
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMPLE AND CONTROLLABLE UNIFORM DISCRETE
DIFFUSION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models for continuous data gained widespread adoption owing to their
high quality generation and control mechanisms. However, controllable diffusion
on discrete data faces challenges: continuous diffusion guidance methods are not
applicable and recent discrete diffusion models are not well-suited to control or
exhibit a quality gap. Here, we provide a straightforward derivation of classifier-
free and classifier-based guidance for discrete diffusion, as well as a new class of
diffusion models that leverage uniform noise and thus can continuously edit their
outputs. We improve the quality of these models with a novel continuous-time
variational lower bound that yields state-of-the-art performance, in settings with
small vocabularies. Empirically, we demonstrate the effectiveness of our guidance
mechanisms relative to autoregressive and diffusion baselines, especially in con-
junction with uniform noise diffusion, on several discrete data domains, including
genomic sequences, small molecule design, and discretized image generation.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) gained widespread adoption in image
generation and signal processing in part due to their high controllability using mechanisms such as
classifier-based (Dhariwal & Nichol, 2021a) and classifier-free (Nichol et al., 2021; Ho & Salimans,
2022) guidance. Tasks where guidance plays a key role include MRI denoising (Song & Ermon,
2019), 3D reconstruction (Poole et al., 2022; Gao et al., 2024), and conditional generation (Saharia
et al., 2022; Gokaslan et al., 2024).

However, applying controllable diffusion-based generation to tasks where the data is discrete (e.g.,
molecule design or text generation) presents challenges. First, standard diffusion models and their
guidance mechanisms are not directly applicable, since they require taking gradients with respect
to the data, and these are not defined in discrete settings. Second, popular discrete extensions of
diffusion (Lou et al., 2023; Sahoo et al., 2024a) cannot perform multiple editing passes on generated
tokens, hence are not ideal for controllable generation. Third, the performance of discrete diffusion
models (measured by perplexity) lags behind autoregressive (AR) models, especially for classes of
diffusion that are amenable to control, such as uniform noise (Austin et al., 2021; Lou et al., 2023).

Here, we propose discrete diffusion models and guidance mechanisms that are effective at control-
lable generation and that address the above challenges. First, we provide straightforward and easy to
implement adaptations of classifier-based and classifier-free guidance for discrete diffusion models.
Second, we introduce uniform noise diffusion language models (UDLM), which undo random token
perturbations and are particularly amenable to guidance, since they can continuously edit discrete
data (Austin et al., 2021). Third, we address performance issues that plagued previous iterations of
uniform noise discrete diffusion, namely, we introduce a continuous time version of the evidence
lower bound which tightens the variational gap (Kingma et al., 2021; Sahoo et al., 2024a).

We demonstrate the effectiveness of guidance with discrete diffusion models relative to AR models
on several domains: genomics, molecular generation, and discretized images. Our guidance results
indicate that classifier-free guidance is more useful when paired with diffusion models compared to
AR and that our proposal for classifier-based guidance is the best classifier-based method for discrete
guidance, especially when combined with UDLM. Our language modeling experiments reveal that
contrary to a widely-held belief (Austin et al., 2021; Lou et al., 2023), uniform noise diffusion can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

attain state-of-the-art performance on small vocabulary datasets (e.g,. molecules, DNA) and that
UDLM attains a new state-of-the-art in perplexity among uniform noise diffusion models.

In summary, our contributions are as follows:

• We provide simple and effective discrete classifier-based and classifier-free guidance.
• We introduce UDLM, a class of discrete diffusion models particularly amenable to guid-

ance, and we derive a tightened ELBO that significantly improves their performance.
• Across three domains, we demonstrate that discrete guidance yields better controllable

generation compared to strong AR baselines and previous diffusion guidance methods.

2 BACKGROUND

Notation Let V be the space of all one-hot tokens over some vocabulary consisting of N unique
characters: V = {z ∈ {0, 1}N :

∑
i zi = 1} ⊂ ∆N , where ∆N represents the simplex over N

categories. Let 1 be a N -dimensional column vector of all ones, and denote the Hadamard product
between two vectors as⊙. We define z(1:L) as a sequence of L tokens, where z(ℓ) ∈ V, for all tokens
ℓ ∈ 1, . . . , L, and use VL to denote the set of all such sequences. Finally, let Cat(·; p) denote the
categorical distribution with probability vector p ∈ ∆N .

2.1 DISCRETE DIFFUSION MODELS

Diffusion models are a class of generative models defined by a denoising network pθ that is trained
to remove noise from latent variables zt. These latents are generated by a fixed corruption process
q that, starting from clean data x0 drawn from the data distribution q(x0), increasingly adds more
noise to zt, as t increases (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020).

In discrete denoising diffusion probabilistic models (D3PM; Austin et al. (2021)), the noising pro-
cess is defined in terms of a transition matrix Qt|s whose (i, j)th entry is the probability of transi-
tioning from the i-th state at time s to the j-th state at time t. This induces a Markov corruption
process where we have q(zt | zs) = Cat(zt;Qt|szs). Sahoo et al. (2024a) build off this framework
to introduce specialized algorithms that are both simpler and more effective than the general D3PM
framework. They focus on a specific class of forward processes from D3PM that can be defined as
interpolations between clean data and a noisy prior π, and we adopt their notation below:

q(zt|x0) = Cat(zt;αtx0 + (1− αt)π), (1)

where αt = α(t) is a noise schedule monotonically decreasing in t. Defining αt|s = αt/αs, this
class of processes admit the following posteriors

q(zs|zt,x0) = Cat

(
zs;

[αt|szt + (1− αt|s)1π
⊤zt]⊙ [αsx0 + (1− αs)π]

αtz⊤t x0 + (1− αt)z⊤t π

)
. (2)

Of note, for absorbing-state diffusion, where π = [MASK] , a one-hot vector at the special [MASK]
token index, Sahoo et al. (2024a) show that when the latent zt ̸= [MASK] then q(zs|zt,x0) =
Cat(zs; zt), which reflects the fact that unasked tokens at time t must remain unmasked for all time
s < t.

2.2 DIFFUSION GUIDANCE

For continuous data, diffusion models have demonstrated state-of-the-art controllable generation by
means of classifier-based (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021a) and classifier-free
guidance (Nichol et al., 2021; Ho & Salimans, 2022; Saharia et al., 2022). These approaches rely
on different ways of expressing the score of a distribution conditioned on y.

Classifier-based Classifier-based generation employs a diffusion model to iteratively sample from
a tempered distribution pγ(zs | y, zt) ∝ p(y | zs)γpθ(zs | zt), where γ represents an inverse
temperature parameter, pθ(zs | zt) is a pre-trained diffusion model, and p(y | zs) is a classifier:

∇zs log p
γ(zs | y, zt) = γ∇zs log p(y | zs) +∇zs log pθ(zs | zt). (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Classifier-free We can also observe that appyling Bayes’ rule to p(y | x) and differentiating with
respect to the input yields ∇x log p(y | x) = ∇x log p(x | y) − ∇x log p(x). Applying this to
p(y | zs) and plugging into (3) gives us the formulation for classifier-free guidance:

∇zs
log pγ(zs | y, zt) = γ · [∇zs

log pθ(zs | y, zt)−∇x log pθ(zs | zt)] +∇zs
log pθ(zs | zt)

= γ∇zs
log pθ(zs | y, zt) + (1− γ)∇zs

log pθ(zs | zt). (4)

where pθ(zs | y, zt) and pθ(zs | zt) represent conditional and unconditionally trained diffusion
models, respectively. In practice, this is often implemented by using a single model pθ and randomly
dropping out / masking the conditioner y during training.

The problem with applying guidance to discrete diffusion is that guidance terms are not differen-
tiable with respect to the the discrete representations zt.

3 GUIDANCE ALGORITHMS FOR DISCRETE DIFFUSION

To alleviate the issue of non-differentiability, we introduce two guidance algorithms for discrete
diffusion. As in the continuous case, we formalize the guidance term as a probability p(y|z), where
y ∈ {1, . . . ,K} is one of K possible classes and ∆K is the K-simplex defined over these classes.

3.1 CLASSIFIER-FREE GUIDANCE

We refer to the following discrete version of classifier guidance as D-CFG for Discrete Classifier-
Free Guidance. To derive D-CFG, we begin by applying Bayes’ Rule:

p(zs | zt, y) = [p(y | zs, zt)/p(y | zt)] p(zs | zt)

As in Section 2.2, we wish to sample from the distribution:

pγ(zs | zt, y) ∝ [p(y | zs, zt)/p(y | zt)]γ p(zs | zt)

We now examine the right hand side and again apply Bayes’ rule :[
p(y | zs, zt)
p(y | zt)

]γ
p(zs | zt) =

[
p(zs | zt, y)p(y | zt)
p(zs | zt)p(y | zt)

]γ
p(zs | zt) = p(zs | zt, y)γp(zs | zt)(1−γ).

In practice, we train a conditional denoising network pθ(zs | zt, y) alongside an unconditional
one pθ(zs | zt), both of which are parameterized such that for a sequence of L tokens z

(1:L)
s the

probabilities factorize independently across the tokens of the sequence when conditioned on z
(1:L)
t .

We can thus sample from pγ(z
(1:L)
s | z(1:L)

t , y) by computing pθ(z
(1:L)
s | z(1:L)

t , y)γpθ(z
(1:L)
s |

z
(1:L)
t)(1−γ), which factorizes independently across tokens, and re-normalizing for each token:

pγθ (z
(1:L)
s | z(1:L)

t , y) =

L∏
ℓ=1

1

Z(ℓ)
pθ(z

(ℓ)
s | z

(1:L)
t , y)γpθ(z

(ℓ)
s | z

(1:L)
t)(1−γ), (5)

where Z(ℓ) =
∑

z′
s
pθ(z

′
s | z

(1:L)
t , y)γpθ(z

′
s | z

(1:L)
t)(1−γ) is the per-token partition function.

3.2 CLASSIFIER-BASED GUIDANCE

Next, we describe a discrete version of classifier-based guidance: D-CBG for Discrete Classifier-
Based Guidance. Extending classifier-based guidance to diffusion models is difficult because the
guiding classifier need not factorize the same as the diffusion denoising network, which would
imply that the classifier needs to be evaluated on exponentially many sequence combinations. We
resolve this using factorization assumptions on the decoding model and a Taylor expansion trick.

First, we introduce the following additional notation: given z1:L, let Z̃ℓ(z
1:L) be the set of sequences

z̃(1:L) for which z̃(ℓ
′) = z(ℓ

′) for all ℓ′ ̸= ℓ, i.e., the set of sequences that are either the same as or
only differ in position ℓ relative to z(1:L).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To formulate discrete classifier-based guidance, we make the assumption that conditioned on z
(1:L)
t ,

the tempered distribution from which we want to sample pγ(z
(1:L)
s | z1:Lt , y) factorizes indepen-

dently across tokens. Therefore, we can focus on the tempered distirbution of each token z
(ℓ)
s , for

ℓ ∈ 1, . . . , L:
pγ(z(ℓ)s | z

(1:L)
t , y) ∝ p(y | z(ℓ)s , z

(1:L)
t)γp(z(ℓ)s | z

(1:L)
t).

In practice, we can sample from pγ(z
(ℓ)
s | z(1:L)

t , y) by training a classifier pϕ : VL → ∆K on
noised latents z(1:L)

t for t ∈ [0, 1] and use this to model the first term on the right hand side by only
evaluating pϕ on sequences for which z

(1:L)
s and z

(1:L)
t differ by at most the token at position ℓ:

p(y | z(ℓ)s , z
(1:L)
t) ≈ pϕ(y | z̃(1:L)), for z̃(1:L) =

[
z
(1:ℓ−1)
t , z(ℓ)s , z

(ℓ+1:L)
t

]
∈ Z̃ℓ(z

(1:L)
t).

We additionally train an unconditional denoising network pθ(z
(ℓ)
s | z(1:L)

t) and then sample from
the re-normalized distribution:

pγϕ,θ(z
(ℓ)
s | z

(1:L)
t , y) =

pϕ(y | z̃(1:L))γpθ(z
(ℓ)
s | z(1:L)

t)∑
z̃(1:L) pϕ(y | z̃(1:L))γpθ(z

(ℓ)
s | z(1:L)

t)
. (6)

Restricting the summation in the denominator of (6) to Z̃ℓ(z
(1:L)
t) makes normalization tractable, as

we are only summing over N terms.

Our method can be thought of as an adaptation of the successful FUDGE (Yang & Klein, 2021)
approach, which guides AR generation, to discrete diffusion, similar to how NOS (Gruver et al.,
2024) extended the AR guidance mechanism of PPLM (Dathathri et al., 2019) to diffusion models.

First-Order Approximation While tractable, this formulation suffers from the drawback that at
each denoising step we must perform O(L ·N) forward passes through the classifier model, which
can quickly become impractical for larger vocabularies. Similarly to Grathwohl et al. (2021), Vignac
et al. (2022), and Nisonoff et al. (2024), we treat the classifier pϕ as a continuous function of the
one-hot inputs z̃(1:L) ∈ RL×N and use the first-order Taylor approximation of log pϕ to efficiently
compute pϕ(y | z(ℓ)s) with only a single forward and backward pass through the classifier model:

pϕ(y | z̃(1:L)) = exp

(
log

pϕ(y | z̃(1:L))

pϕ(y | z(1:L)
t)

+ log pϕ(y | z(1:L)
t)

)
≈ exp

(
(z̃(1:L) − z

(1:L)
t)T∇

z
(1:L)
t

log pϕ(y | z(1:L)
t) + log pϕ(y | z(1:L)

t)
)
. (7)

4 UNIFORM DIFFUSION LANGUAGE MODELS

While masked diffusion models demonstrate better language modeling compared to other discrete
diffusion (Austin et al., 2021; Lou et al., 2023), we argue that they are less amenable to guidance,
since once a token is unmasked at some time t it remains so for all s < t. In contrast, with uniform
noising, intermediate latents can be refined multiple times throughout the denoising process.

We therefore revisit categorical uniform noise discrete diffusion, where π = u = 1/N. Our aim is
that by analyzing this class of diffusion models more carefully, we can reduce the gap to absorbing-
state and yield performant models that are more easily steered by guidance tools we develop below.

4.1 UNIFORM NOISE DIFFUSION

We begin by introducing the background and formulation for interpolating discrete diffusion models
with uniform noise.

Discrete Time Likelihood Bound We start with the variational lower bound that is defined by a
diffusion process. For discrete time diffusion, i.e., some finite steps T , we define t(i) = (i + 1)/T

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and s(i) = i/T for i in 0, . . . , T. The denoising network pθ is trained to minimize a variational
upper bound (NELBO), which is given by:

Eq

[
− log pθ(x0|zt(0))︸ ︷︷ ︸

Lrecons

+

T∑
i=1

DKL[q(zs(i)|zt(i),x0)∥pθ(zs(i)|zt(i))]︸ ︷︷ ︸
Ldiffusion

]
+DKL[q(zt(T)|x0)∥pθ(zt(T))]︸ ︷︷ ︸

Lprior

,

(8)
where DKL represents the Kullback-Leibler divergence. When clear, we drop the explicit depen-
dence of t and s on the discrete step i.

Uniform Noise Forward Process We formulate uniform noise diffusion using the interpolating
discrete diffusion framework (Sahoo et al., 2024a; Zhao et al., 2024; Zheng et al., 2023). When
letting π = u, the input x transitions to a random state with some probability at each time step.
Crucially, after x changes once, it can do so again. When π = u, the posterior from (2) becomes

q(zs | zt,x0) = Cat

(
zs;

Nαtzt ⊙ x0 + (αt|s − αt)zt + (αs − αt)x0 +
(αs−αt)(1−αs)

Nαs
1

Nαt⟨zt,x0⟩+ 1− αt

)
(9)

Denoising Process The optimal form for the reverse diffusion process pθ matches (9): in fact
setting pθ to (9) reduces the KL terms in (8) to zero. However, setting pθ to exactly (9) is not
possible because it cannot be a function x0 (which pθ is generating). Therefore, we introduce a
predictive model xθ(zt, t) : V × [0, 1] → ∆N of the ‘clean’ data given a noisy latent zt at time t.
We use xθ to parameterize the denoising process as pθ(zs | zt) = q(zs | zt,x = xθ), yielding:

pθ(zs | zt) = Cat

(
zs;

Nαtzt ⊙ xθ + (αt|s − αt)zt + (αs − αt)xθ +
(αs−αt)(1−αs)

Nαs
1

Nαt⟨zt,xθ⟩+ 1− αt

)
, (10)

Note that this minimizes the Ldiffusion term in (8) precisely when xθ = x0, as desired. To simplify
notation, we omit below the explicit dependence of xθ on t.

4.2 IMPROVED LIKELIHOOD BOUNDS IN CONTINUOUS TIME

We now present our contribution to uniform noise discrete diffusion modeling. We leverage the
above formulation to develop an improved ELBO by taking T → ∞ and analyzing each term
Lrecons,Ldiffusion,Lprior in (8). This yields three improvements: (1) a simple and elegant closed-form
expression for the ELBO that is easier to reason about; (2) an analytical reduction of Lrecons,Lprior to
zero, which tightens the ELBO; (3) a further tightening via the continuous-time extension ofLdiffusion
as in Kingma et al. (2021) and Sahoo et al. (2024a;b).

Prior Loss (Lprior) Given that we define our corruption process as an interpolation between clean
data and a limiting distribution, for any noise schedules where αt(T) = 0, the distribution q(zt(T)) =
π. Therefore, we can simply define pθ(zt(T)) = π, and the KL divergence inLprior evaluates to zero.

Reconstruction Loss (Lrecons) Similarly, for Lrecons, if our noise schedule is such that T →
∞ =⇒ αt(0) = 1 (i.e., t(0) = 1/T), then the marginal q(z 1

T
| x0) → Cat(z 1

T
;x0).

That is, in the limit, the first latent vector is identically equal to the clean data. We can thus
parameterize our denoising network such that at time t(0) the function simply copies its inputs:
xθ(z 1

T
, 1/T) = z 1

T
. Additionally, we note that our choice of parameterization for pθ implies that

pθ(x0 | z 1
T
) = xθ(z 1

T
, 1/T). Thus in the continuous time limit, we have:

lim
T→∞

Eq[Lrecons] = lim
T→∞

Eq[log pθ(x0 | z 1
T
)] = lim

T→∞
Eq[log(⟨x0,xθ(z 1

T
, 1/T)⟩)] = 0.

Diffusion Loss (Ldiffusion) Turning finally to the diffusion loss term Ldiffusion, we first define the
shorthand DKL[qt||pθ] = DKL[[q(zs | zt,x0)||pθ(zs | zt)]] and then re-write this term as an
expectation over t uniformly sampled from 1/T, 2/T, . . . , T :

Ldiffusion =

T∑
i=1

DKL[qi/T ||pθ] = T · Et∼{1/T,2/T,...,T}DKL[qt||pθ]. (11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Plugging in our expressions for the true and predicted posteriors from (9) and (10) into (11), then
taking T →∞, we get (see Appendix A for details):

lim
T→∞

Ldiffusion = lim
T→∞

Et∼{1/T,2/T,...,T}T ·DKL[qt||pθ] =
∫ t=1

t=0

lim
T→∞

T ·DKL[qt||pθ]dt

=

∫ t=1

t=0

[
α′
t

Nαt

[
N

x̄i
− N

(x̄θ)i
−

∑
j s.t. (zt)j=0

(
x̄j

x̄i

)
log

[(
(x̄θ)i · x̄j

(x̄θ)j · x̄i

)]]]
dt,

(12)

where xi denotes the ith index of a vector x, x̄ = Nαtx + (1 − αt)1, x̄θ = Nαtxθ + (1 − αt)1,
and we define i = argmaxj∈[N](zt)j to be the non-zero entry of zt.

Combining our arguments regarding Lprior and Lrecons with (12), yields our final tight variational
bound:

L∞ =

∫ t=1

t=0

Eq

[
α′
t

Nαt

[
N

x̄i
− N

(x̄θ)i
−

∑
j s.t. (zt)j=0

(
x̄j

x̄i

)
log

[(
(x̄θ)i · x̄j

(x̄θ)j · x̄i

)]]]
dt. (13)

Extension to Sequences Extending training with (13) from x ∈ V to sequences x(1:L) ∈ VL, we
make the assumption that the denoising process factorizes independently across tokens when condi-
tioned on a sequence of noisy latents z

(1:L)
t . In this case, we use a single model x(ℓ)

θ (z
(1:L)
t , t) for

predicting each token ℓ ∈ {1, . . . , L} in a sequence, and we train with the sequence-level objective:

L∞ =

∫ t=1

t=0

Eq

∑
ℓ

[
α′
t

Nαt

[
N

x̄
(ℓ)
i

− N

(x̄
(ℓ)
θ)i

−
∑

j s.t. (z(ℓ)
t)j=0

(
x̄
(ℓ)
j

x̄
(ℓ)
i

)
log

[(
(x̄

(ℓ)
θ)i · x̄(ℓ)

j

(x̄
(ℓ)
θ)j · x̄(ℓ)

i

)]]]
dt.

(14)
We dub models trained with our refined objective Uniform Diffusion Language Models (UDLM).

5 EXPERIMENTS

Datasets For our language modeling experiments we examine several distinct discrete domains:
reference genomes from ten diverse species (Species-10), the small molecule dataset known as QM9
(Ruddigkeit et al., 2012; Ramakrishnan et al., 2014), where molecules are represented by a string of
characters known as SMILES (Weininger, 1988), discretized images from CIFAR-10 (Krizhevsky
et al., 2009), and three NLP datasets consisting of text8 (Mahoney, 2011), Amazon Review Polarity
(McAuley & Leskovec, 2013; Zhang et al., 2015), and the one billion words dataset (LM1B; Chelba
et al. (2014)). These datasets cover a range of domains and vocabularies of varying sizes (see
Table 1). For guidance experiments, we explore species-specific sequence generation, molecular
property maximization, and class-conditional image generation.

5.1 LANGUAGE MODELING WITH UNIFORM NOISE DISCRETE DIFFUSION

Our language modeling experiments reveal that (1) contrary to a widely-held belief, uniform noise
diffusion can attain state-of-the-art performance on small vocabulary datasets (Table 1), and that
(2) our UDLM are state-of-the-art among uniform noise diffusion models (Tables 2 and 3).

In Table 1, despite previous evidence indicating that absorbing-state discrete diffusion greatly out-
performs uniform noise, we find a more nuanced story. Namely, for smaller vocabulary regimes,
which are common for scientific applications, the gap between MDLM and UDLM is negligible,
with UDLM even outperforming absorbing-state diffusion on certain datasets. Even within a single
domain, we find a trend between vocabulary size and performance gap, with the text8 results of
UDLM on par with MDLM, and a more persistent gap for the larger vocabulary experiments. Intu-
itively, these results follow from the observation that in larger vocabulary regimes, at every denoising
step, uniform noise diffusion models need to predict over a combinatorially larger set of potential
clean data sequences compared to absorbing-state; smaller vocabularies reduce this complexity.

Secondly, although we still find a persisting perplexity gap between absorbing and uniform noise
discrete diffusion for larger vocabulary NLP datasets, we note that our uniform noise diffusion
models trained with UDLM, closes this gap, as evidenced in Tables 2 and 3, where we show that
UDLM attains the best reported uniform noise discrete diffusion language modeling performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: UDLM performs best in smaller vocabulary regimes. Values correspond to perplexity (PPL;
↓) on various datasets. Best values are bolded. Datasets marked with * have values reported from
early stopping on the validation set, since AR model demonstrated overfitting; Values for all other
datasets reflect validation performance at the end of training. †Taken from Sahoo et al. (2024a).
$Taken from Lou et al. (2023).

Vocab. Size AR MDLM UDLM

Bio. Species-10 12 2.88 3.17≤ 3.15≤
Chem. QM9* 40 2.19 2.12≤ 2.02≤
Images CIFAR-10 256 - 9.14≤ 11.21≤
NLP text8 35 2.35$ 2.62≤ 2.71≤

Amazon* 30,522 21.67 24.93≤ 27.27≤
LM1B 30,522 22.32† 27.04†

≤ 31.28≤

Table 2: UDLM outperforms previously re-
ported uniform noise discrete diffusion mod-
els on text8 dataset. Values correspond to bits
per character (BPC). Best values are bolded
and best discrete uniform diffusion value is
underlined. †Taken from Lou et al. (2023).

Method BPC (↓)
Autoregressive†

IAF/SCF 1.88
AR Argmax Flow 1.39
Discrete Flow 1.23
Autoregressive 1.23

Non-autoregressive†
Mult. Diffusion 1.72≤
MAC 1.40≤
BFN 1.41≤
D3PM Absorb 1.45≤
SEDD Absorb 1.39≤
MDLM 1.38≤

Discrete Uniform Diffusion
D3PM Uniform† 1.61≤
SEDD Uniform† 1.47≤
UDLM (Ours) 1.44≤

Table 3: UDLM outperforms previously reported
uniform noise discrete diffusion models on LM1B
dataset. Values correspond to perplexity (PPL).
Best values are bolded and best discrete uniform
diffusion value is underlined. †Taken from Sa-
hoo et al. (2024a). *Taken from Lou et al. (2023).
$Taken from Austin et al. (2021).

Method PPL (↓)
Autoregressive†

Transformer-X Base 23.5
OmniNetT 21.5
Transformer 22.32

Diffusion†
BERT-Mouth 142.89≤
D3PM Absorb 77.50≤
Diffusion-LM 118.62≤
DiffusionBert 63.78≤
SEDD Absorb 32.79≤
MDLM 27.04≤

Discrete Uniform Diffusion
D3PM Uniform$ 137.9≤
SEDD Uniform* 40.25≤
UDLM (Ours) 31.28≤

100k 150k 200k 250k 300k 350k 400k
Step

26

28

30

32

34

36

38

40

PP
L

(
)

T = 1000
T = 8192
UDLM (T =)

Figure 1: Increasing T to infinity im-
proves language modeling. Values cor-
respond to validation perplexity (PPL)
for uniform noise discrete diffusion us-
ing finite T vs. UDLM (T =∞).

Ablating Continuous Time Formulation In Figure 1,
we see the effect of increasing T and more specifically
using our continuous time ELBO. The curves represent
validation perplexity on the Amazon Polarity dataset at
various training steps, and we observe that increasing T
indeed improves language modeling with UDLM, i.e.,
T =∞, performing best.

5.2 GUIDED DISCRETE DIFFUSION

Our guidance results indicate that (1) classifier-free guid-
ance is more useful when paired with diffusion models
compared to AR (Table 4) and that (2) our proposed
D-CBG is the best classifier-based method for discrete
guidance, especially when combined with UDLM (Tables 5 and 6).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Diffusion decoding is more controllable than AR for genomic sequences. Best values are
bolded.

Model Guidance 3-mer
JS (↓)

6-mer
JS (↓)

Disc.
AUROC (↓) F1 (↑)

Random - 0.13 0.22 1.00 0.07
AR D-CFGγ=1 0.04 0.09 1.00 0.87
AR D-CFGγ=2 0.05 0.14 1.00 0.68
MDLM D-CFGγ=1 0.03 0.07 0.61 0.90
MDLM D-CFGγ=2 0.04 0.11 0.71 0.78
UDLM D-CFGγ=1 0.03 0.08 0.77 0.92
UDLM D-CFGγ=2 0.08 0.18 0.75 0.96

Baselines For guidance experiments, our primary baseline is the dominant approach for language
modeling, AR. Our goal is to show that with similar, even slightly worse, language modeling per-
formance, discrete diffusion models equipped with classifier-based and classifier-free guidance can
outperform AR models on controlled generation. We compare to three flavors of guided AR mod-
els. The first is applying D-CFG to AR models. We also use the established control mechanisms of
Plug-and-play language models (PPLM; Dathathri et al. (2019)) and FUDGE (Yang & Klein, 2021).
To demonstrate the better performance of our D-CBG method, we compare to Gruver et al. (2024)
(NOS) which can be viewed as an extension of PPLM to discrete diffusion models.

Hyperparameters For both our D-CFG and D-CBG methods we vary the strength of the γ parame-
ter. Although the original FUDGE formulation simply uses γ = 1, we also perform a search for this
baseline. For PPLM and NOS, we vary the parameters of the Langevin sampling that is performed
to update models’ hidden representation, namely the step size η, the fluency KL weight γkl, and the
number of update steps n (see Dathathri et al. (2019) and Gruver et al. (2024) for more details). For
all methods, we display the best performing hyperparameter configuration in the main table results,
deferring the full sweep results to Appendix D.

Species-specific Genome Generation For genomic sequences, we evaluate D-CFG with diffusion
models vs. with an AR model. We train models on sequences of length 32,768 nucleotides, us-
ing base-pair level tokenization and conditionally generate 64 sequences for each class. As quality
measures for each species class, we compute the Jensen-Shannon (JS) distance between the k-mer
frequencies of the generated sequences and those from the validation set, and report the mean JS
across species (weighted by species frequency in the dataset), with smaller values indicating bet-
ter k-mer distributional overlap between the ground truth and generated sequences (Sarkar et al.,
2024). Additionally, we train a small classifier to distinguish between generated and validation set
sequences and report the area under the receiver operator curve for this classifier (Disc. AUROC).
Values closer to 0.5 indicate that the classifier is unable to distinguish between synthetic and true
sequences (Sarkar et al., 2024). To measure the controllability, we train a separate classifier on the
Species-10 dataset and measure macro F1 score of this oracle classifier on the generated sequences.

Results of this experiment are presented in Table 4. For reference, we also provide metrics for
randomly generating sequences with nucleotide frequencies proportional to each species’ validation
subset. We find that both MDLM and UDLM are able to better generate sequences that match
the desired control parameter, with higher F1 scores under the evaluation oracle relative to AR.
Moreover, UDLM is able to outperform MDLM in satisfying this control. Importantly, we find that
only UDLM is amenable to increasing the guidance parameter γ, where its metrics improves while
AR and MDLM metrics degrade.

Finally, of note, the diffusion model generation for this experiment is accomplished with far fewer
function evaluations compared to AR. Whereas AR must decode each of the 32,768 tokens, because
MDLM and UDLM can decode multiple tokens in parallel, we generate with T = 512.

Molecular Property Maximization For the QM9 dataset, we investigate novel generation of se-
quences that maximize some property, either drug-likeness (QED; Bickerton et al. (2012)), see Ta-
ble 5, or a count of the number of rings present in the molecule, see Table 6.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

For D-CFG, we see that all methods perform comparably when maximizing drug likeness, but that
UDLM is better suited towards guidance for the structural property of ring count, as it achieves
similar property maximization to AR and MDLM, without sacrificing the validity and novelty of
generated sequences. This pattern is even more evident when examining classifier-based guidance
mechanisms, where we find that for both QED and ring count, UDLM best trades-off maximizing
these properties while generating sensible and not memorized sequences.

Table 5: Guidance with discrete diffusion models better balances the generation of valid and novel
molecules with maximizing the property of interest, drug likeness (QED), compared to AR. Valid-
ity, novelty, and mean QED for novel sequences are measured for generated sequences from each
method. Best values are bolded.

Method Guidance Valid (↑) Novel (↑) QED Mean (↑)
Original Data - 133k 133k 0.47

Classifier-free
AR D-CFGγ=2.5 1995 130 0.60
MDLM D-CFGγ=3.0 652 251 0.61
UDLM D-CFGγ=3.0 2034 133 0.61

Classifier-based
AR FUDGEγ=10 914 24 0.58
AR PPLMη=0.1,n=30 1618 291 0.48
MDLM D-CBGγ=20 (Ours) 64 22 0.58
MDLM NOSη=0.001,n=1,γkl=0.01 1302 471 0.45
UDLM D-CBGγ=35 (Ours) 1223 87 0.61
UDLM NOSη=5,n=5,γkl=0.001 946 302 0.47

Table 6: Guidance with UDLM best balances the generation of valid and novel molecules with
maximizing the property of interest, ring count, compared to AR and MDLM. Validity, novelty, and
mean ring count for novel sequences are measured for generated sequences from each method. Best
values are bolded.

Method Guidance Valid (↑) Novel (↑) Ring Count Mean (↑)
Original Data - 133k 133k 1.74

Classifier-free
AR D-CFGγ=7.0 108 24 5.04
MDLM D-CFGγ=6.0 132 90 5.01
UDLM D-CFGγ=3.5 1975 459 4.91

Classifier-based
AR FUDGEγ=2 2035 15 4.20
AR PPLMη=0.1,n=30 1486 233 1.89
MDLM D-CBGγ=25 (Ours) 82 65 5.05
MDLM NOSη=5,n=10,γkl=0.01 353 246 3.31
UDLM D-CBGγ=40 (Ours) 1670 943 4.73
UDLM NOSη=5,n=10,γkl=0.01 961 402 2.64

Class-conditional Image Generation In Table 7, we see the positive effect of guided-generation
on image quality. Both MDLM and UDLM outperform their finite-time counterparts (in the form of
D3PM (Austin et al., 2021)) and, moreover, generating with D-CFG (γ = 4) further improves the
image quality metrics of Fréchet inception distance (FID; Heusel et al. (2017)) and Inception Score
(IS; Salimans et al. (2016)). In Figure 2, we show several conditionally generated images.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: Guidance improves image on
discretized CIFAR-10. FID and IS for
finite- (D3PM) and continuous-time (MDLM
/ UDLM) discrete diffusion models. Guid-
ance using D-CFG (γ = 4). Best values are
bolded. †Taken from Austin et al. (2021).

FID (↓) IS (↑)
D3PM Absorb† 41.28 6.26
MDLM 33.75 6.74
MDLM D-CFG 15.56 9.02

D3PM Uniform† 51.27 5.99
UDLM 33.65 6.86
UDLM D-CFG 23.21 8.66

Figure 2: Conditionally generated images for
each class in CIFAR10.

6 RELATED WORKS, DISCUSSION, AND CONCLUSION

Discrete Diffusion Our UDLM method most closely aligns to the recent state-of-the-art discrete
diffusion models of Ou et al. (2024), Sahoo et al. (2024a), and Shi et al. (2024) that focus on
absorbing state diffusion. Similar to these works, we provide a continuous time ELBO leading to
performance gains, but we focus on uniform noise. Of note, other extensions of D3PM that do not
start from the variational perspective, instead rely on the formalisms of continuous time Markov
chains (CTMC) (Campbell et al., 2022) and concrete score matching (Lou et al., 2023), but are less
performant than works such as MDLM (Sahoo et al., 2024a) and our method.

Guidance Leveraging continuous embeddings of discrete data, Diffusion-LM (Li et al., 2022) uses
Langevin sampling with classifier-based guidance. Similarly, SSD-LM (Han et al., 2022) perform
Gaussian noising on the logits of a bi-directional model, which they combine with pre-trained classi-
fiers to perform classifier-based guidance with Langevin dynamics. LD4LG (Lovelace et al., 2024)
implement classifier-free guidance on continuous embeddings. Wang et al. (2023) perform guidance
using auxiliary semantic latent variables. In contrast, to these continuous formulations for discrete
data, our work adapts guidance mechanisms directly to the discrete domain.

FUDGE (Yang & Klein, 2021) can be viewed an analog to our D-CBG, but is restricted to AR
parameterizations of the denoising network. DiGress (Vignac et al., 2022) uses a similar first-order
approximation to the one we employ. However, in DiGress this approximation is used to resolve
the intractability of the normalizing constant. In our work, we derive a tractable expression for
classifier-based guidance and simply use the Taylor approximation to speed up computation in large
sequence length and vocabulary size regimes.

Sanchez et al. (2023) derives an equivalent formulation for D-CFG and use it to better enforce
AR models’ adherence to prefix prompts. FreeGress (Ninniri et al., 2024) also offer a comparable
method to D-CFG, but focus on graph diffusion models. Most similar to our method, is the concur-
rent work of Nisonoff et al. (2024), which derives classifier-based and classifier-free guidance for
diffusion and flow models. However, this work is highly tailored to models that leverage formalism
of continuous time Markov chains and guidance is applied to the rate matrices.

Conclusion In search of a more controllable diffusion process, in this work, we derived a tight
variational bound for uniform noise discrete diffusion, closing the gap to state-of-the-art absorbing-
state diffusion models. We also highlighted that contrary to previous findings, in small vocabulary
regimes, uniform noise is on par or better than absorbing state.

We then demonstrated that straightforward adaptations of classifier-based and classifier-free guid-
ance can offer improved guided generation relative to AR models. We found that with classifier-free
mechanisms, diffusion models are more amenable to control without sacrificing quality of generated
sequences. We also demonstrated that our classifier-based method is better than previous ones for
both AR and diffusion models and is best paired with our UDLM.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling,
2014.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021a.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021b.

Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul
Srinivasan, Jonathan T. Barron, and Ben Poole. Cat3d: Create anything in 3d with multi-view
diffusion models, 2024. URL https://arxiv.org/abs/2405.10314.

Aaron Gokaslan, A Feder Cooper, Jasmine Collins, Landan Seguin, Austin Jacobson, Mihir Patel,
Jonathan Frankle, Cory Stephenson, and Volodymyr Kuleshov. Commoncanvas: Open diffusion
models trained on creative-commons images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8250–8260, 2024.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris Maddison. Oops
i took a gradient: Scalable sampling for discrete distributions. In International Conference on
Machine Learning, pp. 3831–3841. PMLR, 2021.

Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanasse,
Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete
diffusion. Advances in neural information processing systems, 36, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-
based diffusion language model for text generation and modular control. arXiv preprint
arXiv:2210.17432, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Frank P Kelly. Reversibility and stochastic networks. Cambridge University Press, 2011.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

11

https://arxiv.org/abs/2405.10314

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Greg Landrum et al. Rdkit: A software suite for cheminformatics, computational chemistry, and
predictive modeling. Greg Landrum, 8(31.10):5281, 2013.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. Advances in Neural Information Processing Systems,
35:4328–4343, 2022.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
diffusion for language generation. Advances in Neural Information Processing Systems, 36, 2024.

Matt Mahoney. Text8 dataset, 2011. URL http://mattmahoney.net/dc/textdata.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating dimen-
sions with review text. In Proceedings of the 7th ACM conference on Recommender systems, pp.
165–172, 2013.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: General-
ized score matching for discrete data. Advances in Neural Information Processing Systems, 35:
34532–34545, 2022.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Matteo Ninniri, Marco Podda, and Davide Bacciu. Classifier-free graph diffusion for molecular
property targeting. In Joint European Conference on Machine Learning and Knowledge Discov-
ery in Databases, pp. 318–335. Springer, 2024.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

Nuala A O’Leary, Mathew W Wright, J Rodney Brister, Stacy Ciufo, Diana Haddad, Rich McVeigh,
Bhanu Rajput, Barbara Robbertse, Brian Smith-White, Danso Ako-Adjei, Alexander Astashyn,
Azat Badretdin, Yiming Bao, Olga Blinkova, Vyacheslav Brover, Vyacheslav Chetvernin, Jinna
Choi, Eric Cox, Olga Ermolaeva, Catherine M Farrell, Tamara Goldfarb, Tripti Gupta, Daniel
Haft, Eneida Hatcher, Wratko Hlavina, Vinita S Joardar, Vamsi K Kodali, Wenjun Li, Donna Ma-
glott, Patrick Masterson, Kelly M McGarvey, Michael R Murphy, Kathleen O’Neill, Shashikant
Pujar, Sanjida H Rangwala, Daniel Rausch, Lillian D Riddick, Conrad Schoch, Andrei Shkeda,
Susan S Storz, Hanzhen Sun, Francoise Thibaud-Nissen, Igor Tolstoy, Raymond E Tully, An-
jana R Vatsan, Craig Wallin, David Webb, Wendy Wu, Melissa J Landrum, Avi Kimchi, Tatiana
Tatusova, Michael DiCuccio, Paul Kitts, Terence D Murphy, and Kim D Pruitt. Reference se-
quence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annota-
tion. Nucleic Acids Res., 44(D1):D733–45, January 2016.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

12

http://mattmahoney.net/dc/textdata

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024a.

Subham Sekhar Sahoo, Aaron Gokaslan, Chris De Sa, and Volodymyr Kuleshov. Diffusion models
with learned adaptive noise. arXiv preprint arXiv:2312.13236, 2024b.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Guillaume Sanchez, Honglu Fan, Alexander Spangher, Elad Levi, Pawan Sasanka Ammana-
manchi, and Stella Biderman. Stay on topic with classifier-free guidance. arXiv preprint
arXiv:2306.17806, 2023.

Anirban Sarkar, Ziqi Tang, Chris Zhao, and Peter Koo. Designing dna with tunable regulatory
activity using discrete diffusion. bioRxiv, pp. 2024–05, 2024.

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling. arXiv preprint
arXiv:2403.03234, 2024.

Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas
Bekas, and Alpha A Lee. Molecular transformer: A model for uncertainty-calibrated chemical
reaction prediction. ACS central science, 5(9):1572–1583, 2019.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and gener-
alized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and
Volodymyr Kuleshov. Infodiffusion: Representation learning using information maximizing dif-
fusion models. In International Conference on Machine Learning, pp. 36336–36354. PMLR,
2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. arXiv
preprint arXiv:2104.05218, 2021.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

Lingxiao Zhao, Xueying Ding, Lijun Yu, and Leman Akoglu. Improving and unifying
discrete&continuous-time discrete denoising diffusion. arXiv preprint arXiv:2402.03701, 2024.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. arXiv preprint arXiv:2302.05737, 2023.

14

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A CONTINUOUS TIME DISCRETE UNIFORM DIFFUSION

Here, we derive a continuous time formulation (T → ∞) for the diffusion loss term Ldiffusion when
using the uniform distribution as the limiting distribution of the diffusion process.

For uniform noise diffusion, we define a limiting distribution u = 1/N, where 1 represents the
column vector of all ones, and N the size of the vocabulary. We adopt the assumption from MDLM
(Sahoo et al., 2024a) that our diffusion process interpolates between clean data and noise:

q(zt | x) = Cat(zt;αtx+ (1− αt)π) (15)

and the marginals are given as

q(zt | zs) = Cat(zt;αt|szs + (1− αt|s)π), (16)

where αt|s = αt/αs.

Following Austin et al. (2021), we can derive the posterior:

q(zs | zt,x) = Cat

(
zs;

[αt|szt + (1− αt|s)1π
⊤zt]⊙ [αsx+ (1− αs)π]

αt⟨zt,x⟩+ (1− αt)z⊤t π

)
. (17)

Using π = u as defined above, we get the following:

q(zs | zt,x) = Cat

(
zs;

αtzt ⊙ x+
(αt|s−αt)

N zt +
(αs−αt)

N x+
(1−αt|s)(1−αs)

N2 1

αt⟨zt,x⟩+ (1−αt)
N

)
(18)

= Cat

(
zs;

Nαtzt ⊙ x+ (αt|s − αt)zt + (αs − αt)x+ (αs−αt)(1−αs)
Nαs

1

Nαt⟨zt,x⟩+ 1− αt

)
. (19)

For the denoising distribution, we replace x by xθ:

pθ(zs | zt) = Cat

(
zs;

Nαtzt ⊙ xθ + (αt|s − αt)zt + (αs − αt)xθ +
(αs−αt)(1−αs)

αsN
1

Nαt⟨zt,xθ⟩+ 1− αt

)
. (20)

Let us now look at the diffusion loss term in the NELBO:

T ·DKL(q(zs | zt,x)||pθ(zs | zt)) = T ·
∑
j∈[N]

q(zs | zt,x)j log
(
q(zs | zt,x)j
pθ(zs | zt)j

)
. (21)

Letting i = argmaxj∈[N](zt)j be the non-zero entry of zt, we can break up this KL into two terms:

T ·DKL(q(zs | zt,x)||pθ(zs | zt)) =T · q(zs | zt,x)i log
(
q(zs | zt,x)i
pθ(zs | zt)i

)
︸ ︷︷ ︸

Term 1

+ T ·
∑
j∈[N]

s.t. (zt)j=0

q(zs | zt,x)j log
(
q(zs | zt,x)j
pθ(zs | zt)j

)
︸ ︷︷ ︸

Term 2

. (22)

We now examine each of these terms taking T → ∞, or equivalently, using s = t − 1
T =⇒ T =

1
t−s , taking s→ t.

Term 1:

lim
s→t

1

t− s
·
Nαtxi + αt|s − αt + (αs − αt)xi +

(αs−αt)(1−αs)
αsN

Nαtxi + 1− αt

· log

[Nαtxi+αt|s−αt+(αs−αt)xi+
(αs−αt)(1−αs)

αsN

Nαtxi+1−αt

Nαt(xθ)i+αt|s−αt+(αs−αt)(xθ)i+
(αs−αt)(1−αs)

αsN

Nαt(xθ)i+1−αt

]
(23)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

As s → t, the coefficient on the log term will approach 1. Additionally both the numerator and the
denominator inside the log term will approach 1, thus the entire log term will approach 0. Combining
this with the fact that t− s will approach 0, gives us the indeterminate form of 0/0, hence we apply
L’Hôpital’s’s rule to (23). Writing q and pθ as functions of s, when we differentiate the log term we
get:

d

ds
log
[q(s)

pθ(s)

]
=

d

ds
log q(s)− d

ds
log pθ(s)

=
d
dsq(s)

q(s)
−

d
dspθ(s)

pθ(s)
(24)

Let’s look at each derivative term in (24):

lim
s→t

d

ds
q(s) = lim

s→t

−α′
sαt

α2
s

+ α′
s(xθ)i +

Nαs[α
′
s(1−αs)−α′

s(αs−αt)]−[Nα′
s(αs−αt)(1−αs)]

Nα2
s

Nαtxi + 1− αt

=

−α′
t

αt
+ α′

txi +
α′

t(1−αt)
Nαt

Nαtxi + 1− αt

=
α′
t

Nαt

[−N +Nαtxi + 1− αt

Nαtxi + 1− αt

]
=

α′
t

Nαt

[
1− N

Nαtxi + 1− αt

]
(25)

Similarly,

lim
s→t

d

ds
pθ(s) =

α′
t

Nαt

[
1− N

Nαt(xθ)i + 1− αt

]
(26)

Note that when taking s → t, both q(s) and pθ(s) evaluate to 1. Additionally, differentiating 1
t−s

with respect to s evaluates to −1. When combining these facts and plugging (25) and (26) into (24),
(23) becomes

lim
s→t

Term 1 =
−α′

t

Nαt

[
1− N

Nαtxi + 1− αt

]
+

α′
t

Nαt

[
1− N

Nαt(xθ)i + 1− αt

]
=

α′
t

Nαt

[
N

Nαtxi + 1− αt
− N

Nαt(xθ)i + 1− αt

]
(27)

Term 2:

lim
s→t

1

t− s
·

∑
j∈[N]

s.t. (zt)j=0

(αs − αt)xj +
(αs−αt)(1−αs)

Nαs

Nαtxi + 1− αt
log

[(αs−αt)xj+
(αs−αt)(1−αs)

Nαs

Nαtxi+1−αt

(αs−αt)(xθ)j+
(αs−αt)(1−αt)

Nαs

Nαt(xθ)i+1−αt

]
(28)

For each term in the summation, 1
t−s times the coefficient on the log term will have an indeterminate

form of 0/0 as s→ t. We therefore apply L’Hôpital’s rule to this coefficient:

lim
s→t

1

t− s
·
(αs − αt)xj +

(αs−αt)(1−αs)
Nαs

Nαtxi + 1− αt
=
−α′

t

Nαt

[
Nαtxj + 1− αt

Nαtxi + 1− αt

]
(29)

Now, for the log term, we exchange the limit with the continuous log function and have that both
the numerator and the denominator go to zero as s→ t. We therefore apply L’Hôpital’s rule here as

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

well:

log lim
s→t

[(αs−αt)xj+
(αs−αt)(1−αs)

Nαs

Nαtxi+1−αt

(αs−αt)(xθ)j+
(αs−αt)(1−αt)

Nαs

Nαt(xθ)i+1−αt

]
= log lim

s→t

[
d
ds

(αs−αt)xj+
(αs−αt)(1−αs)

Nαs

Nαtxi+1−αt

d
ds

(αs−αt)(xθ)j+
(αs−αt)(1−αt)

Nαs

Nαt(xθ)i+1−αt

]

= log

[(
Nαt(xθ)i + 1− αt

Nαtxi + 1− αt

)(
α′
txj +

α′
t(1−αt)
Nαt

α′
t(xθ)j +

α′
t(1−αt)
Nαt

)]

= log

[(
Nαt(xθ)i + 1− αt

Nαtxi + 1− αt

)(
α′

t

Nαt
(Nαtxj + 1− αt)

α′
t

Nαt
(Nαt(xθ)j + 1− αt)

)]

= log

[(
Nαt(xθ)i + 1− αt

Nαtxi + 1− αt

)(
Nαtxj + 1− αt

Nαt(xθ)j + 1− αt

)]

= log

[(
Nαt(xθ)i + 1− αt

Nαt(xθ)j + 1− αt

)(
Nαtxj + 1− αt

Nαtxi + 1− αt

)]
(30)

Multiplying (29) by (30), we get:

lim
s→t

Term 2 =
−α′

t

Nαt

∑
j∈[N]

s.t. (zt)j=0

(
Nαtxj + 1− αt

Nαtxi + 1− αt

)
log

[(
Nαt(xθ)i + 1− αt

Nαt(xθ)j + 1− αt

)(
Nαtxj + 1− αt

Nαtxi + 1− αt

)]

(31)

Combining Terms 1 and 2: Using (27) and (31), the final KL term in the continuous time limit is:

lim
T→∞

T ·DKL(q||pθ) =
α′
t

Nαt

[
N

Nαtxi + 1− αt
− N

Nαt(xθ)i + 1− αt

−
∑
j∈[N]

s.t. (zt)j=0

(
Nαtxj + 1− αt

Nαtxi + 1− αt

)
log

[(
Nαt(xθ)i + 1− αt

Nαt(xθ)j + 1− αt

)(
Nαtxj + 1− αt

Nαtxi + 1− αt

)]]
.

Defining x̄ = Nαtx+(1−αt)1 and x̄θ = Nαtxθ+(1−αt)1, as in Section 4.2, yields the desired
result.

B RELATING UDLM TO CTMC

Similar to Sahoo et al. (2024a), our work tackles the problem of discrete diffusion from the vari-
ational perspective and analyzes the ELBO in the continuous time limit. In contrast, other works,
such as Campbell et al. (2022) and Lou et al. (2023), have extended the discrete diffusion framework
proposed in Austin et al. (2021) using the formalisms of continuous time Markov chains (CTMC).
In this section, we relate these two approaches.

Background on CTMC In the CTMC formulation, the key quantity of interest is the rate matrix
Rt ∈ RN×N . In analogy to the discrete time transition matrices Qt, which define the transition
probabilities between states, these rate matrices define the instantaneous rate of change between
states in continuous time. More formally, letting δ be the Kronecker delta function, and using z and
z′ to denote observed values of the latents, we can define the forward noising process using Rt as
follows:

q(zt = z′ | zs = z) = δz′,z +Rt(z, z
′)
1

T
+ o
(1

T

)
(32)

where o(1/T) indicates terms that vanish more quickly than 1/T. Recall that we defined s = t− 1
T .

In continuous time, as T →∞, o(1/T) terms are ignored, and we have

Rt(z, z
′) = lim

T→∞

q(zt = z′ | zt−(1/T) = z)− δz′,z

1/T
, (33)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

hence our treatment of Rt as the ‘instantaneous’ rate of state transitions.

Importantly, processes defined as in (32) have known time reversal processes given by (Kelly, 2011;
Sun et al., 2022):

q(zs = z′ | zt = z) = δz′,z + Řt(z, z
′)
1

T
+ o
(1

T

)
, (34)

where Řt represents the reverse rate matrix which is related to the forward matrix as follows:

Řt(z
′, z) =

q(zt = z′)

q(zt = z)
Rt(z, z

′), if z′ ̸= z (35)

with Řt(z, z) = −
∑

z′ ̸=z Řt(z
′, z), which ensures that the rows of Řt sum to zero (i.e., mass cannot

be created or destroyed). Note that in (35), we are scaling the forward rate matrix by a ratio of the
unconditional marginals: q(zt = z′)/q(zt = z).

Forward Rate Matrices for Uniform Noise Recall from the analysis in Appendix A that we can
use L’Hospital’s rule to evaluate limT→∞ T · (1 − αt|s) = −α′

t/αt. Now, using (16) from above,
for z′ ̸= z we have

q(zt = z′ | zs = z) =
1− αt|s

N
. (36)

Combining this with (33), we have that:

Rt(z, z
′) = lim

T→∞
T ·

1− αt|s

N
= − α′

t

Nαt
. (37)

Now for z′ = z, again from (16), we have

q(zt = z | zs = z) = αt|s +
1− αt|s

N
, (38)

which combines with (33) to yield:

Rt(z, z) = lim
T→∞

T ·

(
αt|s +

1− αt|s

N
− 1

)
=

1−N

N
lim

T→∞
T · (1− αt|s) =

−α′
t

Nαt
(1−N).

(39)

Writing (37) and (39) as a single expression, gives:

Rt(z, z
′) = − α′

t

Nαt
[11⊤ −NI]. (40)

B.1 EQUIVALENCE OF UDLM ELBO AND SEDD ELBO

Below, we demonstrate that the variational lower bound from (13) used to train UDLM is equivalent
to the lower bound derived in SEDD (Lou et al., 2023).

Notation To facilitate the discussion, we introduce a notational shorthand qt(z
′) = q(zt = z′)

and qt(z
′ | x) = q(zt = z′ | x).

In SEDD, the quantity of interest is the ratio of probabilities in the reverse rate matrix equation given
in (35), and they train a parametric model to learn this so-called concrete score (Meng et al., 2022):

sθ(z)z′ ≈ qt(z
′)

qt(z)
. (41)

Since the unconditional marginals in this ratio are intractable, SEDD proposes a tractable denoising
score-based objective. Importantly, they show that the denoising score-based objective they use
for training serves as variational bound and derive the following expression for Negative Evidence
Lower Bound (NELBO):

NELBOSEDD

= Et∈[0,1],z∼qt(.|x)

∑
z′ ̸=zt

Rt(z, z
′)

(
sθ(z)z′ − qt(z

′|x)
qt(z|x)

log sθ(z)z′ +K

(
qt(z

′|x)
qt(z|x)

)) , (42)

where K(a) = a(log a− 1) for a ∈ R+.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

SEDD with Interpolating Uniform Noise From (1) we have qt(z|x) = αtxi+(1−αt)/N where
i is the non-zero index of the one-hot vector z, i.e., zi = 1. Thus, the “true” conditional score in (42)
can be written as

qt(z
′|x)

qt(z|x)
=

αtxj + (1− αt)/N

αtxi + (1− αt)/N
=

Nαtxj + (1− αt)

Nαtxi + (1− αt)
, (43)

where again we use i and j to denote the non-zero indices of the one-hot vectors z and z′, respec-
tively.

Using Mean Parameterization in SEDD NELBO In our work, we use the mean parameteriza-
tion, that is we predict the ‘clean’ data given noisy observations using the model that we denote as
xθ. Note that (42) is minimized if

sθ(z)z′ =
qt(z

′|x)
qt(z|x)

.

Thus, we can replace x in (43) to extract a score model from our parameterization:

sθ(z)z′ =
αt(xθ)j + (1− αt)/N

αt(xθ)i + (1− αt)/N
=

Nαt(xθ)j + (1− αt)

Nαt(xθ)i + (1− αt)
. (44)

We now show two useful identities that come from this parameterization. First,

∑
z′ ̸=z

sθ(z)z′ =
∑
j ̸=i

αt(xθ)j + (1− αt)/N

αt(xθ)i + (1− αt)/N

=
αt[
∑

j ̸=i(xθ)j] +
∑

j ̸=i(1− αt)/N

αt(xθ)i + (1− αt)/N

=
αt[
∑

j ̸=i(xθ)j] + (1− αt)(N − 1)/N

αt(xθ)i + (1− αt)/N
∵

N∑
j=1

1 = N =⇒
∑
j ̸=i

1 = N − 1

=
αt[1− (xθ)i] + (1− αt)− (1− αt)/N

αt(xθ)i + (1− αt)/N
∵
∑
j

(xθ)j = 1 =⇒
∑
j ̸=i

(xθ)j = 1− (xθ)i

=
αt + (1− αt)− αt(xθ)i − (1− αt)/N

αt(xθ)i + (1− αt)/N

=
1− αt(xθ)i − (1− αt)/N

αt(xθ)i + (1− αt)/N

=
1

αt(xθ)i + (1− αt)/N
− 1

=
N

Nαt(xθ)i + (1− αt)
− 1 (45)

The same logic can be applied to show that

∑
z′ ̸=z

qt(z
′|x)

qt(z|x)
=
∑
j ̸=i

αtxj + (1− αt)/N

αtxi + (1− αt)/N
=

N

Nαtxi + (1− αt)
− 1. (46)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Equivalence Between NELBOSEDD and NELBOUDLM We can now use the identities from (45)
and (46) to demonstrate that NELBOSEDD (42) is equivalent to NELBOUDLM (13).
NELBOSEDD

= Et∈[0,1],z∼qt(.|x)

∑
z′ ̸=z

Rt(z, z
′)

(
sθ(z)z′ − qt(z

′|x)
qt(z|x)

log sθ(z)z′ +K

(
qt(z

′|x)
qt(z|x)

))
= Et∈[0,1],z∼qt(.|x)

∑
z′ ̸=z

− α′
t

Nαt

(
sθ(z)z′ − qt(z

′|x)
qt(z|x)

log sθ(z)z′ +K

(
qt(z

′|x)
qt(z|x)

)) from (37)

= Et∈[0,1],z∼qt(.|x)

 α′
t

Nαt

−∑
z′ ̸=z

sθ(z)z′ +
∑
z′ ̸=z

qt(z
′|x)

qt(z|x)
log sθ(z)z′ −

∑
z′ ̸=z

K

(
qt(z

′|x)
qt(z|x)

)
Recall that K(a) = a log a− a

= Et∈[0,1],z∼qt(.|x)
α′
t

Nαt

−∑
z′ ̸=z

sθ(z)z′ +
∑
z′ ̸=z

qt(z
′|x)

qt(z|x)
log sθ(z)z′ −

∑
z′ ̸=z

qt(z
′|x)

qt(z|x)
log

qt(z
′|x)

qt(z|x)
+
∑
z′ ̸=z

qt(z
′|x)

qt(z|x)

Using (45) and (46) we get,

= Et∈[0,1],z∼qt(.|x)
α′
t

Nαt

[
− N

αtN(xθ)i + (1− αt)
+

N

αtNxi + (1− αt)

+
∑
z′ ̸=z

qt(z
′|x)

qt(z|x)
log sθ(z)z′ −

∑
z′ ̸=z

qt(z
′|x)

qt(z|x)
log

qt(z
′|x)

qt(z|x)

]

= Et∈[0,1],z∼qt(.|x)
α′
t

Nαt

[
− N

αtN(xθ)i + (1− αt)
+

N

αtNxi + (1− αt)

−
∑
z′ ̸=z

qt(z
′|x)

qt(z|x)
log

(
1

sθ(z)z′

qt(z
′|x)

qt(z|x)

)]
Using (43) and (44) we get,

= Et∈[0,1],z∼qt(.|x)
α′
t

Nαt

[
N

αtNxi + (1− αt)
− N

αtN(xθ)i + (1− αt)

−
∑
z′ ̸=z

αtNxj + (1− αt)

αtNxi + (1− αt)
log

(
αtN(xθ)i + (1− αt)

αtN(xθ)j + (1− αt)
· αtNxj + (1− αt)

αtNxi + (1− αt)

)]
= NELBOUDLM

C EXPERIMENTAL DETAILS

C.1 DATASET DETAILS

In this section, we provide more details, e.g., source, train/validation splits, etc., for the the datasets
used in this work. For an overview, please see Table 8.

Species-10 This dataset is a composite of reference genomes from ten diverse species: Arabidopsis
thaliana, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Felis catus, Gallus gallus,
Gorilla gorilla, Homo sapiens, Mus musculus, and Salmo trutta, which were downloaded from
NCBI refseq database (O’Leary et al., 2016). In Table 9, we provide the assembly accession IDs
used to download the reference genomes. Genomes were chunked into non-overlapping segments
of 32,768 nucleotides and were tokenized using base-pair-level tokenization.

Training and validation sets were randomly split using 95% / 5%. In Table 10, we specify the size
and relative species composition of each split.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 8: Relevant details for datasets used in this work.

Dataset Tokenizer Vocab. Size Input size Padding?

Species-10 Base-pair 12 32,768 No
QM9 Regex (Schwaller et al., 2019) 40 32 Yes
CIFAR-10 Binned Pixel Intensity 256 32×32×3 No
text8 Character 35 256 No
Amazon bert-base-uncased 30,522 128 Yes
LM1B bert-base-uncased 30,522 128 Yes

Table 9: Species genomes accession IDs

Species Assembly Accession

Arabidopsis thaliana GCF 000001735.4 TAIR10.1
Caenorhabditis elegans GCF 000002985.6 WBcel235
Danio rerio GCF 000002035.6 GRCz11
Drosophila melanogaster GCF 000001215.4 Release 6 plus ISO1 MT
Felis catus GCF 018350175.1 F.catus Fca126 mat1.0
Gallus gallus GCF 016699485.2 bGalGal1.mat.broiler.GRCg7b
Gorilla gorilla GCF 029281585.2 NHGRI mGorGor1-v2.0 pri
Homo sapiens GCF 000001405.40 GRCh38.p14
Mus musculus GCF 000001635.27 GRCm39
Salmo trutta GCF 901001165.1 fSalTru1.1

For guidance, we use the species label.

QM9 Molecules The QM9 dataset comes from Ruddigkeit et al. (2012) and Ramakrishnan et al.
(2014). The dataset is comprised of ∼133k small molecules. We process the dataset using the
RDKit library (Landrum et al., 2013) to extract ‘canonical’ SMILES string representations and add
the annotations for drug-likeness (QED) and ring-counts. The data are tokenized using a regular
expression from Schwaller et al. (2019). Input lengths of 32 tokens were used for pre-training and
generation experiments.

Training and validation sets were randomly split using 95% / 5%.

For guidance, we use a cutoff of 90th percentile for QED / ring count to generate binary labels.

CIFAR-10 This widely-used image dataset contains RGB images with 32× 32 pixels. We use the
provided train and test splits of 50,000 training images and 10,000 validation images. The dataset

Table 10: Species-10 train and validation splits statistics. Proportion of each species in the training
and validation sets. Overall split size is indicated in parentheses in the column header.

Species Train Validation
(95% ≈ 16.5B bps) (5% ≈ 869M bps)

Arabidopsis thaliana 0.68 0.77
Caenorhabditis elegans 0.58 0.58
Danio rerio 9.50 9.29
Drosophila melanogaster 0.08 0.73
Felis catus 13.94 14.05
Gallus gallus 6.04 5.93
Gorilla gorilla 20.40 20.19
Homo sapiens 18.89 19.22
Mus musculus 15.69 15.60
Salmo trutta 13.49 13.64

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

contains 10 classes of roughly equal proportion. We tokenize the dataset by rounding to integer pixel
intensity values in the range [0, 255].

For guidance, we use the image class label.

text8 The dataset was downloaded from http://mattmahoney.net/dc/text8.zip.
Data was tokenized at the character level using the lower case letters [‘a’ - ‘z’] and a white-space
character. The data was broken into non-overlapping chunks of 256 tokens.

The first 90M characters were used for the training set and the final 5M characters were used as a
validation set.

Amazon Review The Amazon Review dataset was downloaded from https:
//huggingface.co/datasets/fancyzhx/amazon_polarity. We tokenize us-
ing the bert-base-uncased tokenizer. Sequences were padded to a max input length of 128
tokens.

Train and validation splits were used from the downloaded data, with 3.6 M sequences in the training
data and 400k sequences in the validation set.

LM1B This dataset was downloaded from https://huggingface.co/datasets/
billion-word-benchmark/lm1b. We tokenize using the bert-base-uncased tok-
enizer. Sequences were padded to a max input length of 128 tokens.x

We use the train and validation splits provided in the downloaded data. After chunking the data, our
training set consisted of 7M sequences and our validation set consisted of 72k sequences.

C.2 ARCHITECTURAL DETAILS

In Table 11, we provide an overview of the architectures and parameter counts of the models used
for each dataset.

Table 11: Architectures used when training on various datasets.

Dataset Architecture Parameter Count

Species-10 Mamba (AR) / Caduceus (Diffusion) 3.5 M (AR) / 4.8 M (Diffusion)
QM9 Transformer 92.4 M
CIFAR-10 UNet 35.8 M
Text8 Transformer 92.4 M
Amazon Transformer 139 M
LM1B Transformer 139 M

Genomics Caduceus For the Species-10 experiments, we use Mamba-based models (Gu & Dao,
2023). The AR model is a standard next-token-prediction Mamba backbone with 8 blocks and
hidden dimension 256. For the diffusion models we train with a variant of the Caduceus architecture
from Schiff et al. (2024), also with 8 blocks and hidden dimension 256. Specifically, we use the
non-reverse complementary equivariant version of Caduceus, dubbed Caduceus-Ph in Schiff et al.
(2024), which is similar to the AR Mamba, but with bi-directional Mamba blocks that use strategic
weight tying to limit the parameter count: 3.5 M parameters of AR vs. 4.8 M for diffusion models.

CIFAR-10 UNet We adopt the UNet (Ronneberger et al., 2015) as a main backbone for both
MDLM and UDLM, following (Ho et al., 2020). Network configurations are presented in Table 12.
Specifically, we follow Austin et al. (2021) and Campbell et al. (2022) and use the original UNet
backbone from DDPM (Ho et al., 2020), adding an extra discretized truncated logistic transforma-
tion to network outputs. To enable conditioning on labels, we add a label embedding layer which is
added to the time embeddings, inspired by ADM network (Dhariwal & Nichol, 2021b).

22

http://mattmahoney.net/dc/text8.zip
https://huggingface.co/datasets/fancyzhx/amazon_polarity
https://huggingface.co/datasets/fancyzhx/amazon_polarity
https://huggingface.co/datasets/billion-word-benchmark/lm1b
https://huggingface.co/datasets/billion-word-benchmark/lm1b

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 12: Architecture details for CIFAR-10 UNet.

MDLM UDLM

Vocab size 258 256
Number of ResNet blocks per scale 2 2
Base channels 128 128
Channel multiplier per scale (1,2,2,2) (1,2,2,2)
Attention resolutions 16 16
Time conditioning False True
Conditional embedding dimension 128 128
Number of Params 35.8M 35.8M

QM9 and NLP Transformer For both the QM9 and NLP datasets (Amazon, text8, and LM1B),
we use the same Diffusion Transformer (Peebles & Xie, 2023) with adaLN for conditioning on time
(for uniform noise diffusion models) and class (for guided generation). The Transformer for each
dataset differs only in the word-embedding size, which is determined by the vocabulary size of the
datasets’ corresponding tokenizer. Our Transformer consists of 12 layers, a hidden dimension of
768, and 12 attention heads. We use RoPE (Su et al., 2021) as the positional embeddings.

C.3 TRAINING CONFIGURATIONS

In Table 13, we detail the hyperparameter setup for each of the language modeling experiments in
Section 5.1.

All diffusion models were trained and evaluated using a log-linear noise schedule.

Of note, for CIFAR-10, our models are trained for 300K iterations as opposed to 1.5M iterations, as
in D3PM (Austin et al., 2021).

Table 13: Training hyper-parameters for all included experiments.

Species-10 QM9 CIFAR-10 text8 Amazon LM1B

Train
steps 30K 25K 300K 1000K 184K 1000K

Batch
size 32 2048 512 512 512 512

LR 2e−3 3e−4 2e−4 3e−4 3e−4 3e−4

Optim. ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

ADAM
(0.9, 0.999)

LR
sched.

CosineDecay
3e−6 min.

CosineDecay
3e−6 min. - - - -

Warmup
steps 3K 1K 5K 2.5K 2.5K 2.5K

GPU
count 8 4 8 8 8 8

GPU
type A5000 A6000 A100 A100 A5000 A100

C.4 GUIDANCE DETAILS

C.4.1 BASELINES

FUDGE Implementation FUDGE is a classifier-based autoregressive guidance method proposed
by Yang & Klein (2021). FUDGE first trains a classifier on all possible prefixes. During sampling,
instead of directly sampling from p(xi|x1:i−1), FUDGE samples from the perturbed conditional
distribution p(y|x1:i)p(xi|x1:i−1) where y denotes the classifier label, x1:i−1 denotes the already
decoded tokens and xi stands for possible token to be generated. For efficiency, FUDGE trun-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

cates xi to the topk tokens with the largest unconditional log-likelihood. Although not in the orig-
inal FUDGE formulation, following the classifier-based guidance in diffusion models (Dhariwal &
Nichol (2021b)), we introduce the temperature variable γ and sample from the perturbed distribution

p(xi|x1:i−1)p
γ(y|x1:i)∑

xi
p(xi|x1:i−1)pγ(y|x1:i)

In our QM9 experiments, topk is set as the vocabulary size which is 40. When training the classifier,
we use a smaller classification model using the same dataset specified in Appendix C.1. The smaller
backbone DiT consists of 8 layers, 8 attention heads, and a hidden dimension of 512. We use the
same hyperparameters as those specified in Table 13.

PPLM Implementation Inspired by the approximate Metropolis-adjusted Langevin (MALA),
Plug and Play language model (PPLM Dathathri et al. (2019) introduces guidance by conduct-
ing gradient updates on the hidden representations of a language model. PPLM first rewrites
the autoregressive language models’ decoding process using the KV-cache mechanism (Wolf
et al., 2020): xt+1, Ht+1 = LM(xt, Ht), where xt denotes the token at time step t and Ht

is defined as [(K
(1)
t , V

(1)
t), ..., (K

(l)
t , V

(l)
t] in which l is the number of layers. When decod-

ing the token xt+1 at time step t + 1, PPLM initializes the perturbation term ∆Ht as 0, and
then iteratively updates it by n times following the gradient ascend formula: ∆Ht ← ∆Ht +

η
∇∆Ht [log(p(y|Ht+∆Ht))−γKLDKL(p(xt+1|Ht+∆Ht)||p(xt+1|Ht))]

∥∇∆Ht [log(p(y|Ht+∆Ht))−γKLDKL(p(xt+1|Ht+∆Ht)||p(xt+1|Ht))]∥ in which y denotes the classifier
label. PPLM then generates the perturbed probability distribution pperb(xt+1|Ht + ∆Ht) us-
ing Ht + ∆Ht and decodes xt+1 using the fused probability distribution 1

β p
γgm

perb(xt+1|Ht +

∆Ht)p
1−γgm

unperb(xt+1|Ht), where β is the normalization factor. Following Dathathri et al. (2019),
in our experiments γkl is set as 0.01 and γgm is set as 0.95. η and n are decided by grid search.

For the QM9 experiments, when training the classifier for PPLM, we use the same dataset specified
in Appendix C.1. We use the same hyperparameters as those specified in Table 13, except the LR
peak is reduced to 3e−5 and minimum is reduced to 3e−7.

NOS Implementation To implement the NOS baseline from Gruver et al. (2024), we train a
classifier where we use the same backbone as the unconditional diffusion model (see Appendix C.2
for architecture details), and we initialize and freeze weights using the pre-trained unconditional
diffusion model. We then mean pool the last hidden embeddings of the backbone and linearly
project them to the classification logits. This final projection layer represents the only trainable
parameters of the guidance model.

At inference, we perform Langevin sampling following Algorithm 2 from Gruver et al. (2024). In
our experiments we denote step-size for the Langevin sampling by η, the number of steps by n, and
the weight on the ‘fluency’ KL penalty by γkl.

For the QM9 experiments, when training the classifier for NOS, we use the same dataset specified
in Appendix C.1. We use the same hyperparameters as those specified in Table 13, except the LR
peak is reduced to 3e−5 and minimum is reduced to 3e−7.

C.4.2 D-CFG DETAILS

When implementing D-CFG we train a single AR / discrete diffusion model (see Appendix C.2 for
architecture details) where we randomly drop out the class condition by replacing it with a class
[MASK] token. The class condition is fused into models using the implementation of adaptive layer
norm from Peebles & Xie (2023). We use 10% rate for masking / dropping-out the condition.

At inference time, we perform two forward passes through the model, one with condition provided to
compute the conditional probability pθ(zs | zt, y) and one where the condition is masked to compute
the unconditional probability pθ(zs | zt). These values are then used as described in Section 3.1.

C.4.3 D-CBG DETAILS

For D-CBG in the QM9 experiment, we train a smaller classification model using the same dataset
specified in Appendix C.1. The smaller backbone DiT consists of 8 layers, 8 attention heads, and
a hidden dimension of 512. We apply mean pooling on the final hidden representations before

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

linearly projecting to the classification logits. We use the same hyperparameters as those specified
in Table 13.

We train the model on noised inputs using a log-linear schedule, where the type of corruption applied
corresponds to the diffusion model to which guidance is applied.

C.5 GUIDANCE EVALUATION DETAILS

C.5.1 GENOMIC SEQUENCES METRICS

Below we describe the quality and control metrics used in the species-specific genome generation
experiment.

k-mer JS To compute the k-mer distirbution shift, for each species, we create counts for each of
the unique 3mers and 6mers for that species in the validation set and 64 generated sequences for that
species. We then compute the Jensen-Shannon divergence between those categorical histograms.
Finally we take a weighted average of these distances across species where the weights are given by
the relative species proportion in the validation dataset, see Table 10 for the relative proportions.

Discriminator AUROC For the discriminator AUROC metric, we train a HyenaDNA model with
2 layers and hidden dimension 128. This model was downloaded, modified (reduced number of
layers and hidden dimension) and initialized from scratch from https://huggingface.co/
LongSafari/hyenadna-small-32k-seqlen-hf. We mean pool the final layer embed-
dings and linearly project them to the binary classification logits. The model is trained on the 640
generated sequences, which are labeled as the negative class, and 640 randomly selected sequences
from the ground truth validation set (64 sequences per species), which are labeled as the positive
class. This dataset of 1,280 sequences is randomly split into 95% train and 5% validation. The
discriminator is trained with batch size of 8, learning rate of 1e−4, and the ADAM optimizer for 3
epochs to minimize binary cross entropy loss on the classification of real vs. generated sequences.
We report the AUROC from the final epoch on the 5% validation split of this classification dataset.

Oracle F1 Finally, controllability is measured by the macro-averaged F1 of an oracle
model on the 640 generated sequences. Our oracle model is a separate HyenaDNA model
with 8 layers and hidden dimension 256, which has 6.6M parameters. This model was
downloaded and initialized from scratch from https://huggingface.co/LongSafari/
hyenadna-small-32k-seqlen-hf. We mean pool the final layer embeddings and linearly
project them to the ten category classification logits. This model was trained on the full Species-10
dataset as described in Appendix C.1. For reference, in Table 14 we present the classification results
of the this oracle model in the 5% valdiation set of the original data. We see that other than difficulty
distinguishing between human and gorilla genomes, the model can serve as a near perfect oracle.

Table 14: Evaluation of HyenaDNA ‘oracle’ classifier on Species10 validation split.

Species Precision Recall F1

Arabidopsis thaliana 1.00 0.99 1.00
Caenorhabditis elegans 1.00 1.00 1.00
Danio rerio 1.00 1.00 1.00
Drosophila melanogaster 1.00 1.00 1.00
Felis catus 1.00 1.00 1.00
Gallus gallus 1.00 1.00 1.00
Gorilla gorilla 0.63 0.45 0.52
Homo sapiens 0.54 0.72 0.62
Mus musculus 1.00 0.97 0.98
Salmo trutta 1.00 0.98 0.99

25

https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf
https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf
https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf
https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C.5.2 CIFAR-10 QUALITY METRICS

For evaluation, we randomly samples 50,000 images for each model and the tools provided
here: https://github.com/w86763777/pytorch-image-generation-metrics.
git, as described in Campbell et al. (2022).

FID Fréchet inception distance (Heusel et al., 2017) is a common metric in image generation
where the divergence between real and generated data is measured to reflect the alignment of two
distributions. The metric uses features extracted from a pretrained Inception-v3 model on ImageNet-
1K to estimate the mean and variance of the input data. The difference of two multi-dimensional
Gaussian distributions is measured by Wasserstein-2 distance or Fréchet distance d(.) as follows:

FID = d(N (µreal,Σreal),N (µfake,Σfake)) = ∥µreal − µfake∥+
∥Tr(Σreal +Σfake − 2(ΣrealΣfake)

0.5)∥ (47)

IS Inception Score (Salimans et al., 2016) is an alternative measure of how well generated images
are aligned with human judgement. IS also utilizes Inception-v3 model to compute label distribution
p(y|x) for each generated image. IS focuses on two criteria: (1) A generated image should contain a
distinct class object, meaning its label distribution is expected to have low entropy; (2) The generated
images should vary across multiple classes, so the marginal distribution, p(y) =

∫
z
p(y|G(z))dz, is

expected to have high entropy, ideally approaching a uniform distribution. The formula is presented
as below:

IS = exp [ExKL(p(y|x)∥p(y))] , (48)

F1 F1 is used as a proxy for satisfying the desired conditional generation of gener-
ated samples by a pre-trained classifier on CIFAR-10. We use a pretrained Vision Trans-
former model downloaded from https://huggingface.co/edadaltocg/vit_base_
patch16_224_in21k_ft_cifar10 and fine-tuned on CIFAR-10.

C.5.3 QM9 GUIDANCE METRICS

For the guidance experiments in QM9, we generate 2,048 sequences of length 32. The reported
metrics are explained below.

Validity Validity is measured by whether the generated SMILES string can be parsed by the RDKit
library. Any strings that fail to be parsed are counted as invalid.

Novelty Novelty is measured by the number of valid and unique sequences that are not present in
the original QM9 dataset.

Property Mean / Median Finally, we also report the mean and median of the novel generated
sequence for the property of interest, QED or ring count.

D GUIDANCE ABLATION RESULTS

For each of the guidance experiments, we perform a hyerparameter search on the guidance param-
eters, e.g., γ in D-CFGand D-CBG. Below we present results from these searches for the various
guidance experiments.

Species-specific Genome Generation In this experiment we vary γ ∈ {1, 2, 3} for D-CFG ap-
plied to AR, MDLM, and UDLM. Additionally, for MDLM and UDLM we vary the number of
sampling steps T ∈ {128, 256, 512}.
Results for the AR D-CFG grid search are presented in Table 15, results for MDLM and UDLM grid
search are presented in Table 16. These results highlight that UDLM is more amenable to guidance

26

https://github.com/w86763777/pytorch-image-generation-metrics.git
https://github.com/w86763777/pytorch-image-generation-metrics.git
https://huggingface.co/edadaltocg/vit_base_patch16_224_in21k_ft_cifar10
https://huggingface.co/edadaltocg/vit_base_patch16_224_in21k_ft_cifar10

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 15: Varying γ for AR with D-CFG on Species-10 generation.

AR D-CFGγ
3-mer
JS (↓)

6-mer
JS (↓)

Disc.
AUROC (↓) F1 (↑)

1 0.04 0.09 1.00 0.87
2 0.05 0.14 1.00 0.68
3 0.10 0.23 1.00 0.20

Table 16: Varying γ and T for MDLM and UDLM with D-CFG on Species-10 generation.

Model D-CFGγ
3-mer
JS (↓)

6-mer
JS (↓)

Disc.
AUROC (↓) F1 (↑)

T = 128
MDLM 1 0.03 0.08 0.66 0.87
MDLM 2 0.04 0.12 0.89 0.77
MDLM 3 0.06 0.15 0.91 0.63
UDLM 1 0.03 0.08 0.72 0.91
UDLM 2 0.07 0.15 0.69 0.92
UDLM 3 0.10 0.23 0.74 0.83

T = 256
MDLM 1 0.03 0.08 0.81 0.88
MDLM 2 0.04 0.11 0.84 0.77
MDLM 3 0.07 0.16 0.83 0.67
UDLM 1 0.03 0.09 0.84 0.95
UDLM 2 0.07 0.16 0.85 0.94
UDLM 3 0.11 0.24 0.93 0.81

T = 512
MDLM 1 0.03 0.07 0.61 0.90
MDLM 2 0.04 0.11 0.71 0.78
MDLM 3 0.06 0.15 0.91 0.69
UDLM 1 0.03 0.08 0.77 0.92
UDLM 2 0.08 0.18 0.75 0.96
UDLM 3 0.11 0.24 0.76 0.82

than either AR or MDLM in this setting. UDLM achieves better quality and control metrics, and
while all model performance degrades as γ = 3, UDLM degrades less and improves when γ = 2.

QM9 In this section, we list the hyperparameter grid search results for QM9 drug likeliness (QED)
maximization using AR FUDGE (Table 17), AR PPLM (Table 18), AR CFG (Table 19), MDLM
D-CBG (Table 20), MDLM D-CFG (Table 21), UDLM D-CBG (Table 22), UDLM D-CFG (Ta-
ble 23), MDLM NOS (Table 24), and UDLM NOS (Table 25). QM9 ring count maximization guid-
ance results with AR FUDGE (Table 26), AR PPLM (Table 27), AR D-CFG (Table 28), MDLM
D-CBG (Table 29), MDLM D-CFG (Table 30), UDLM D-CBG (Table 31), UDLM D-CFG (Ta-
ble 32), MDLM NOS (Table 33), UDLM NOS (Table 34) are also included.

CIFAR-10 In Table 35, we explore the effect of γ ∈ 1, 2, 3, 4, 5 in conditional image generation.
We find that increasing γ generally leads to better IS and F1 scores for both MDLM and UDLM. For
FID, MDLM achieves better scores as γ increases. However, the impact of γ is weaker for UDLM,
as the model’s FID score worsens when γ exceeds 2. We also plot visual outputs of different γ in
Figure 3. As γ is increased, the appearance and the shape of a class object become more refined and
sharpened.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 17: Varying γ for maximizing QED guidance with AR FUDGE. The number of generated
molecules is 2048. Mean and median QED values of the novel molecules are reported. Best values
are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) QED Mean (↑) QED Median (↑)
1 2046 6 0.55 0.55
2 2034 18 0.56 0.56
3 1984 22 0.58 0.58
4 1833 31 0.56 0.57
5 1641 43 0.57 0.59

10∗ 914 24 0.58 0.60
15 674 10 0.58 0.60
20 434 7 0.57 0.59
25 200 5 0.62 0.62
30 77 4 0.62 0.62
35 18 7 0.61 0.61
40 9 4 0.61 0.61

Table 18: Varying η and n for maximizing QED guidance with AR PPLM. The number of generated
molecules is 2048. Mean and median QED values of the novel molecules are reported. Best values
are bolded. The set of results used in the main paper is starred.

Num. Valid (↑) Num. Novel (↑) QED Mean (↑) QED Median (↑)
η = 0.04, n = 10 2048 0 N.A. N.A.
η = 0.1, n = 10 2044 22 0.43 0.46
η = 0.04, n = 30 2030 39 0.47 0.48
η = 0.1, n = 30∗ 1618 291 0.48 0.49

Table 19: Varying γ for maximizing QED guidance with AR D-CFG. The number of generated
molecules is 2048. Mean and median QED values of the novel molecules are reported. Best values
are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) QED Mean (↑) QED Median (↑)
1.0 2018 172 0.57 0.57
1.5 2018 175 0.58 0.58
2.0 2017 142 0.59 0.59
2.5∗ 1995 130 0.60 0.60
3.0 1954 121 0.60 0.60

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 20: Varying γ for maximizing QED guidance with MDLM D-CBG. The number of generated
molecules is 2048. Mean and median QED values of the novel molecules are reported. Best values
are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) QED Mean (↑) QED Median (↑)
1.0 1203 406 0.46 0.47
1.5 1061 369 0.47 0.47
2.0 902 310 0.48 0.48
2.5 801 271 0.48 0.49
3.0 711 216 0.49 0.50
3.5 629 189 0.50 0.52
4.0 542 173 0.50 0.51
4.5 489 154 0.51 0.53
5.0 423 135 0.52 0.53
5.5 402 123 0.53 0.54
6.0 362 115 0.53 0.55
6.5 338 110 0.54 0.56
7.0 343 95 0.55 0.56
7.5 292 88 0.55 0.56
8.0 276 73 0.56 0.58
8.5 294 72 0.56 0.56
9.0 267 73 0.56 0.57
9.5 270 71 0.56 0.58
10.0 248 69 0.56 0.57
15.0 151 54 0.57 0.58
20.0∗ 64 22 0.58 0.60
25.0 11 3 0.58 0.58
30.0 1 1 0.58 0.58
40.0 0 0 N.A. N.A.

Table 21: Varying γ for maximizing QED guidance with MDLM D-CFG. The number of generated
molecules is 2048. Mean and median QED values of the novel molecules are reported. Best values
are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) QED Mean (↑) QED Median (↑)
1.0 1178 410 0.56 0.57
1.5 1079 396 0.58 0.58
2.0 932 347 0.59 0.60
2.5 760 307 0.60 0.61
3.0∗ 652 251 0.61 0.61

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 22: Varying γ for maximizing QED guidance with UDLM D-CBG. The number of generated
molecules is 2048. Mean and median QED values of the novel molecules are reported. Best values
are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) QED Mean (↑) QED Median (↑)
1.0 2039 168 0.47 0.47
3.0 1916 154 0.50 0.50
5.0 1697 126 0.52 0.55
10.0 1771 63 0.57 0.59
15.0 1732 70 0.59 0.60
20.0 1670 77 0.60 0.60
25.0 1478 74 0.60 0.61
30.0 1330 69 0.60 0.61
35.0∗ 1223 87 0.61 0.61
40.0 1178 75 0.61 0.61

Table 23: Varying γ for maximizing QED guidance with UDLM D-CFG. The number of generated
molecules is 2048. Mean and median QED values of the novel molecules are reported. Best values
are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) QED Mean (↑) QED Median (↑)
1.0 2010 184 0.57 0.57
1.5 2021 158 0.59 0.59
2.0 2032 144 0.60 0.60
2.5 2035 140 0.60 0.60
3.0∗ 2034 133 0.61 0.61

MDLM UDLM

Figure 3: Illustration of varying γ on CIFAR-10.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 24: Varying η, n, and γkl for maximizing QED guidance with MDLM NOS. The number of
generated molecules is 2048. Mean and median QED values of the novel molecules are reported.
Best values are bolded. The set of results used in the main paper is starred.

Num. Valid (↑) Num. Novel (↑) QED (↑)
Mean Median

η = 0.001, n = 1, γkl = 0 1324 453 0.446 0.457
η = 0.001, n = 1, γkl = 0.001 1302 471 0.454 0.463
η = 0.001, n = 1, γkl = 0.01∗ 1302 471 0.454 0.463
η = 0.001, n = 5, γkl = 0 1322 453 0.445 0.456
η = 0.001, n = 5, γkl = 0.001 1300 468 0.453 0.463
η = 0.001, n = 5, γkl = 0.01 1322 453 0.445 0.456
η = 0.001, n = 10, γkl = 0 1324 454 0.445 0.456
η = 0.001, n = 10, γkl = 0.001 1300 468 0.453 0.463
η = 0.001, n = 10, γkl = 0.01 1324 454 0.445 0.456
η = 0.01, n = 1, γkl = 0 1323 452 0.445 0.456
η = 0.01, n = 1, γkl = 0.001 1301 471 0.452 0.463
η = 0.01, n = 1, γkl = 0.01 1323 452 0.445 0.456
η = 0.01, n = 5, γkl = 0 1302 471 0.453 0.463
η = 0.01, n = 5, γkl = 0.001 1325 458 0.445 0.456
η = 0.01, n = 5, γkl = 0.01 1302 471 0.453 0.463
η = 0.01, n = 10, γkl = 0 1329 457 0.445 0.456
η = 0.01, n = 10, γkl = 0.001 1306 478 0.453 0.463
η = 0.01, n = 10, γkl = 0.01 1329 457 0.445 0.456
η = 0.1, n = 1, γkl = 0 1296 477 0.451 0.462
η = 0.1, n = 1, γkl = 0.001 1325 456 0.444 0.456
η = 0.1, n = 1, γkl = 0.01 1296 477 0.451 0.462
η = 0.1, n = 5, γkl = 0 1322 454 0.443 0.456
η = 0.1, n = 5, γkl = 0.001 1300 482 0.450 0.461
η = 0.1, n = 5, γkl = 0.01 1322 454 0.443 0.456
η = 0.1, n = 10, γkl = 0 1298 478 0.450 0.461
η = 0.1, n = 10, γkl = 0.001 1323 452 0.443 0.456
η = 0.1, n = 10, γkl = 0.01 1298 478 0.450 0.461
η = 1, n = 1, γkl = 0 1268 486 0.441 0.448
η = 1, n = 1, γkl = 0.001 1258 503 0.446 0.452
η = 1, n = 1, γkl = 0.01 1268 486 0.441 0.448
η = 1, n = 5, γkl = 0 1268 486 0.441 0.448
η = 1, n = 5, γkl = 0.001 1258 503 0.446 0.452
η = 1, n = 5, γkl = 0.01 1268 486 0.441 0.448
η = 1, n = 10, γkl = 0 1268 486 0.441 0.448
η = 1, n = 10, γkl = 0.001 1258 503 0.446 0.452
η = 1, n = 10, γkl = 0.01 1268 486 0.441 0.448
η = 5, n = 1, γkl = 0 631 367 0.435 0.443
η = 5, n = 1, γkl = 0.001 664 410 0.430 0.438
η = 5, n = 1, γkl = 0.01 631 367 0.435 0.443
η = 5, n = 5, γkl = 0 631 367 0.435 0.443
η = 5, n = 5, γkl = 0.001 664 410 0.430 0.438
η = 5, n = 5, γkl = 0.01 631 367 0.435 0.443
η = 5, n = 10, γkl = 0 631 367 0.435 0.443
η = 5, n = 10, γkl = 0.001 664 410 0.430 0.438
η = 5, n = 10, γkl = 0.01 631 367 0.435 0.443

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 25: Varying η, n, and γkl for maximizing QED guidance with UDLM NOS. The number of
generated molecules is 2048. Mean and median QED values of the novel molecules are reported.
Best values are bolded. The set of results used in the main paper is starred.

Num. Valid (↑) Num. Novel (↑) QED (↑)
Mean Median

η = 0.001, n = 1, γkl = 0 1976 369 0.450 0.462
η = 0.001, n = 1, γkl = 0.001 1988 383 0.458 0.467
η = 0.001, n = 1, γkl = 0.01 1988 383 0.458 0.467
η = 0.001, n = 5, γkl = 0 1987 382 0.458 0.467
η = 0.001, n = 5, γkl = 0.001 1975 369 0.449 0.462
η = 0.001, n = 5, γkl = 0.01 1987 382 0.458 0.467
η = 0.001, n = 10, γkl = 0 1987 379 0.457 0.467
η = 0.001, n = 10, γkl = 0.001 1976 369 0.449 0.462
η = 0.001, n = 10, γkl = 0.01 1987 379 0.457 0.467
η = 0.01, n = 1, γkl = 0 1988 384 0.458 0.467
η = 0.01, n = 1, γkl = 0.001 1976 373 0.450 0.462
η = 0.01, n = 1, γkl = 0.01 1988 384 0.458 0.467
η = 0.01, n = 5, γkl = 0 1976 370 0.449 0.461
η = 0.01, n = 5, γkl = 0.001 1985 383 0.458 0.468
η = 0.01, n = 5, γkl = 0.01 1985 383 0.458 0.468
η = 0.01, n = 10, γkl = 0 1974 371 0.449 0.461
η = 0.01, n = 10, γkl = 0.001 1988 383 0.458 0.468
η = 0.01, n = 10, γkl = 0.01 1974 371 0.449 0.461
η = 0.1, n = 1, γkl = 0 1976 384 0.448 0.461
η = 0.1, n = 1, γkl = 0.001 1985 387 0.458 0.468
η = 0.1, n = 1, γkl = 0.01 1976 384 0.448 0.461
η = 0.1, n = 5, γkl = 0 1984 380 0.459 0.468
η = 0.1, n = 5, γkl = 0.001 1973 377 0.449 0.462
η = 0.1, n = 5, γkl = 0.01 1984 380 0.459 0.468
η = 0.1, n = 10, γkl = 0 1982 382 0.459 0.468
η = 0.1, n = 10, γkl = 0.001 1973 375 0.449 0.462
η = 0.1, n = 10, γkl = 0.01 1982 382 0.459 0.468
η = 1, n = 1, γkl = 0 1965 361 0.455 0.466
η = 1, n = 1, γkl = 0.001 1957 382 0.452 0.461
η = 1, n = 1, γkl = 0.01 1965 361 0.455 0.466
η = 1, n = 5, γkl = 0 1957 382 0.452 0.461
η = 1, n = 5, γkl = 0.001 1965 361 0.455 0.466
η = 1, n = 5, γkl = 0.01 1957 382 0.452 0.461
η = 1, n = 10, γkl = 0 1957 382 0.452 0.461
η = 1, n = 10, γkl = 0.001 1965 361 0.455 0.466
η = 1, n = 10, γkl = 0.01 1957 382 0.452 0.461
η = 5, n = 1, γkl = 0 944 302 0.467 0.474
η = 5, n = 1, γkl = 0.001 974 329 0.465 0.470
η = 5, n = 1, γkl = 0.01 944 302 0.467 0.474
η = 5, n = 5, γkl = 0 944 302 0.467 0.474
η = 5, n = 5, γkl = 0.001∗ 946 302 0.467 0.474
η = 5, n = 5, γkl = 0.01 981 332 0.465 0.469
η = 5, n = 10, γkl = 0 974 329 0.465 0.470
η = 5, n = 10, γkl = 0.001 975 330 0.465 0.470
η = 5, n = 10, γkl = 0.01 982 330 0.465 0.470

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 26: Varying γ for maximizing Ring Count guidance with AR FUDGE. The number of gener-
ated molecules is 2048. Mean and Median Ring Count values of the novel molecules are reported.
Best values are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) Ring Count Mean (↑) Ring Count Median (↑)
1 2040 20 3.90 4.00
2∗ 2035 15 4.20 4.00
3 2018 11 5.09 5.00
4 1982 7 4.71 5.00
5 1785 3 5.33 6.00
10 1 0 N.A. N.A.
15 0 0 N.A. N.A.
20 0 0 N.A. N.A.
25 0 0 N.A. N.A.
30 0 0 N.A. N.A.
35 0 0 N.A. N.A.
40 0 0 N.A. N.A.

Table 27: Varying η and n for maximizing Ring Count guidance with AR PPLM. The number of
generated molecules is 2048. Mean and Median Ring Count values of the novel molecules are
reported. Best values are bolded. The set of results used in the main paper is starred.

Num. Valid (↑) Num. Novel (↑) Ring Count (↑)
Mean Median

η = 0.04, n = 10 2048 0 N.A. N.A.
η = 0.1, n = 10 2042 23 1.26 1.00
η = 0.04, n = 30 2027 43 1.88 2.00
η = 0.1, n = 30∗ 1486 233 1.89 2.00

Table 28: Varying γ for maximizing Ring Count guidance with AR D-CFG. The number of gener-
ated molecules is 2048. Mean and Median Ring Count values of the novel molecules are reported.
Best values are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) Ring Count Mean (↑) Ring Count Median (↑)
1.0 2009 303 4.49 4.00
1.5 1984 311 4.79 5.00
2.0 1948 390 4.77 5.00
2.5 1868 389 4.78 5.00
3.0 1765 378 4.82 5.00
3.5 1540 300 4.82 5.00
4.0 1206 217 4.88 5.00
4.5 965 173 4.71 4.00
5.0 656 110 4.75 4.00
5.5 426 76 4.70 4.00
6.0 284 57 4.75 4.00
6.5 166 35 4.92 5.00
7.0∗ 108 24 5.04 5.50
7.5 72 12 5.23 6.00
8.0 50 6 5.33 6.00
8.5 22 3 5.50 6.00
9.0 8 4 5.50 6.00
9.5 4 3 5.33 6.00
10.0 2 1 6.00 6.00

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 29: Varying γ for maximizing Ring Count guidance with MDLM D-CBG. The number of
generated molecules is 2048. Mean and Median Ring Count values of the novel molecules are
reported. Best values are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) Ring Count Mean (↑) Ring Count Median (↑)
1.0 1160 447 2.19 2.00
5.0 364 215 3.58 4.00
10.0 251 160 4.19 4.00
15.0 171 118 4.71 5.00
20.0 119 100 4.98 5.00
25.0∗ 82 65 5.05 5.00
30.0 49 38 4.63 4.00
35.0 21 18 4.89 5.00
40.0 12 12 4.75 5.00

Table 30: Varying γ for maximizing Ring Count guidance with MDLM D-CFG. The number of
generated molecules is 2048. Mean and Median Ring Count values of the novel molecules are
reported. Best values are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) Ring Count Mean (↑) Ring Count Median (↑)
1.0 968 487 4.32 4.00
1.5 870 432 4.64 4.00
2.0 781 429 4.72 5.00
2.5 637 375 4.87 5.00
3.0 508 290 4.84 5.00
3.5 435 256 4.79 5.00
4.0 336 196 4.92 5.00
4.5 308 186 4.83 5.00
5.0 213 123 4.86 5.00
5.5 164 107 4.86 5.00
6.0∗ 132 90 5.01 5.00
6.5 81 54 4.80 5.00
7.0 77 54 4.83 5.00
7.5 54 39 4.82 5.00
8.0 32 22 4.68 5.00
8.5 17 14 4.64 4.00
9.0 10 9 4.78 5.00
9.5 12 11 4.91 5.00
10.0 3 3 4.00 4.00

Table 31: Varying γ for maximizing Ring Count guidance with UDLM D-CBG. The number of
generated molecules is 2048. Mean and Median Ring Count values of the novel molecules are
reported. Best values are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) Ring Count Mean (↑) Ring Count Median (↑)
1.0 2029 209 2.13 2.00
5.0 1494 301 4.09 4.00
10.0 1641 528 4.50 4.00
15.0 1676 711 4.56 4.00
20.0 1692 821 4.62 4.00
25.0 1697 849 4.66 4.00
30.0 1697 889 4.67 4.00
35.0 1707 926 4.71 4.00
40.0∗ 1670 943 4.73 5.00

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 32: Varying γ for maximizing Ring Count guidance with UDLM D-CFG. The number of
generated molecules is 2048. Mean and Median Ring Count values of the novel molecules are
reported. Best values are bolded. The set of results used in the main paper is starred.

γ Num. Valid (↑) Num. Novel (↑) Ring Count Mean (↑) Ring Count Median (↑)
1.0 1932 585 4.54 4.00
1.5 1979 552 4.66 4.00
2.0 1981 535 4.80 5.00
2.5 1971 507 4.83 5.00
3.0 1968 481 4.82 5.00
3.5∗ 1975 459 4.91 5.00
4.0 1951 426 4.89 5.00
4.5 1925 404 4.88 5.00
5.0 1894 429 4.81 5.00
5.5 1826 406 4.89 5.00
6.0 1699 366 4.84 5.00
6.5 1611 317 4.83 5.00
7.0 1508 300 4.82 5.00
7.5 1375 308 4.84 5.00
8.0 1251 232 4.85 5.00
8.5 1110 219 4.81 5.00
9.0 1026 233 4.73 5.00
9.5 887 194 4.84 5.00
10.0 829 207 4.71 4.00

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 33: Varying η, n, and γkl for maximizing Ring Count guidance with MDLM NOS. The
number of generated molecules is 2048. Mean and median Ring Count values of the novel molecules
are reported. Best values are bolded. The set of results used in the main paper is starred.

Num. Valid (↑) Num. Novel (↑) Ring Count (↑)
Mean Median

η = 0.001, n = 1, γkl = 0 1302 471 1.926 2.000
η = 0.001, n = 1, γkl = 0.001 1325 453 1.899 2.000
η = 0.001, n = 1, γkl = 0.01 1302 471 1.926 2.000
η = 0.001, n = 5, γkl = 0 1326 456 1.908 2.000
η = 0.001, n = 5, γkl = 0.001 1303 473 1.930 2.000
η = 0.001, n = 5, γkl = 0.01 1326 456 1.908 2.000
η = 0.001, n = 10, γkl = 0 1325 456 1.914 2.000
η = 0.001, n = 10, γkl = 0.001 1303 471 1.930 2.000
η = 0.001, n = 10, γkl = 0.01 1325 456 1.914 2.000
η = 0.01, n = 1, γkl = 0 1324 453 1.925 2.000
η = 0.01, n = 1, γkl = 0.001 1306 472 1.928 2.000
η = 0.01, n = 1, γkl = 0.01 1324 453 1.925 2.000
η = 0.01, n = 5, γkl = 0 1302 469 1.928 2.000
η = 0.01, n = 5, γkl = 0.001 1323 459 1.939 2.000
η = 0.01, n = 5, γkl = 0.01 1302 469 1.928 2.000
η = 0.01, n = 10, γkl = 0 1324 460 1.933 2.000
η = 0.01, n = 10, γkl = 0.001 1324 460 1.933 2.000
η = 0.01, n = 10, γkl = 0.01 1305 470 1.932 2.000
η = 0.1, n = 1, γkl = 0 1292 478 1.948 2.000
η = 0.1, n = 1, γkl = 0.001 1320 469 1.942 2.000
η = 0.1, n = 1, γkl = 0.01 1292 478 1.948 2.000
η = 0.1, n = 5, γkl = 0 1316 474 1.951 2.000
η = 0.1, n = 5, γkl = 0.001 1291 480 1.960 2.000
η = 0.1, n = 5, γkl = 0.01 1316 474 1.951 2.000
η = 0.1, n = 10, γkl = 0 1315 471 1.951 2.000
η = 0.1, n = 10, γkl = 0.001 1292 480 1.952 2.000
η = 0.1, n = 10, γkl = 0.01 1292 480 1.952 2.000
η = 1, n = 1, γkl = 0 1186 507 2.384 2.000
η = 1, n = 1, γkl = 0.001 1163 479 2.240 2.000
η = 1, n = 1, γkl = 0.01 1186 507 2.384 2.000
η = 1, n = 5, γkl = 0 1186 507 2.384 2.000
η = 1, n = 5, γkl = 0.001 1188 510 2.388 2.000
η = 1, n = 5, γkl = 0.01 1166 481 2.263 2.000
η = 1, n = 10, γkl = 0 1163 479 2.240 2.000
η = 1, n = 10, γkl = 0.001 1188 508 2.391 2.000
η = 1, n = 10, γkl = 0.01 1168 483 2.267 2.000
η = 5, n = 1, γkl = 0 390 268 3.164 3.000
η = 5, n = 1, γkl = 0.001 337 231 3.147 3.000
η = 5, n = 1, γkl = 0.01 390 268 3.164 3.000
η = 5, n = 5, γkl = 0 390 268 3.164 3.000
η = 5, n = 5, γkl = 0.001 341 235 3.187 3.000
η = 5, n = 5, γkl = 0.01 403 281 3.281 3.000
η = 5, n = 10, γkl = 0 390 268 3.164 3.000
η = 5, n = 10, γkl = 0.001 343 237 3.203 3.000
η = 5, n = 10, γkl = 0.01∗ 353 246 3.313 3.000

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 34: Varying η, n, and γkl for maximizing Ring Count guidance with UDLM NOS. The number
of generated molecules is 2048. Mean and median Ring Count values of the novel molecules are
reported. Best values are bolded. The set of results used in the main paper is starred.

Num. Valid (↑) Num. Novel (↑) Ring Count (↑)
Mean Median

η = 0.001, n = 1, γkl = 0 1975 369 2.024 2.000
η = 0.001, n = 1, γkl = 0.001 1987 382 2.026 2.000
η = 0.001, n = 1, γkl = 0.01 1987 382 2.026 2.000
η = 0.001, n = 5, γkl = 0 1975 369 2.014 2.000
η = 0.001, n = 5, γkl = 0.001 1987 379 2.021 2.000
η = 0.001, n = 5, γkl = 0.01 1975 369 2.014 2.000
η = 0.001, n = 10, γkl = 0 1987 382 2.016 2.000
η = 0.001, n = 10, γkl = 0.001 1975 369 2.014 2.000
η = 0.001, n = 10, γkl = 0.01 1975 369 2.014 2.000
η = 0.01, n = 1, γkl = 0 1975 373 2.024 2.000
η = 0.01, n = 1, γkl = 0.001 1987 376 2.027 2.000
η = 0.01, n = 1, γkl = 0.01 1987 376 2.027 2.000
η = 0.01, n = 5, γkl = 0 1973 373 2.019 2.000
η = 0.01, n = 5, γkl = 0.001 1989 384 2.026 2.000
η = 0.01, n = 5, γkl = 0.01 1989 384 2.026 2.000
η = 0.01, n = 10, γkl = 0 1971 372 2.027 2.000
η = 0.01, n = 10, γkl = 0.001 1990 384 2.034 2.000
η = 0.01, n = 10, γkl = 0.01 1971 372 2.027 2.000
η = 0.1, n = 1, γkl = 0 1983 387 2.041 2.000
η = 0.1, n = 1, γkl = 0.001 1973 371 1.997 2.000
η = 0.1, n = 1, γkl = 0.01 1983 387 2.041 2.000
η = 0.1, n = 5, γkl = 0 1983 391 2.087 2.000
η = 0.1, n = 5, γkl = 0.001 1974 367 1.989 2.000
η = 0.1, n = 5, γkl = 0.01 1974 367 1.989 2.000
η = 0.1, n = 10, γkl = 0 1981 392 2.094 2.000
η = 0.1, n = 10, γkl = 0.001 1975 371 1.992 2.000
η = 0.1, n = 10, γkl = 0.01 1981 392 2.094 2.000
η = 1, n = 1, γkl = 0 1961 423 2.137 2.000
η = 1, n = 1, γkl = 0.001 1962 403 2.181 2.000
η = 1, n = 1, γkl = 0.01 1961 423 2.137 2.000
η = 1, n = 5, γkl = 0 1961 423 2.137 2.000
η = 1, n = 5, γkl = 0.001 1962 403 2.181 2.000
η = 1, n = 5, γkl = 0.01 1961 423 2.137 2.000
η = 1, n = 10, γkl = 0 1961 423 2.137 2.000
η = 1, n = 10, γkl = 0.001 1962 403 2.181 2.000
η = 1, n = 10, γkl = 0.01 1961 423 2.137 2.000
η = 5, n = 1, γkl = 0 950 396 2.629 2.000
η = 5, n = 1, γkl = 0.001 933 379 2.546 2.000
η = 5, n = 1, γkl = 0.01 950 396 2.629 2.000
η = 5, n = 5, γkl = 0 950 396 2.629 2.000
η = 5, n = 5, γkl = 0.001 933 379 2.546 2.000
η = 5, n = 5, γkl = 0.01 954 397 2.635 2.000
η = 5, n = 10, γkl = 0 950 396 2.629 2.000
η = 5, n = 10, γkl = 0.001 932 378 2.550 2.000
η = 5, n = 10, γkl = 0.01∗ 961 402 2.637 2.500

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 35: Ablation results of γ values on CIFAR-10. Best values are bolded.

FID (↓) IS (↑) F1 (↑)
MDLM D-CFG

γ = 1 27.94 7.14 0.76
γ = 2 18.62 8.24 0.95
γ = 3 16.19 8.78 0.99
γ = 4 15.56 9.02 0.99
γ = 5 15.73 9.19 1.00

UDLM D-CFG
γ = 1 26.70 7.43 0.81
γ = 2 20.75 8.34 0.96
γ = 3 21.31 8.52 0.98
γ = 4 23.21 8.66 0.99
γ = 5 26.15 8.60 0.99

38

	Introduction
	Background
	Discrete Diffusion Models
	Diffusion Guidance

	Guidance Algorithms for Discrete Diffusion
	Classifier-free Guidance
	Classifier-based Guidance

	Uniform Diffusion Language Models
	Uniform Noise Diffusion
	Improved Likelihood Bounds in Continuous Time

	Experiments
	Language Modeling with Uniform Noise Discrete Diffusion
	Guided Discrete Diffusion

	Related Works, Discussion, and Conclusion
	Continuous Time Discrete Uniform Diffusion
	Relating UDLM to CTMC
	Equivalence of UDLM ELBO and SEDD ELBO

	Experimental Details
	Dataset Details
	Architectural Details
	Training Configurations
	Guidance Details
	Baselines
	D-CFG Details
	D-CBG Details

	Guidance Evaluation Details
	Genomic Sequences Metrics
	CIFAR-10 Quality Metrics
	QM9 Guidance Metrics

	Guidance Ablation Results

