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This material provides supplementary content for our main paper.
The pseudo-code of our method is provided in Section 1; the list of
strong augmentation operations used is described in Section 2; fur-
ther explanations on the feature-space consistency regularisation
experiments presented in the main text are provided in Section 3;
more ablation experiments and analyses are presented in Sections 4
and 5, respectively.

1 PSEUDO-CODE
In Algorithm 1, we provide the pseudo-code for the proposed CRLD
algorithm. SLS(·) denotes the confidence-based soft label mining
operation using threshold 𝜏 , which produces a binary mask M
indicating the selected instance-wise predictions. Other notations
in Algorithm 1 follow those defined in the main text.

2 LIST OF STRONG VIEW TRANSFORMATION
OPERATIONS

Table 3 lists the image transformation operations used for strong
view augmentation in CRLD. All transformations except for Cutout
[4] are part of the RandAugment strategy initially proposed in [2].
In our experiments, 𝑛 = 2 operations are randomly sampled from
all 14 RandAugment transformation strategies, followed by Cutout.
The strength (i.e., the operation parameter) 𝑣 is set independently
for each sampled operation and stochastically using the following
equation:

𝑣 = 𝑣min + (𝑣max − 𝑣min) ∗ 𝑝 (1)
where 𝑣min and 𝑣max are the the lower and upper bounds of the pa-
rameter range for corresponding operations in Table 3; 𝑝 ∈ [0, 1] is
a random number for stochastic parameter adjustment. For Cutout,
its parameter 𝑣co is generated by:

𝑣co = 0.5 × 𝑝co (2)

where 𝑝co ∈ [0, 1] is another random number such that 𝑣co ∈
[0, 0.5] always holds.

3 FEATURE-SPACE CONSISTENCY
REGULARISATION

In this section, we provide further details regarding our experiments
on feature-space consistency regularisation described in Section 4.5
of the main text. Notation-wise, we use pool-feat to denote the
pooled feature map by average pooling, right before the Softmax
layer; we use feats-i to denote the feature map produced by the
𝑖th feature blocks immediately after the activation layer. Please
refer to the mdistiller codebase for details.

In terms of network design, feature-based knowledge distillation
method FitNets [6] adopts a convolutional regressor layer to adapt
the student feature to the teacher feature. For a fair performance
comparison, we follow this practice by employing two such layers,
one for student’s predictions of the weakly-augmented view and
the other for the strongly-augmented view.

Algorithm 1: The CRLD algorithm
Input :A batch of training samples x & their labels y; weak

augmentation𝑇𝑤 ( ·) & strong augmentation𝑇𝑠 ( ·) ; teacher
network F𝑇 with parameters 𝜃𝑇 & student network F𝑆
with parameters 𝜃𝑆

while model F𝑆 not converged do
for i=1 to step do

p𝑇𝑤 = F𝑇 (𝑇𝑤 (x) ;𝜃𝑇 ) p𝑇𝑠 = F𝑇 (𝑇𝑠 (x) ;𝜃𝑇 )
p𝑆𝑤 = F𝑆 (𝑇𝑤 (x) ;𝜃𝑆 ) p𝑆𝑠 = F𝑆 (𝑇𝑠 (x) ;𝜃𝑆 )
M𝑤 = SLS(p𝑇𝑤 , 𝜏𝑤 ) M𝑠 = SLS(p𝑇𝑠 , 𝜏𝑠 )
L𝐶𝐸 = CE(p𝑆𝑤 , y)

L𝑊𝑉
𝐾𝐷

= KLD(p𝑆𝑤 , p𝑇𝑤 )M𝑤 + KLD(p𝑆𝑠 , p𝑇𝑠 )M𝑠
L𝐶𝑉
𝐾𝐷

= KLD(p𝑆𝑠 , p𝑇𝑤 )M𝑤 + KLD(p𝑆𝑤 , p𝑇𝑠 )M𝑠
L𝐾𝐷 = L𝑊𝑉

𝐾𝐷
+ L𝐶𝑉

𝐾𝐷

L𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = L𝐶𝐸 + 𝜆𝐾𝐷L𝐾𝐷
Update 𝜃𝑆 acc. to L𝑂𝑣𝑒𝑟𝑎𝑙𝑙

end
end
Output :Well-trained model F𝑆 with parameters 𝜃𝑆

Table 1: Ablation experiments on student’s self-supervised
regularisation using Tiny-ImageNet.

p𝑆𝑤 - p𝑇𝑤 p𝑆𝑠 - p𝑇𝑠 p𝑆𝑤 - p𝑇𝑠 p𝑆𝑠 - p𝑇𝑤 p𝑆𝑤 - p𝑆𝑠
ResNet32×4
ResNet8×4

✔ 60.32 /82.81
✔ ✔ 54.87 /79.50
✔ ✔ 60.69 /83.11
✔ ✔ ✔ 43.52 /69.60
✔ ✔ ✔ ✔ 63.77 /84.57
✔ ✔ ✔ ✔ ✔ 63.25 /83.87

Table 2: Ablation experiments on the strengths of view trans-
formation on CIFAR-100 and Tiny-ImageNet.

Method CIFAR-100 Tiny-ImageNet
w/o CVL. 76.26 60.83 /83.08
Weak-Weak 76.66 62.83 /84.10
Strong-Strong 76.73 61.67 /83.94
Strong-Weak 78.31 63.77 /84.57

As for the loss function, following FitNets, we adopt the mean
squared error (MSE) loss in place of the original Kullback-Leibler
Divergence (KLD) loss for our consistency regularisation objectives.

4 ADDITIONAL ABLATION EXPERIMENTS
Effect of student self-supervision. We conduct further ablation
experiments on the effect of student’s cross-view self-supervision
on the Tiny-ImageNet dataset. As shown in Table 1, the inclu-
sion of student’s self-supervision degrades the overall knowledge
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Table 3: List of transformation operations used for strong view transformation.

Transformation Description Param. Range
Autocontrast Automatically adjusts image contrast by setting the darkest

pixel to black and lightest to white
-

Brightness Adjusts image brightness [0.05, 0.95]
Color Adjusts image colour balance [0.05, 0.95]

Contrast Adjusts image contrast [0.05, 0.095]
Equalize Equalises image histogram [0, 1]
Identity Keeps image unchanged [0, 1]
Posterize Reduces number of bits for each image channel [4, 8]
Rotate Rotates image [-30, 30]

Sharpness Adjusts image sharpness [0.05, 0.95]
Shear_x Shears image along horizontal axis [-0.3, 0.3]
Shear_y Shears image along vertical axis [-0.3, 0.3]
Solarize Inverts all image pixels above a given threshold [0, 256]

Translate_x Translates image horizontally [-0.3, 0.3]
Translate_y Translates image vertically [-0.3, 0.3]

Cutout Sets pixels side a random square path within image to gray [0, 0.5]

Figure 1: Sensitivity of CRLD against varying strengths
of strong view transformation on CIFAR-100 and Tiny-
ImageNet.

distillation performance. More severe performance degradation is
observed when less teacher supervision is imposed on the student.
In our experiments, we also observe that the self-supervision loss
oscillates dramatically in the initial stage of training, before quickly
dropping to extremely small values. Our observations and conclu-
sions on Tiny-ImageNet align with those made on CIFAR-100 [5]
described in the main text.
Effect of view transformation pairs with different strengths.
The success of CRLD hinges on a pair of strongly and weakly trans-
formed images to establish cross-view consistency regularisation
objectives. It is of interest to investigate to what extent the absolute
and relative strengths in a pair of view transformations impact the
subsequent cross-view learning. To this end, in Table 2 (ResNet32×4

Figure 2: Sensitivity of CRLD against varying 𝜏𝑤 and 𝜏𝑠 values
on CIFAR-100.

as teacher and ResNet8×4 as student) we consider two additional
cases: 1) using two independent weakly transformed views (denoted
as “Weak-Weak”); 2) using two independent strongly transformed
views (“Strong-Strong”), and compare them against the original
strong-weak consistency regularisation design (“Strong-Weak”)
and the baseline set-up without cross-view learning applied (“w/o
CVL.”).

We easily draw the following conclusions: 1) Any form of cross-
view learning, despite different view transformation strengths, leads
to performance gains over the baseline, which again substantiates
the effectiveness of our proposed cross-view consistency regularisa-
tion. 2) A pair of view transformations of identical strength results
in degraded performance compared to the proposed strong-weak
learning. We attribute this to additional dark information mined
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Figure 3: Examples of ImageNet [3] images transformed by
the proposed weak and strong transformations and predic-
tions made by a ResNet32×4 teacher.

and transferred across two different spaces of transformed images,
compared to limited knowledge dug within a single space. 3) When
using transformation pairs of the same strength, it is not decisive
what strength level may be more beneficial — this may be dataset-
and task-dependent.
Sensitivity to varying strengths of strong view transforma-
tion. Following previous investigations, we further carry out a set
of experiments to probe into the impact of strong view transfor-
mation in different strengths on CRLD’s performance. First, we
vary 𝑛, the number of view transformation operations randomly
sampled and applied sequentially from all RandAugment opera-
tions in Table 3. As shown in the top figure in Figure 1, more
strong view transformation operations degrade the performance
of CRLD. This is expected since with an increasingly challenging
strongly-augmented view, the teacher struggles to provide correct
and beneficial soft predictions, and the student could be misled by
a predominant amount of distracting and harmful signals from the
teacher. Although the value of 𝑛 can be tweaked for each dataset
and even for each teacher-student configuration for further perfor-
mance gains, we simply use 𝑛 = 2 by default for simplicity.

To enable fine-grained control over the strength of strong aug-
mentations (i.e., RandAugment operations and Cutout), we also
introduce a probability multiplier 𝑝𝑠 to tune the parameter value of
each operation (listed in Table 3). 𝑝𝑠 is introduced into Equations 3
and 4 as:

𝑣 = 𝑣min + (𝑣max − 𝑣min) ∗ 𝑝 ∗ 𝑝𝑠 (3)

Figure 4: Class-wise similarity maps between teacher and
student predictions by NormKD and CRLD on CIFAR-100.

and

𝑣co = 0.5 × 𝑝co ∗ 𝑝𝑠 (4)

Note that a higher 𝑝𝑐 value does not mean stronger transformation
for all operations listed in Table 3. Nevertheless, larger 𝑝𝑐 leads
to more strongly transformed images on average, and we are in-
terested in finding out how sensitive our method is to changes in
the parameter values. From the bottom plot in Figure 1, we notice
that the performance indeed varies with changing 𝑝𝑐 . Overly large
or small 𝑝𝑐 tends to produce inferior performance, which echoes
our findings in Table 2 and the above experiments on different
𝑛 values. Besides, different datasets are observed to manifest dif-
ferent sensitivity patterns to 𝑝𝑐 . More fine-grained control of the
transformation parameters are left for future work.
Sensitivity to varying confidence thresholds. The confidence-
base soft label mining mechanism essentially features a quantity-
quality trade-off. With a higher threshold, we demand soft labels
of higher quality but fewer of them are selected for knowledge
transfer; with a lower threshold, we have richer knowledge in the
form of teacher’s soft labels involved in the knowledge transfer,
but their quality and reliability on average are lowered. Figure 2
visualises such a trade-off by plotting the performance of CRLD
against different values of 𝜏𝑤 and 𝜏𝑠 .

We notice that the optimal trade-off point for 𝜏𝑤 is at a higher
value. This is expected since the predicted confidence for the less
challenging weakly-augmented view is much higher on average,
which means a sufficient number of soft predictions of the teacher
fall within the top-confidence interval. As such, setting a high 𝜏𝑤
ensures soft-labels are selected in high quality while also in ample
quantity. By contrast, most teacher predictions for the strong view
are less confident. A much smaller 𝜏𝑠 is required to ensure sufficient
teaching signals. In practice, we set 𝜏𝑤 = 0.9 and 𝜏𝑠 = 0.3.

5 ADDITIONAL ANALYSES
Examples of challenging strongly augmented images. In Fig-
ure 3, we showcase some challenging examples produced by the pro-
posed view transformation to support ourmotivation for confidence-
based soft label selection. As can be seen, both weak and strong
views can be misclassified by a well-trained ResNet32×4 teacher
model. In particular, the strongly augmented view can be extremely
challenging and sometimes almost completely indiscernible. Cross-
view consistency imposed across these misleading predictions only
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serves to harm the student’s learning, which is avoided by our
proposed confidence-based soft label selection.
Teacher-student output correlations. To understand how well a
trained student is able to mimic its teacher’s predictions, we com-
pute and visualise the correlations between student’s and teacher’s
predictions in the Euclidean space in Figure 4 (ResNet32×4 as
teacher and ResNet8×4 as student). The left map corresponds to
NormKD [1] and the right CRLD applied to NormKD. It is clear
that with CRLD, the average distance between teacher and student
predictions are significantly reduced for all categories on the test
data — a compelling evidence of better distilled teacher knowledge
and greater generalisation capabilities of the trained student.
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