67.37 67.35 71.07
CTKD [31] 75.37 74.57 74.61 68.34 68.50 68.67 71.68

NormKD [10] 76.01 75.17 76.80 69.14 69.53 69.57 72.70
DKD [69] 77.07 75.70 75.56 69.28 69.71 70.35 72.95
CRLD 78.58 77.38 77.70 70.98 70.59 71.56 74.47

MLLD † [28] 78.44 76.52 77.33 70.78 70.57 71.04 74.11
CRLD † 78.52 77.39 77.98 71.36 70.81 71.29 74.56

Table 3: Top-1 and Top-5 accuracy (%) on Tiny-ImageNet.

Method
Teacher ResNet32×4

64.41/85.07

Student ResNet8×4
55.25/79.62

Feature KD FCFD [33] 60.15/82.80

Logit KD

KD [24] 56.00/79.64
DKD [69] 57.79/81.57
NKD [60] 58.63/82.12

NormKD [10] 62.05/83.98
CRLD 63.77/84.57

MLLD † [28] 61.91/83.77
CRLD † 63.84/85.52

confidence-based soft label mining for a batch of training data is
mathematically describe as:

L � =
1
�

∑
1(max p)B > gB )KLD(p(F , p)B ) (3)

where 1(·) is the indicator function. Other objectives are defined
like-wise and are omitted for brevity.

3.4 Training Objective
The overall training objective for CRLD is a weighted combina-
tion of previously described loss terms, namely a ground-truth
supervision loss L�� and L � .

L = L�� + _ �L � = L�� + _ �L,+
 �

+ _ �L�+ � (4)

where _ � is a balancing weight. L�� is computed between stu-
dent’s predictions of the weakly-augmented image and the ground-
truth label using the cross-entropy loss, which is the standard prac-
tice in all previous logits-based distillationmethods.L � is the sum

Table 4: Top-1 and Top-5 accuracy (%) on ImageNet.

Method
Teacher ResNet34 ResNet50

73.31/91.42 76.16/92.86

Student ResNet18 MobileNetV1
69.75/89.07 68.87/88.76

Feature KD

AT [64] 70.69/90.01 69.56/89.33
OFD [23] 70.81/89.98 71.25/90.34
CRD [49] 71.17/90.13 71.37/90.41

CAT-KD [20] 71.26/90.45 72.24/91.13
SimKD [6] 71.59/90.48 72.25/90.86

ReviewKD [8] 71.61/90.51 72.56/91.00

Logit KD

KD [24] 70.66/89.88 68.58/88.98
TAKD [36] 70.78/90.16 70.82/90.01
DKD [69] 71.70/90.41 72.05/91.05

NormKD [10] 71.56/90.47 72.12/90.86
NKD [60] 71.96/- 72.58/-
MLLD [28] 71.90/90.55 73.01/91.42

CRLD 72.05/90.74 73.15/91.54

of within-view and cross-view consistency regularisation losses
described in Section 3.2.

4 EXPERIMENTS
4.1 Datasets
CIFAR-100. CIFAR-100 [29] is a classic image classification bench-
mark with 50,000 training and 10,000 validation RGB images of 100
classes.
Tiny-ImageNet. Tiny-ImageNet is a subset of ImageNet [16]. It
consists of 100,000 training and 50,000 validation RGB images over
200 classes, with image resolution downsized from ImageNet’s
original 256 × 256 to 64 × 64.
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Table 5: Performance gains by CRLD over diverse logit-based baselines on CIFAR-100.

Teacher ResNet56 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13

Avg.72.34 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8
69.06 71.14 72.50 73.26 71.98 70.36

KD [24] 70.69 73.57 73.53 75.22 73.74 73.43 73.36
+CRLD 71.66 74.60 77.13 76.59 75.21 74.91 75.02
NKD [60] 70.40 72.77 76.21 75.24 74.07 74.40 73.85
+CRLD 71.95 74.40 78.16 76.60 74.87 75.16 75.19

MLLD [28] 71.24 73.96 74.64 75.57 73.97 73.80 73.86
+CRLD 72.07 74.64 77.00 76.75 75.46 74.87 75.13
DKD [69] 71.49 73.95 75.96 75.67 74.47 74.67 74.37
+CRLD 70.70 73.45 77.90 76.27 75.16 75.57 74.84

NormKD [10] 71.43 73.95 76.26 76.01 74.55 74.45 74.44
+CRLD 72.06 74.59 78.31 76.47 75.71 74.84 75.39

MLLD † [28] 72.19 74.11 77.08 76.63 75.35 75.18 75.09
+CRLD † 72.57 75.08 78.53 76.95 76.42 75.63 75.86

Table 6: Ablation experiments on different designs of consis-
tency regularisation using CIFAR-100.

Expt. p(F - p)F p(B - p)B p(F - p)B p(B - p)F
ResNet32×4
ResNet8×4

0 4 76.26
1 4 76.75
2 4 74.10
3 4 75.38
4 4 4 76.57
5 4 4 77.58
6 4 4 77.76
7 4 4 4 77.87
8 4 4 4 78.24
9 4 4 4 4 78.31

ImageNet. A well-known large-scale image classification dataset,
ImageNet [16] contains 1.28 million training and 50,000 validation
RGB images of 100 classes.

4.2 Implementation Details
We evaluate our method by conducting knowledge distillation
across various teacher-student pairs of common DNN architec-
ture families: ResNet [21], WRN [63], VGG [44], MobileNet [26, 43],
and ShuffleNet [67]. In all experiments, we strictly adhere to stan-
dardised training configurations of previous knowledge distillation
methods [7–10, 20, 23, 24, 31, 38–41, 49, 50, 55, 56, 60, 64]. All re-
ported experimental results are averaged over 3 independent runs.
CIFAR-100 & Tiny-ImageNet. We train our method (and also
when reproducing others) for a total of 240 epochs, with an initial
learning rate of 0.025 for MobileNet [43] and ShuffleNet [67] stu-
dents and 0.05 for others. The learning rate decays by a factor of 10
after the 150th, 180th, and 210th epochs; the SGD optimiser is used,
with a momentum of 0.9, a weight decay of 5 × 10−4, and a batch
size of 64.
ImageNet. We conduct 100-epoch training with a batch size of 512,
with an initial learning rate of 0.2 that decays by a factor of 0.1 at

Table 7: Ablation experiments student’s self-supervised reg-
ularisation using CIFAR-100.

Expt. p(F - p)F p(B - p)B p(F - p)B p(B - p)F p(F - p(B
ResNet32×4
ResNet8×4

0 4 76.18
1 4 4 72.56
2 4 4 77.86
3 4 4 4 77.95
4 4 4 4 4 78.31
5 4 4 4 4 4 78.16

the 30th, 60th, and 90th epochs. Other parameters, unless otherwise
stated, follow CIFAR-100 and Tiny-ImageNet experiments.

Our method is implemented in the mdistiller codebase, using
NormKD [10] as the baseline. Our code and models will be made
publicly available for reproducibility.

4.3 Main Results
Distillation performance. We present extensive experimental
results on CIFAR-100, Tiny-ImageNet, and ImageNet datasets using
a diversity of teacher-student pairs in Tables 1 to 4. Specifically, the
proposed CRLD outperforms all existing methods on all evaluated
datasets across teacher-student pairs of both homogeneous (Tables
1, 3, and 4) and heterogeneous (Tables 2 and 4) architectures. When
using MLLD’s [28] training configurations (marked with “†”), our
method achieves further performance gains and leads MLLD by a
considerable margin.
Generalisation capabilities In addition to NormKD [10], we also
apply the proposed CRLD to state-of-the-art logit-based knowledge
distillation frameworks [24, 28, 60, 69] and report the results in
Table 5. Note that for a fair comparison, we report our reproduced
results for compared methods, using official implementations and
specifications. The experimental results cogently validate the gen-
eralisation capability of our method. The proposed CRLD works
orthogonally to existing knowledge distillation methods and can
be easily incorporated to significantly boost knowledge transfer
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Figure 3: Evolution of training (top) and test (bottom) set
top-1 accuracies (%) on CIFAR-100.

Figure 4: t-SNE visualisation of teacher’s and distilled stu-
dent’s features on CIFAR-100.

performance without introducing any extra network parameter or
any additional inference overhead.

4.4 Ablation Studies
Design of consistency regularisation. We break down our full
training objective and investigate the play of each individual term
in CRLD’s overall effectiveness. A set of ablation experiments are
conducted with results presented in Table 7. First, we observe that
within-view losses are individually effective and consistency within
the strong view alone ismore effective compared toweak view alone
(Expt.0-1). Intriguingly, cross-view consistencies are harmful when
used individually (Expt. 1-2), but are rather beneficial when applied
in concert with within-view consistencies (Expt. 4-9). Finally, our
ablation experiments (Expt. 6-9) demonstrate that each individual
consistency objective in our full objective plays a non-negligible
part and their joint play leads to the optimal performance. Note that
our experiments also highlight that the effectiveness of CRLD does
not stem from a mere increase in the diversity of training samples, as
a notable +1.56% accuracy gain is achieved compared to when the
exact same set of strong view augmentation policies are applied in
a naive manner (i.e., Expt. 1 →9).
Self-supervision of student. A common technique to exploit the
potential of unsupervised learning is to enforce a self-supervision
criterion on the student. Specifically, the student can receive two dif-
ferent views of the same input and learns to minimise the distance
between its predictions of these two views. We investigate whether

Table 8: Training latency and extra network parameters.

Method Acc. (%) Latency (ms) # Param.
FitNets [41] 73.50 21 16.8k
RKD [38] 71.90 22 0
OFD [23] 74.95 26 86.9k
CRD [49] 75.51 32 12.9M

ReviewKD [8] 76.12 36 1.8M
KD [24] 73.33 20 0

CTKD [31] 73.79 34 52.2k
TAKD [36] 73.81 - 270k
MLLD [28] 74.64 21 0

NormKD [10] 76.26 20 0
DKD [69] 76.32 20 0
NKD [60] 76.35 20 0
CRLD 78.31 35 0

Table 9: Towards feature-space consistency regularisation.

ResNet32×4 VGG13
ResNet8×4 VGG8

KD (logits) 73.53 73.43
+CRLD (logits) 77.13 74.91

FitNets (pool-feat) 76.74 73.87
+CRLD (pool-feat) 77.64 75.37
FitNets (feats-3) 73.66 72.27
+CRLD (feats-3) 73.92 70.78
FitNets (feats-2) 73.45 72.30
+CRLD (feats-2) 73.17 70.37

such self-supervision consistency enforce upon the student may
bring further improvements to the proposed framework. From the
results in Tables 7, we observe that student’s self-supervision tends
to degrade its own learning. In particular, more severe degrada-
tion occurs when less powerful external regularisation i.e., (those
imposed by the teacher) are enforced on the student. The same
set of ablation experiments on Tiny-ImageNet manifest the same
behaviours and are reported in Supplementary Material.Our pos-
tulation for such degradation is that the less restricted student,
when trained from scratch, is able to find a shortcut in the learnable
network parameter space that maximally minimises the distance
between its predictions of both views but with poor generalisation.
Experimentally, we observe a rapidly converging self-supervision
loss quickly dropping to extremely small values, which supports
our conjecture. As such, we deem self-supervision regularisation
of the student unnecessary and harmful and do not include it in
our final optimisation objective.

4.5 Further Analyses
Training curves. For further insights into the training profile of
different methods, in Table 3 we plot the evolution of training and
test accuracy at each epoch throughout the training process. We
observe that NormKD demonstrates much higher training accuracy
than other methods but has only comparable or even lower test
accuracy than MLLD and DKD, which implies overfitting on train-
ing data. When the proposed CRLD is applied to NormKD, training
accuracy lowers while test accuracy notably increases, suggesting

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MM ’24, Oct 28–Nov 01, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 10: Top-1 accuracy (%) under the label-free knowledge distillation (LFKD) set-up on CIFAR-100.

Method
Teacher ResNet56 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13

Avg.72.34 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8
69.06 71.14 72.50 73.26 71.98 70.36

Feature KD FitNets ‡ [41] 1.04 1.01 1.39 1.14 1.09 1.09 1.13
OFD ‡ [23] 2.09 1.13 1.43 1.49 2.27 1.71 1.69

Logit KD

KD [24] 70.66 73.53 73.76 74.79 73.41 73.49 73.27
MLLD [28] 70.88 72.54 74.10 74.88 72.56 73.03 73.00

NormKD [10] 71.36 74.35 76.49 76.04 74.82 74.39 74.58
CRLD 71.14 74.14 78.49 76.82 75.15 75.39 75.19

alleviated overfitting and improved generalisation brought about
by CRLD. In addition, we also notice less oscillatory test accuracy
curves of CRLD, which is likely due to improved generalisation and
mitigated confirmation bias of our method.
t-SNE visualisation. We visualise the feature space learnt by the
student using different logit-based distillation methods. As seen in
Figure 4, features learnt using the proposed CRLD are significantly
more seperable in the feature space, with more tightly clustered
class-wise features and greater inter-class feature variations. These
observations imply greater generalisation of the learnt model and
substantiate the superiority of the proposed distillation method.
Speed & efficiency. In Table 8, we benchmark the computational
efficiency of our method against existing algorithms in terms of
average training latency per batch (including data preprocessing)
and extra network parameters incurred. Our method has a training
latency on par with CTKD [31] and ReviewKD [8] and comparable
to some of the fastest methods, and a significant portion of it stems
from the on-the-fly data augmentation operations. Besides, our
method does not introduce any extra network parameters during
training and inference. Note that TAKD [36] involves training addi-
tional intermediate assistant networks from scratch and therefore
has training costs orders of magnitude higher than others.
Consistency regularisation in the feature space. Thus far, we
have strictly followed the definition of logit-based distillation by
enforcing all consistency regularisation at the network’s logit pre-
diction stage. By extension, we are curious about to what extent
can our proposed regularisation schemes be extended into the fea-
ture space. In theory, closer to the network’s input end, features’
level of abstraction lowers, and the discrepancy between their rep-
resentations grows. Forcing feature maps to match can therefore
hurt student training within its intermediate stages. Therefore, in-
tuitively we expect degraded student performance as the point of
application of consistency regularisation moves towards shallower
layers. Shown in Table 9, our experimental results corroborate our
intuition. As consistency regularisation moves upper stream— from
the logit layer to the pooled feature layer (pool-feat), and then
to the 3rd and 2nd feature layers (feats-3 & feats-2), an overall
decrease in performance is observed (detailed descriptions found in
Supplementary Material). Interestingly, the optimal performance is
reached when consistency regularisation is applied to pool-feat
instead of the logit space. Nevertheless, the largest performance
gains are yielded when it is applied in the logit space, suggesting

that the capacity of consistency regularisation is maximally utilised
when working with logits. Motivated by these results, we leave the
question of how to unleash the potential of the proposed method
within the feature space for future work.
Distillation without ground-truths. As consistency regularisa-
tion is a widely successful technique in semi-supervised learning,
one may naturally ponder whether the proposed CRLD would work
with unlabelled training samples. Herein, we formally propose a
slightly deviating KD task coined “label-free knowledge distilla-
tion (LFKD)”, which forbids the use of ground-truth labels during
knowledge transfer. LFKD is highly relevant and practical scenario
— it is often the case that we have access to only a pre-existing,
pre-trained teacher model, but the annotations used to train the
teacher are no longer accessible (annotations can be costly not
made public especially in industrial contexts). In Table 10, we re-
evaluate several methods under the LFKD setting. We find that
feature-based methods fail completely under LFKD, which is due to
a vague causal linkage between feature mimicking and the down-
stream classification task. In contrast, logit-based methods deliver
comparable performance. CRLD remains as the top-performing
method, which signifies its robustness to the absence of annota-
tions. Besides, their performance may be even stronger when using
a more knowledgeable teacher with high-accuracy predictions that
can largely supersede the role of ground-truth labels. Note that
logit-based methods such as DKD and NKD do not support LFKD
due to the involvement of ground-truth labels in their objective
formulation.

5 CONCLUSION
In this paper, we presented a novel logit-based knowledge distil-
lation framework named CRLD. The motivation of CRLD lies in
revamping popular ideas found in the semi-supervised learning lit-
erature, such as consistency regularisation and pseudo-labelling, to
combat the overconfident teacher and confirmation bias problems
in knowledge distillation. Our design of within-view and cross-view
consistency regularsations, enabled byweak and strong image trans-
formations and coupled with a confidence-based soft label selection
scheme, leads to a highly effective and versatile CRLD framework.
Extensive experiments demonstrate that CRLD can boost existing
logit-based methods by considerable margins and sets new records
on different datasets and under different knowledge distillation
configurations.
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