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A Preliminaries: On the In-Network RIP and its Consequences

This section collects some preliminary results on the introduced In-network RIP (Definition [3) and
related properties/consequences, which will be used through the rest of the appendix. The proof of
these intermediate results can be found in Appendix [G.
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Lemma 2. Suppose that A satisfies the (65(,11), 2(r + 1))—RIP, and the gossip matrix is chosen
according to Assumption|l|with

2
pz < 252(r+1) '
- 4m5(1 + 252(T+1))2

Then, for any matrix Z € R™¥™4 sych that each of its d x d blocks [Z);; and its block average
Z=-23" > j—1 Zij are of rank at most r, it holds

IWZW — A A(Z)|| < 205, TZT |7 +2 (p+ (1 + 50040 Bagen) ) 12 = TZT |1
where ( 5 )2
R = o (14 20,
Aoirir) £ 4m"p2%-
2(r+1)

Lemma 3. Suppose that A satisfies the (54,4)—RIP, and the gossip matrix is chosen according to
Assumption[I|with
2 203
pe = YR RCE
4m* (1 + 264)
Then,

IWZW — A*A(Z)|| < (254 ) (p T+ 254)A4)) 1Z]..

for any matrix Z € R™4>*™4. Here, || Z ||, denotes the nuclear norm of Z.

Lemma 4. Suppose that A satisfies the (32, ,2r*)—RIP, and the gossip matrix is chosen according
to Assumption[l] with
26%T*
p<
4m®(1 4 209,+)?
Then, the following hold:

I(Z = T)A"AZ)| < o2 (1271 + b20- 1 27| )
I(Z = DA AZ)NT =D < p1Z7]| + b2r- [ 27| F) -

B Proof of Theorem

As preliminary sketched in Sec. [3.1] the proof of the theorem in organized in two phases. Phase I
(Appendix M shows that the iterates U* stay in close proximity to a carefully selected reference
sequence, U?. This reference sequence exhibits desirable alignment with the signal space, a key
factor to ensure progresses of U* toward the true solution. Phase II (Appendix |B.2) demonstrates that
this established alignment of the iterates to the signal space remains steady while the generalization
error progressively lessens.

B.1 Phasel

This section is devoted to the analysis of the spectral phase of the algorithm, with detailed proof of
the supporting lemmata deferred to Appendix [E.

Recalling the signal plus noise decomposition of the iterates U? as in @), our primary objective is
to demonstrate that, after a certain elapsed time ¢ post-initialization ({ = 0), the signal components
omin(U'Q) and ||V, U'Q?|| “outweigh” the noise-related terms | U*Q%|| and ||(V4) TULQH L,
respectively. Essentially, this indicates a significant alignment of the iterates U? with the signal
eigenspace. The proof is organized in the following three steps:

o Step 1 (approximating the trajectory): We show that, for any given initialization U® = uU with
small y, and sufficiently connected network (p small), the iterates U can be closely approximated by
the following dynamics in the first few iterations ¢ :

~ t
Utz(w2+%A*A( *)) U° = MU,  with M::W2+%A*A(Z*). (28)
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We refer to Sec. [3.1]for further insight behind the choice of such a reference trajectory;

o Step 2 (bounding the signal- and noise-terms): Employing the eigen-properties of the mapping
M in @) and the signal-plus-noise decomposition @) of U?, we provide suitable bounds of the
quantities opmin (U'QY), |[UTQHL ||, and ||(V4) T Virige ||. From these, we determine conditions on
the free parameters to achieve the desired alignment of the iterates U* with the signal eigenspace.

o Step 3 (from deterministic to random initialization): The derivations in Steps 1 and 2 hold for
any given initialization matrix U. In this step, we conclude the analysis by stating the final result
when U is randomly selected, with Gaussian entries.

B.1.1 Step 1: Approximating the trajectory

Employing @) and following the same steps as in the proof of (34, Lemma 8.1] applied to U, we
can express U? as a function of U as follows:

Ut =U"'+ E, (29)
where the error sequence E* reads
t

E=% <W2 + %A*A(Z*))F

=1

(A*A(Ui—l(Ui—l)T)Ui—l) . (30)

'«

m

Next we quantify the quality of the approximation of U*? by Ut. Specifically, defining
# £ min {t eN, : |07 - Ut > ||Ut—1\|} ,

Lemmabelow shows that U* is a good approximation of U* (|| E*|| is uniformly bounded) as long
ast € [t*]. Lemma|§ shows that ¢* is bounded away from zero, providing thus an estimate of the

time interval within which U is “well approximated” by U".

Lemma 5. Suppose that (i) A satisfies the (8(,+ 1), 2(r* + 1)) —RIP property and the (04, 4)—RIP;
and (ii) the gossip matrix W is chosen according to Assumption[I} with

2
p* < 20301 :
B 4m5(1 + 262(r*+1))2

Then, Et can be bounded as
4m~!
(1+ 2V 8y 1)) M1 (Z%)

_ 3 3
< (L QU+ 2V )M(29) (19U + 02V @ - 2)0)) . Ve 7). Gy

1B < 4% min{r, md} (1 420,42 (p+ (1 +254)A4)) X

Lemma 6. In the setting of Lemmal[3} the following lower bound of t* holds:

(142Vr* 8o (% £1)) A1(Z%)

R 17U I+p1/ 2V (z-yU))°
4(1+204+2(p+(14+264) Ay ) ) 2 ( Tl )

In ((1+a>\1()?*)(1+2\/r75r*+1))3)
T+ar (X ) (1—2Vr* 5% 1))

In
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B.1.2  Step 2: Bounding the signal- and noise-terms
Through the section we will use the following notation, which simplifies the statement of our results:
v EXN(ZY) (1 + Vr G ),
Vrrpty
Ars (Z%) = 383 1) VI M (Z7)]
e =20, +2(p+ (14 26,)A,),
52 (L a2V ) M(Z)ITU| + (0* + ap'Pv)|[(Z - T)U|

5, =

o K — , (32)
COmin (V;MJU) (]. + OZQ\/F(SQ(T*_;'_l)) )\1(2*)
A po 1 (M) (pore (M) TU | + (0° + ap'P0)|(Z = T)U|) + || B (33)

(1- 5p)lwr* (Mt)amin(V;MjU)

The upcoming lemma delves into the characteristics of the dynamics U? (through the eigen-
properties of M) to bound the signal and noise quantities of interest i, (U*Q?), [|[U*QH ]|, and
(V)T Viregt||. These bounds will shed light on the conditions ensuring that U* exhibits sufficient
alignment to the signal space (in the sense previously discussed).

Lemma 7. Suppose that (i) A satisfies the (0a(r* 41y, 2(r* + 1)) —RIP, with
1
6 * < "{_4;
2D = 108
(ii) W is chosen according to Assumption|I] with

. 62(’("‘+1) ()\’r‘* (Z*) - 362(r’(+1)\/7:)\1 (Z*))Z
p < min 5 , = ; (34)
2m2y/m(1 + 265(,+ 41)) 3r* AL (Z%)2(1 4 /1% 6900 )2
and (iii) y; defined in satisfies
—2
< —. 35
IS 17 (35)
Then, omin(U'QY), || UQHL || and ||(V4) T Virege || can be bounded respectively as
1—-9
omin(U'Q") > %aﬁ (MY omin(Via7U) = ||EY (36a)
—2
K
Q"+ < g Hor (M)win (V7 0), (36b)
I(VE) Vi || < 56 (\/7*,-;252(,«*“) + %) . (36¢)

The desiderata is a sufficient large o, (U*Q?) (persistent signal component) along with small noise-
terms || U'Q%| and ||(V£) T Virege||. A close look at equations suggests that this is achievable
by guaranteeing sufficiently small p (quantified by ), | Et|| and 7;. The latter represents a suitable

noise-to-signal ratio measure, which accounts for the deviation of U* from U* as well as the consensus
discrepancies in U.

In Step 1 (Lemma|5) we showed that || E*|| remains “small” as long as ¢ € [t*]. The subsequent
lemma proves that, after a certain number of iterations nestled within [¢*], one can confidently ensure
that ~; also is small, so that will hold.

Lemma 8. Reinstate Assumptions (i)-(ii) of Lemmal[7} Choose ju such that
2 < (14 2vr*da(e 1) M1 (Z27) { m||U vy | (o) =95+
— Al +n) min{r, md} TUN + Vrp (T - T)U|)?
c(1 = 6,)momin(VS 11 7U) 0)12,&}
862 (|TU N + /2| (@ = T)U )

)

(37
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where c is a strictly positive constant ¢ < 1/2 and o is defined in (32).
Then after

_ _ —1
A 1+ OZAT* (Z*) — a2 vV T*62(r*+1))\1(z*)
t, = |In(o) | In —
1+ 0[2\/ T*62(7‘*+1)>\1(Z*)

iterations, it holds
Y, < ek

Lemma@ establishes the existence of a time ¢, at which ~;« is sufficiently small. Notice that, in the
setting of the lemma, ¢, < t*. As such, we can apply also LemmaE att = t,, ensuring that || B+ ||
concurrently resides under the desired limit. This, coupled with a judicious choice of x, results in the
ultimate bounds on the quantities in (36), as detailed next.

Using Lemmalg]in (36), yields
"

Tmin (U Q") = (1= 3,) 78 — || B, (38)

b Aty L K2
U= @™~ < —g-ub, (39)
T

|(vA) Vi

where for convenience, we defined
B2 o (M) omin(Vsp 7 U).

We proceed to further bound the RHS of (38) and (39).
By definition of -y, and choosing ¢ < 1/17, it holds

1
I < 321 = 6,)1B.

< 56 (\/7"7*&262(,,*+2) + c%_Q) ,

Consequently
(@ B
Tuin (U Q") 2 E(1=8,)8— (1 =5, )up = £,
whereby in (a) we used 6, < 1 /3, which holds under .

It remains to upper and lower bound 3. Under the postulated assumption on dg,+, Apx (M?) > 1.
Therefore,

B 2> owmin (Vams) -
Similarly, using Weyl’s inequality,

_ t
ore (M) < (14N (27) + %sz*w — A A(Z7)]))

(a) _ _ N\t
< (1 Far-(Z) + 042\/7752T*)\1(Z*)>

In(o) In(1+aX,« (Z¥)+a2Vr¥sy A1 (Z%))

= —— X
In(1+aX,« (Z*)+a2Vr¥sy,« A1 (Z*)) 1[I A —a2VE S, A (2%)
n <
L+a2Vr 8y (px p1)a (2%)

< (14 aA(27) + a2V 03 ()

In(1+oX,  (Z*)+a2Vr¥s, x A1 (Z*))
) 1n<1+az\,,,* —:(2\/7‘*52,r,*/\1(2*)>
< 9% 1Ha2VrToy (px £1)a1 (Z2%)

where in (a) we used LemmalZand (b) follows from 1 + X« (Z*) + 2a/1*82,+ A\ (Z*) < 2, due
to the assumption on « and ds,-+ . Finally, we bound the exponent as
In (14 (0 (Z%) + Voo M(Z9)) _ o (e (29) + 20630 M (29)

I [ LEods —02vrFay s 0 (27) T (A (Z9) -4V M (Z7))
U\ T a2V e payag 20 LHad (Z9) =2V 30 ) M1 (Z)

(1+aX+(Z)) (1+1/64) (2 (14 3/4)(1 4 1/64) (2)
(Z*)(1—1/32) - 1-1/32 -7
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where in (a) we used o < 2| Z*|| 7172

We conclude the analysis, proving the following bound for U'*: |[U|| < 3y/m| X|.

Following a similar procedure as in the proof of Lemma[5] we can write

te

U< MU+ 1 < (14 014+ 2378y 40)) M0 (27))
c _
< (ITUN 4+ 02V = DY) + S0 8, e (4 )i (Vg U

The bound ||U** || < 3,/m||X|| is obtained by using the bound of y in (37).

We summarize next the obtained properties of the signal and noise component at time ¢,, which
represents the “exist” of Phase I.

Proposition 1. Restate the conditions of Lemma choosing a strictly positive constant ¢ < 1—17, and
assume o < 32| Z*|| 71, The following hold:
1
min Ut* b > % 40
omin (UQ") = =, (402)
te Ayte, L K2
e (40b)
(VA Vi gn || < 56 (\/FKQ(SQ(T*H) n c,ﬁ) , (40c)
1" < 3v/ml|X]], (40d)
with
T T 2
Umin(VijU) < 6 < 20min(Vij)U . (41)

B.1.3 Step 3: From deterministic to random initialization
We conclude the analysis of Phase I allowing for U to be random with Gaussian entries. We obtain
the following counterpart of Proposition [I}

Proposition 2. Reinstate the conditions of Proposition|[I, and choose a strictly positive constant
c < %7 Additionally, suppose that U € R™*" is a random matrix such that each of its elements

is i.i.d. and distributed according to N'(0,+/m/+/r). Then, holds with probability at least
1 — exp(—r/4) — exp(—car), wherein p and 3 satisfy
2 (1 + 20[\/?"7*(52(,,.*_;'_1))\1(2*)) mm{ rﬁ 962
4(1 4+ n) min{r, md} 2d\Vd(1 + (prem)1/2)
c(1=38)e 22 = V2)ryr iy
g )
16c2k2dVd(1 + (pr*m)t/2)

b

with
(1+ 2\/77*a52(r*+1))\1(2))\/g+ (p* + apl/zA) /@
o < 4csk _ :
ce=1/2(2 = V2)(1 + 20/ 19 41y A1 (Z7))
and

e—1/2(9 _
Jm (2-V2)

< B < 2¢/mo?.
202

B.2 Phase Il

We exploit now the properties of the iterates at time ¢, to establish further refinements on the dynamics
of the signal and noise terms.

We begin establishing some bounds of the quantities of interest at time ¢ + 1, conditioned to the
following events at time ¢:

@ [[U]] < 3y/ml||X||;
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M) [|(VE) V|| < ek
(© [WAW — A" A(AY)| < camA,-(Z7).

We then proceed by induction to show that such events hold.

In the following we define for convenience

At Az Ut (42)
Also |||-|| denotes any matrix norm, thus fulfilling || ABC/|| < ||A[||IBIIIC]|-
Lemma 9. Assume that o < gi555112* ||~ 572, The we have the following:
(i) If (a) holds, with co < 1, then

[T < 3vm]| X (43)
(ii) If (@)-(c) hold, with ¢y, c2 < 1/110, and VZT* U has full rank, then
Omin(VAUIQY) = (14 S0 (29) = S0, (VAU') ) omin( VA UY). (44)

(iii) If (a), (b) hold, with c; < 1/1200, V,J, U YW is full row rank, and

a < (1/1200)m|WAW — A* A(AY)||~ (45)
then
2 Ut t, L
HUt-‘rth—&-l,LH < (1 _ Ea (H Cj H _ ||WAtW—.A*.A<At)|> T
+9a|Z*||<v;*>TvUtQt|)||UtQtvl|. (46)
(iv) If (@), (b) hold, with ¢; < 1/(24 - 800), and
||UtQtl|| < min {2amm UtQh), cor Q\FHXH} 47)
then,
Ae (2%
V) Vgl < (1020 ) ) Vgl
100 500
£ AW - ATAY| 4+ YN (48)
() If (@), (b) hold, with ¢; < 1/(81000), and further
Tmin (UQ") > ,/’lﬁoar* (X), (49)
max {|||V. (WAW — A* AAN) |||, [[|[Viregr WWAW — A% A(AY)]||,
JWAIW — A*AAY ||} < cor?||AY]], (50)
then,
« _ = oz)\r*
vz (A" ]|l < (1 ~ 5007\ (8) + 912 llp) IVz- Al + =55 |HUtQ“ v ).
(51
Proof. See Appendix [F| O

Now, we strive to establish, via induction, that the events outlined in (a)-(c), alongside the additional
conditions utilized in Lemma|9] are upheld. The proof is organized in two steps. Step 1 delves into
the dynamics of the quantities under scrutiny, initiating from the iterates at time ¢, (which marks the
exit from Phase I), hence possessing a favorable alignment with the signal subspace (in the sense of
Proposition|T). Consequently, it is proven that throughout the progression of iterations, the ahgnment,
as quantified by amm(Vz* U?), accelerates at a pace that outstrips the misalignment, gauged via
|UtQ%*| and ||(Viz+) T Viret ||, eventually attaining a suitably elevated value. Upon reaching an
adequate growth in amin(VZ—'—* U'), we demonstrate in Step 2 that (i) opmin(Vz- Z*) establishes a
stable lower limit, while (ii) ||U*Q" || exhibits a gradual increase, (iii) ||(V4 ) Virege || remains
stable, and (iv) the generalization error continually diminishes to yield the final result.

20



B.2.1 Step 1: Growing alignment phase
Select a time ¢, such that there holds
Ut Q| < 2,
I < 3v/m|| X,
1(VZ) Vel < @272, (52)
Omin (Ut* Qt* ) 2 T.
We will anticipate that we will later identify such a ¢, as that in Lemma 8| with o as in Proposition 2]
and v = % as in Propositionwith bounds on f as in Proposition

We prove next by induction that the following hold:

oun(VEU) 2 5 (14 S0e(2) (53)
|UPQE || < 2 (1 4806, A,+(2)) " 7, (53b)
U < 3v/m| X]], (53c)
(V) T Viegell < ear?, (53d)
forall ¢ € [t,, 1], where
#1 £ min {t >ty Omin(VAUY) > U(X)\/m} .
V10

Notice that holds at time ¢ = ¢,. It is sufficient to note for (53a) that

(a) b
O-min(VZT* Ut*) Z Umin(VZ—r*VUt*Qt*)o’min(Ut*Qt*) Z (1 - é2"<5_2)0-min(th*czt*) Z

—~
=

N

)

where in (a) we used and in (b) we set ¢a < 1/2.

We begin proving that |[WA"WW — A* A(A?)]| is sufficiently small (event (¢)) for any time ¢ within
the interval of interest. Using

Ag AL 7% _ UtQt(UtQt)J_ and Ai AL —UtQt’J'(UtQt)L,
we have
AT AA") = WAW|| = || A" A(AG + AL = W(As + AW
< [|ATA(AS) = WAGW + [|A*A(AL) = WATWI.

Observe that each of the d ><_d blocks of Ag is of rank at most 27* and so is its average block. Hence,
under the assumption that A satisfies the (04(,«41),4(r* + 1))—RIP, we can invoke LemmalZand
obtain

[A*A(AS) = WASW| < 204 4 ) [T AT Nl 5 + 20411y 1As = TAST ||,

where
Na(r*+1) £2 (P + (1 + 264(7“*+1))A4(r*+1)> .

Consequently,

A" A(AL) = WASWI| < (2V25 84 1) + 2V 2 minagee 1) ) 14K

Further, —Aﬂ_ is a p.s.d matrix with rank at most  — r*. Thus, we may invoke Lemma
IWALW — A" A(AY) || < (204 + 2n4) |AY |-,

where

m220+2(p+ (1+26,)) Ay
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Combining we obtain
[A"A(A) = WAW|| < 2V21* (8agre 1y + mare 1)) [|AG]] + 207 = 77) (84 + na) AL
Using the induction hypothesis (53c), we can write
[A*A(AY) = WAWI| < 2v2r* (840 41) + Mta(re41)) 10m || Z7]|
+2(r =) (0a + ) [U* Q2.
Further, under the induction hypothesis (53b)), it holds
[A*A(AY) = WAWI| < 2v2r* (8400 41) + Ma(re41)) 10m || Z7]|
+8(r — ) (61 + ma) (14 80aei A, (27)) 27" 72,
By (53a), there must hold

16 S Tpx(X)V M
ty —t, < ————1 - . 54
LT = (27 n( 2 1 (54)
Given that
ax {2v2(s + ) (01 +m)} < o
max r* my r* B >~ 9
4(r*+1) Na(r*+1) 4T 74 \/7“7*

we have that for all ¢ € [t,, 1]

JA*A(AY) — WAW|| < 1063me 4| 25| + (r — r*);—iﬁ (14 806 A (27)) ") 72,
/r-*

Assuming r < md, using (54), with
o (X)y/m

= “min{r, md}r?’
and choosing 801/ 4 < 30, it follows that

|A*A(AY) — WAW|| < (1053 + 82527/ 4) mk =2\ (Z7) < 40G5mu—2 M\ (Z7).  (55)

Under the assumption that o < 5|/ Z*||"*x~* and ¢5 < 1/110, & < 1/110 and 40¢3 < 1/110, we
can invoke Lemma [9((ii), and obtain
Umin(VZ—r* Ut+1Qt+1) = Umin(VZ—r* Ut+1) Z Umin(VZ—r* Ut+1Qt)
> (14 A (2 = 2t (VIUY) (VU
m

Because t < tq,

min X
O—min(VZT*Ut) < M’
V10
and therefore
3 _
(V.U > (1 T (z*)) Cum(VE.UY).
Using the induction hypothesis (53a) there holds
_ o\ttt
Oumin (VAU > % (1 n %/\T* (Z*)) : (56)

and thus (53a) holds.
Observe that implies that V,, U*+1Q" is full rank. Consequently, we can invoke Lemma [9{iii):

under é5 < %, & < _L_ and ¢, < 1/1200, it holds

40> 40 ™ 1200°
Ut+1 t+1, 1) < 17g ||UtQt’J_H —92llA*A At 7WAt VA VJ_ Tv Ut t, L
U Q™| < S\ ALY W) + 9 Z7([[[(VZ2) Voege ) IU°Q]]
(@) _

< (1+80aci A (Z24)) U Q"
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where in (a) we used 80¢3 + 9¢, < 80¢;.
Under the induction hypothesis (53b)), we then have
[ULQIT A < 2 (1+ a8061A,- (27) T
and thus is established.
Under the induction hypothesis and we can invoke Lemma [9]i) yielding
U] < 3v/m|| X
Next, we invoke Lemma Ekiv) under
G; < 1/(24-800), 40c3 <1/(24-800), and &3 <1/(24-800).

In fact, since

7/8 Op* (X) m
|UtQH | < 2v2cl BTk e Ve[t
) 7/4 .. . )
choosing 2\/§c4 < 1/(24 - 800), all conditions of Lemma Eklv) are satisfied. Therefore,
- 7%
||(VZJ‘*)TVUt+1Qt+1 || S (1 — Z}\r* (Z )) H(VZL*)TVUtQt ||

100 5000
+ WA — AT A+

whereby (53), (53c) and induction hypothesis (53d) yields
(V) TViperigen || < (e2(1 — af/4N+ (Z)) + 4000630\, (Z*) + 5000850\, (Z*)) K72
Thus, requesting ¢ /4 > 4000¢s + 5000¢5 yields

N

(V) Ve | < an
concluding the proof of (53).

B.2.2 Step 2: Refinement phase

- 300 : K1/4 o m7/8HX||7/4
= n
P aa-(2Y) 8 Vor—rm 774 ’

ty £ min{t : (Vr —r* + 1) AL[r > [|AYp, t > 11},
to = min{t,, tp}.

Define

>

ta

The proof follows in a similar fashion as Step 1. More specifically, it is shown inductively that

Canin (UQY) > oin (VL UY) > U(j%‘/m (57a)
IUPQM | < (1 +80aei A, (27)) " lUh Qi (57b)
U] < 3v/m| X]|| (57¢)
(V) TViegell < 2k 2, (57d)
VAl < 10V37 (1= 20 (Z) 4 90p) 240) )12 (57¢)

forall ¢t € [t1,t2].

Observe that the above inequalities but (57¢) readily hold at t = ¢;. Thus, we start showing that (57¢)

holds as well at time ¢ .
Observe that
IVZ- A" |p < |[VZ. A llF + [VZ- A F.
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By definition V,}. A = 0. Therefore,
IVAA"p < V24 A r < [127]F + IUR QMU Q™) |k,
whereby (57c) att = t; (57¢) at t = t; follows.

We prove now (57), following a similar approach as in Step 1. We need to invoke Lemmal9] For this,
we proceed similarly, and obtain

A" AAY) = WAIWI| < (2V3830 1) + 232 1) ) 10my/r| 27
+2(r =) (0a + 00U Q2.
At evaluating ¢; the end of Phase II it holds that
|08 Q" < 8oy (X)r/Am! /5.

Consequently, under the assumption that

P
C3k
max{2v/ 204+ 1) + 2V2mna(ee 11y, 2(61 +1m4)} < i/F ) (58)
there holds
| A*A(AY) — WAIW|| < 10mésk ™2\, (Z27%)
— * — — —
+ - \/FT Gar (14 8008102, (X)) " 80 (X)rT/4m1 /8,
for all t < ¢5. Given that
1K1/4 r m7/8||XH7/4 > 1
8 T—T* T7/4 ’
if ¢; < ¢3, we have
2400083
_ 3 m7/8HX||7/4
(1 + aClSOJmm(X))ta n < ( \) T7/4 :
Further requesting c5 < 1/(48000), yields
| A*A(AY) — WAW|| < 10mésk™ 2 A= (Z27%)
r—rr 41 (r)1/* —6/8| % 1|7/8 .9/8 ( %
+ NS eaf \/;(7, At X0 (X )
Using r > 1 and r* > 1, yields
[ A*A(AY) — WAW|| < 40méesk 202 (X). (59)

Given (39) and the induction hypotheses (57¢),(57d) we can invoke Lemma [9(ii) and infer
Tmin(UT1QY) > 00in (VAU > 00nin (V) (1 + %)\T*(Z*) — 252 (v Ut)) .
m

Following [34, Theorem 9.6], where we consider the case in which oy, (V. ULQ!TL) >
%amin(X ) and the complement to yield

in (X)v/m
ain (VU1 > o
o (Z Q )— \/ﬁ

as long as ¢5 < 1/45. Observe that this implies that V. U**1Q!*! is invertible. Consequently, (57b)

can be established in the same way as in Step 1. The same approach applies also to prove (57c) and
(57d).

We have left to establish (57¢). For this, we invoke Lemmas[3]and [2] and write
IVZ- WAW — A" AA") || < [V (WAGW — AAAG) [P + [V WAL — A" A(AL)) ||
< (s 1) + 20 4)) 1A 7 + (205 + 204) [| AL 5,
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whereby if ¢t < o, it holds

(Vr=r+ DIUW | < [|AY p.
Therefore, under the assumptions on the RIP that we have imposed in , it holds

203

V2 OWAW — A A(A) | < ||

Following a similar procedure we can establish the same bound with the difference in Vz« to VUTtWt
or no projection at all. Given that ¢5 < 1/(2 - 81000), ¢5 < 1/81000, and ¢ < 1/81000, we can
invoke Lemma [9(v), yielding

(XAT* (Z*

t+1 _ Y (7 > T At ) it t,Lrrt Ayt T
IVEAT e < (1= goohe (24 + a9l 2*lp) VA AT + S5 |01 QU1 Q) T e

Using the induction hypothesis (57¢) and ||[U* Q|| < 8o t/A 7T/ /8 , we obtain

[Tt Q (U Q) Tk < Vr=rH U Q|
< V=1 (L4 aei80A,- (24)) 7 8o lE (X)r T/ Am .
This is implied by choosing
/400 - V399
80cyCs < ——
V/399
which yields

CVA,,«* (Z*)

VLA < (1
V7 [P 500

+9aZ*||p) IV A

ar(2%) o N N B
7\/*17—,«*2*) Z*,
00 VT ( w007 (Z0) mlZl

whereby invoking the induction hypothesis we have
_ _ _o\t—t
VA A < 10Vm) 27 (1 - %AT*(Z*) +9apl|2°])) %

« * * ( ) * * 7% t=t
x (1—%)\ (Z*) +9ap|| Z ||) 1000 QA2 ) Jrrm10) Z ||( 0 A (Z )) .

This concludes the proof by induction.
We have now all the ingredients to show that by time ¢, the generalization error is small.
From [34, Lemma B.4] it follows that

[U=(U™)" = Z*|lp < 4|VZ(Z* = U (U) DllF + [U2Q™=H(UQ™) |
To upper bound the RHS, we look separately at the two cases in which to, = t, and to = 1.

We start with to = ¢,: by setting p < we obtain

o+ (Z*)
1200 9E]]

: oA (Z)\T" ar-(D\*T"
2l < 20 (1= Bz v (12 2 T,
evaluating
||A£||F < 8(r*)1/8(r _ r*)3/8”)—(H11/16m11/32ﬁ—3/16721/16.

The case to = t,: Requesting ¢; < 1/(19200) and following the procedure in [35, Theorem 9.6,
Phase III] yields the same result for the case to = t;.

Summing up the times ¢; and t» yields the following result.
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B.2.3 Summary

We summarize the established result in the following proposition.
Proposition 3. Consider the matrix sensing problem (1), with augmented ground-truth Z*, with
r* +1 < r < md, and the measurement operator A satisfying the 4(r* + 1,8)—RIP, with § = f/;
Let {U"}; be the (augmented) sequence generated by Algorithm under the following tuning: (i) the
stepsize o X k1| X || 72, (ii) the gossip matrix is chosen to satisfy Assumption with
-2
0= ’175
Vrm2y/m

Then, assume the existence of an iteration count t,. such that for > 0 the following holds

U] < 3v/m|| X|l, Tmin (U™ Q") > 7,
| Q|| < 2, [(Vz) Vi g || < Eaw72,
with B
o (X)ym
~ min{r,md}x?"
Then, after
2 (X 1/4 * /8| X ||7/4
ty—t, < ———— (8In \/3W +150In [ = r_m7X]
aAp(Z7) 2 7 8 Vr—r 74
iterations,

||At2||F <50 (1 + m) (T,*)l/S(r . r*)3/8”XH11/16m11/32T21/16K—3/16

Remark 1. The statement in Proposition[3|is made only for r > r*. The case v = r* can be obtained
by setting r = r* + 1 and setting the last column of each U? = 0. Observe that this will column
remain zero for all t, and is thus equivalent to the case of r = r*.

We are now ready to establish that Theorem [T|holds. For this we identify the ¢, in Proposition 3] with

t, in Lemma This implies through Propositionthat the time ¢, exists with 7 = %. Consequently,
o, and 3, p and ; behave as stated and required in Proposition |2, and the statement holds with the
same probability.

C Convergence of Algorithm [3]in the setting r € [r*, 2r*]

We provide the counterpart of Theorem [I]in the setting r € [r*, 2r*].
Theorem 2. Consider the matrix sensing problem (1), with augmented ground-truth Z*, under r* <
r < 2r*, and the measurement operator A satisfying the 4(r* 4+ 1,8)—RIP with § = k~*(r*)~1/2.
Let {U"}; be the (augmented) sequence generated by Algorithm@] under the following tuning: (i) the
stepsize o = k4| X || 72; (ii) the gossip matrix W chosen to satisfy Assumptionwith

62
mBrir*
and (iii) the initialization U° is chosen as U = pU, where U € R™¥*" has i.id. N(0,/m/r)
distributed entries, and p satisfies

2N

p? = min

_ —961>
Pon(X) 7 (Vi
kSdr min{r,md}’ dv/d €

Then, after

g () () et 0

iterations, there holds
\2* — Ui whe
12 ~
with probability at least 1 — (cy€)

21/16
(max{r — %, 1])7/5 () V3| X || 721102110 (ni) .

="+l _exp(—cor) where ¢y > 0, co > 0 are universal constants.
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Similar to Theorem I} Theorem [2]can be seen as an extension to the centralized counterpart in [34],
with a degradation on the allowed initialization size that stems from effectively having a larger RIP
due to the network. Observe that in opposition to TheoremlI we allow 7 to be increasing with 7 as
per assumption, < 2r*. Comparing the statements in Theorems [1|and [2|allows us to conclude that
overparametrizing does not yield a performance loss in terms of computational complexity but will
incur additional communication costs due to the exchange of additional variables.

C.1 Proof of Theorem 2]

Proposition 4. Assume that 2r* > r > r*, and instantiate here the assumptions in Proposi-
tion[I. Then, if U is initialized such that each element of U is i.i.d. and distributed according to
N(0,\/m/+\/7), with probability at least 1 — (¢1€)"~" T1 — exp(—cor) the statements in Proposi-
tion[ll hold with

2 < (1 +20[\/7">*62(r*+1))\1(2*))

p? < rr o~ 96>

4(1 4+ n) min{r, md} min { 2d/d(1 + (pr=m)1/2)
C3(1 —dp)ev/r 0_12;{2}
SCQHZd\/g(l + (p?“*m)l/Q)

with
R Vr (1 + 2avr* 81y A1 (Z2%)) + (p? + apt/2A)m!/?)
o éze(1+ 2@\/7762(r*+1)/\1(2*))
and
V= < 8 < 2y/mo?.
Proof. See Appendix [E. O

Observe that Proposition|5 already accommodates r > 7*. Consequently, we are only missing the
choice » = r*, which we cover in the following Proposition.

Proposition 5. Consider the matrix sensing problem (1)), with augmented ground-truth Z* | with
r = r* and the measurement operator A satisfying the 4(r* +1,8)—RIP with § 3 L:i Let {U"}; be
the (augmented) sequence generated by Algorithm where U} € R™IX" 41 ywhere w.l.o.g. the last
column is set to all zeros for all i € [m). Under the following tuning: (i) the stepsize o % k™| X |72,
(ii) the gossip matrix is chosen to satisfy Assumption[I|with

< k™20
P Vrem2ym

Then, choose T > 0 for which

U < 3vm| X], Tmin (U Q™) > 7,
Ut Q|| < 2, 1(VZ) Vot || < 2w,
and
o (X)y/m
~ min{r,md}x?"
Then, after

2 50 (X)v/m w1/ r* m™/3|| X7/
to —t, < ———— | 81 - 1501
2T o (Z%) < . (ﬁ T > * . ( 8 \/ max{r —r*,1}  77/4

iterations, it holds

||At2||F < 50 (1 +max{m7 1}) (T’*)l/g(T _ 7’*)3/8||XH11/16’/7111/327'21/16/{73/16
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Proof. The proof follows by applying Proposition [5|to the iterates defined with the extra column of
zeros. This yields an equivalent scheme to using Algorithm (@) with U* € R™dx"" O

We are now ready to establish that Theorem 2| holds. For this we identify the ¢, in Proposition 5] with

t, in Lemma This implies through Propositionthat the time ¢, exists with 7 = %. Consequently,
o, and j3, p and ; behave as stated and required in Proposition |4, and the statement holds with the
same probability.

D Proof of Corollary

We begin with the following Corollary.
Corollary 2. Under the conditions of Theorem |3} it holds

R, 13/16
Wﬁ(max{(rr*)s/sal}(r*)l/SHXH21/16(#) ) (60)

for any t € [T, ], where

Trn—— T o 61)
ak|| Z*|| max{r —r*,1} (ﬁ)

Observe that then, we may choose 7 = % with p and 3 as in Proposition and Lemma yielding
the result in Corollary [T. We now proceed to prove Corollary [2. The proof consists of two parts. In
Step I we start off by the iterates’ properties at time . We then proceed to establish the result by
induction. More specifically, we establish that the alignment o,;, (UQ") remains bounded away
from zero while the error |[U'Q" || grows slowly and the error ||(V7) " Viye:|| shrinks so as to
become O(7%), for some k > 0. This is a critical requirement for Step IT as the error || (V5 ) T Virege||

together with the estimation error are what dictate the rate of growth of [|[U*Q% || (c.f. Lemma@(iii)).
Consequently, in Step II we part from the iterates’ properties at the end of Step I, and exploit the fact
that both the estimation error and || (V£ ) T Viregt|| < O(7%) to establish that the rate of growth of

the remaining error is O(7*). This allows us to claim that the estimation error will grow extremely
slowly, thus providing with a large window throughout which it is small.

Recall that we may write
IWATW — A" A(AN)]| < [WAGW — A"A(AG) || + [WALW — A"A(AL)].
Invoking Lemmas 2] and [3] yields
IWAW — A" A(AY)|| < (204rx 1) + Magre1)) 1AG [ F + (200 +na) AT ]|
For convenience we define
A £ maX{254(r*+1) + 774(,,‘*4’,1), 264 + 774}
Under the assumption that
|(VE) Virgell < 572
A(X)ym
Omin VT*Ut ¢ > La
( Z Q ) = \/ﬁ
U] < 3vm| X]||
hold at time ¢, we can invoke Lemma B.4 in [34]] and claim
Ut @T = 2| < 4|vz- Ut @U")T = 29| + [ Q"+ @' Q") |||

For further convenience, we define the quantities

Al L 504/ 1 + [y — T*(T*)l/g(r _ T*)?’/S||X||11/16m11/32,‘€_3/16,
*

- , 1/16
A, 2 ||X||11/32m11/64< T*) )

r—
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Step I: In this phase we prove by induction that the following is true:

U < 3v/m|| X]| (62a)
r* X
Omin(U'QY) > w (62b)
t—to
INT Ars(2%) ~ 2 1/2
1(Vz) Viegel < (1 — a— Cok™ + AsT (62c)
[UPQU || < (14 a(1/6)A,-(2%))" ™ Agr?l/32 (62d)
_ t—t
V(25 — Ut UHYT)||r < (1 — ﬁ)\r*(z*)) F A6 A, 12 (62¢)

forall ¢t € [to, t3] where

ta 2ty b { log(ymr~H(r — )71 J .

161og(1 + a(1/6)\+ (Z2*))

Observe that hold at time ¢ = t,. Recall that Lemma [0 requires a bound on |[WA!W —
A* A(AY)]| to invoke most of its consequences. Consequently we start off by establishing that given
that holds at time ¢, [|[WA'W — A* A(A")]| is sufficiently small.

As argued prior,

[IWAIW — A" A(AY)|| < 4A|V (25 = UNU) D[p + (4A + 1)V =+ U Q5|2
IAY| < 4V (25 = UHUN )| + Vi = U Q|12

Invoking the induction hypothesis
IWAW — A" A(AY)] < <4AA1 +(4A + 1)A§T—1/2m1/4) 72/16 | 4N A, 71/
JAY < (40 + AZr=1/2mt/4) 72116 4 g a1

Thus, if

< m)\r* (Z*>

(4841 + (48 + 1) 4372 /4) 72110 L4 A7 /2 < T

the condition on the quantity [|.A* A(A") — WA*W|| holds for all statements that can be invoked in
Lemmal[0]

Consequently, we can invoke Lemma[9}(i) yielding

U] < 3v/m| X

To invoke Lemma E.(ii) we require that ||(V4) T Viege || < % which is fulfilled by the induction
hypothesis as long as

G241 A 12 - K
CoR + 3T <S 110

If the above holds, we may invoke Lemmal[9](ii) and following the same argument as in Phase IT we
obtain

i (U1 Q1) > TNV

V10

Next, our goal is to invoke Lemma[9](iv). For this we require that

_ vmlx|

A 7*)\t—t2 21/32
(1 +a(1/6)A (27))7 Aor™ /™ < Sommar
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Then, we may invoke Lemma[9](iv) yielding

10 Vgl < (1- 0220 ) Vg
+ 2000yt — e agany + 200
< (1- offf)) ||<vzl*>TvUt+1Qt+1 ||
1 100 (4841 + (44 + 1) 437 1/2m1/4) 721716 1 4 A 4,712
m

2 2
O‘ﬂi’go (((4A + AFr 2P 441 2) ) .

1A%

Applying the induction hypothesis yields
A (20T A (27
H(VZ{)TVUt+1Qt+1H < (1 —ari)) 621%—2 + (1 _alr El )) A37_1/2
100« 2, —1/2,,1/4) 21/16 1/2
+—= ((4AA1 + (4A + 1) A2 ) 7216 L gNA,T )
m

2 2
a=500 <((4A+A§T1/2m1/4)7,21/16+4A4T1/2) >’

m2
and thus for the bound to hold for £ 4+ 1 we require that
1
L (4841 + (4 + 1) A3r 712 1/4) 21116 1 4A 4,712
m

2 (Z*
| 0500 (((4A+A§T1/2)721/16+4A4T1/2> > A ELZ ) 4yr102.
m

2

All conditions to invoke Lemmal[9](iii) hold and thus
H Ut+1Qt+1,J_ || <

« S « «
(1= 5 T QU2 90| Z* (V) Viegr || + 2 [WAW = A A(N)H) jUtQt .

Observe that we have established conditions for which [|(V4) T Vg | < 445 * and consequently

110
HUt+1Qt+1,L ” <

110
where we apply the induction hypothesis to yield

U QUL < (1 + a80A (27)) " Apr?!/32x

(1 490 275 + 22 = (4841 + (48 + 1) A7 /2m1/1) 72116 4 4AA471/2)> ot

-2
x (1 +90]1 2% 355 + 25 (4841 + (48 + 1) A3r /2l /4) 2010 4 4AA471/2)>

where we request that
%Frznz*n + 2 (1841 + (48 + 1)) 7210 L 4AAT ) < 1/6A (27)

to establish that the statement holds for ¢ 4+ 1. Finally, we have left to bound (62e)). For this, we can
invoke Lemma [9](v) yielding
% _
IVEAr < (1= 2200 (2%) + 9012 0) V7. A + 2D e

Oé)\r* (Z*) = T CY)\T* (Z*) _
<(1- * A 221/16,_—1/2, 1/4
< (1- 258 wa2vlp) V7ol + L agrornor i,
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Invoking the induction hypothesis yields

)\T* Z =t )\'r* Z* _
IVZ. A | e < (1 —~ 0‘20(())) (1 - O‘T(O) + 9a||z*|p> A 2116

o S % 1/2 ar(Z7) 1o 21/16_—1/2, 1/4
S5 (2%) +9a] 2 ||p)A4T + S AR 107 2y

Thus, by requesting

1 . . (2" _
<)\T*(Z*) —9||Z*||p> A47_1/2 > A ( )A§T21/16T 1/2m1/4

+(1-

200 - 100
7x
pe 2l
3600|| Z~||
yields the desired result, and consequently the proof of this part is concluded, by setting A4 =

4A375/16m1/4 and Az = stk 2, with & < with the assumption that 7 < 1. A sufficient
cond1t1on for all conditions to hold is glven by

220’

< -
P= 3600k—2

5 2 A (Z)Ym
1/2 2 1/4 6/16 1/2 172 42\° _9/8 r
(4AA17 12 4 A2mMA(20A + 1)) 76/16 4 o (4A17' 12 4 17mt/ A2> /8 < 33101

Step II: We summarize what we obtain from Step I when ¢ = ¢3.

(U] < 3vm||X]||
Umin(UtSQt3> > M
v/ 10
1 _
||(VZL*)TVUt3Qt3 ” < St Zm—1/4 fr — % 4+ %Tl/Qm_l/4
1— ==

4
||Ut3Qt3,J_|| < 7'71/4m1/8(r . T*)71/4A27_21/32

VA (A%)]| < A72Y/16 4 443713/16

From here we establish by induction that

U] < 3vm| X]|
. t Ayt Ur*(X)\/TTL
CTmm(lj Q) \/E

o\ t—ts LY a— G
V) Vel < (1= A (7)) 3(; LD +C§T”2> m g O
4

t—t3 1/8
t L T \V/8 Asm 13/32
o< (146 (2m) ") i

OlAr* (Z*

t—ts
||VZ*(AT)||F < <1 - e )) (A17_21/16 +4A§T13/16) T Cyrl/8

forall ¢t € [ts, t4]
Llog ()

ty = t3 +
16log (1 + @(ﬁ)l/s)

We start off in a similar way as in the previous phase. By induction hypothesis we can invoke Lemma
B.4 in [34] and thus

IWAW — A" AAY)|| < 4A|IVA (A |F + (4D + 1)Vr = r||[U' Q|
A < IVE A + ViU Q 2,
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whereby induction hypothesis it follows that

[IWAIW — A*A|| < 4A (A1T21/16 Jr41437_13/16 +037_1/8)

1/8\ 2(ta—t3)
-
+ (4A +1)A27 13/16 (1 + Co < mt/*
vm
1/8\ 2(ta—ts)
A < (A17_21/16+4A2 13/16 | (1, 7_1/8) +A2 13/16 <1+02 (\TF) ) mi/4,
m

whereby using the expression for ¢4 is that

[IWAIW — A*A|| < 4A (Alle/ 164 4A3718/16 4 0371/8) + (44 + 1) A372/32 (m) /O /4
A < (A1T21/16 +4A§7_13/16 n 037_1/{@) +A5725/32m1/64m1/4'

A requirement for us to invoke elements of Lemma [9]is

m)\r* (Z*)

4A (A1T21/16 + 4A§T13/16 + Cng/g) + (4A + 1)A§T25/32m1/64m1/4 < 54800 "

We follow the same steps as in the previous part and invoke Lemma[9](i) yielding
[T < 3vm|| X

To invoke Lemma[(n) we request that ||(V5 ) Viege|| < 'ﬂo which is fulfilled by induction
hypothesis as long as

C2 12 _1/4 VT —r* 1/2,,-1/4 s o &
5T +<1_al\r*£2*) T +CiT <100

from which we obtain

o (X)ym
\/E )

following the same procedure as in Phase II. Similar as in Step I, to invoke Lemma 9}(iv) we require
that

amin(Ut+1Qt) Z

A | X
(r —r*)l/4 — 24-800
yielding

« _
|VF) Viengenll € (1= GA(29) V) Vi |
100 ‘4 500a
+ ——aWAW — ATAAY|| + —— | A%,
By induction hypothesis we have

o \t+1—t3 1/2 " =
(VA Vi g || < (1_ g)\r*(z*» i T JEV ) S VWAL
4 o220 "2

a Z 1/8 5000 21/16 2,_13/16 1/8 2_25/32, 1/64, 1/4 2
— DA (2O 4 T (4210 4 4 A0 4 Oy g APt O 1/1)
m

100 (

+a AA (A +21/16 +4A2 13/16 (3, 7_1/8) +(4A + 1>A§7_25/32m1/64m1/4) )

Consequently, for the statement to hold for ¢ + 1 it must hold that
* _* 2
Ar ELZ )017_1/8 > 51(7)10204 <A17_21/16 +4143713/16 + Cyrl/® +143725/327711/64ml/4)

+ 100 <4A <A1T21/16 + 4A%T13/16 + CgT1/8> +(4A + 1)A§T25/32m1/64m1/4) )

m
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At this state, all conditions hold to invoke Lemma [9](iii) yielding
2 _
U@t < (14 ZUWAIW - A4 (@] + 90l 2 1VE) TVirerl ) 1070,

whereby we request that

2o (4A (Alle/ 16+ 4A3718/16 4 0371/8) + (44 + 1)A3725/32M1/64m1/4)
m
_ 2\ r =% ¢ r \Y®
* —-1/4 | 2 _1/2 —1/4 1/8 o
+ 9a|| Z|] <1 - /\,,-*4(2) m + 5T m +Ci7 <Oy (\/Fn>
to yield

1/8
.
Wm@“H§G+®(ﬁ) )W@AL

and thus invoking the induction hypothesiswe obtain the desired result. Finally, we can invoke
Lemma[9](v) to yield

Oé)\r* Z* = a)\’r'* Z*
Wzt < (1= 225 oz ) IvE A + 2 g P
QApx (Z*) = T QA (Z*)
< _ Shr\s * At QA \L7)  1/64, 1/4 42,25/32
= (1 200 +a9[|Z |P> [Vz A"l F + 100 m m/ AT

ade (Z9)\'7F a _ _
< _ A 7 _ (7 * 21/16 2_13/16
< (1 oo ) (1 sog M (Z°) + )12 ||p) (AlT vy )

@
200
Thus, requesting that

= = A (Z*
Ae (Z7) — 90¢PHZ*H) Carl/8 4 A ( )m1/64m1/4A§T25/32.

18 _
+Car ( 100

1
< -
P= 3600K2

and the proof by induction follows with adequate choices of C;, C5 and C3 which we provide shortly.
For convenience define

. 21/16 - 13/16
B£4(A+1) (Al (> m?/3 4 443 () m!3/32

C
737_1/8 > ml/64m1/4A§Tz5/327

vm vm

25/32
+C5 + A2 (\/Tfn) m25/62m17/64>

Observe that we may choose
Cy = 4m17/64A§7_21/32

1 _ *
18 . K~ €2 _1/2 _1/a vr—r 1/2, —1/4
Cht SIOO 5T m [ e ) T*m
4

o (Z* 1
01/\ ( )7_1/8250001324_ OOB

4 m m
T —Tr* Eﬁ

—— a7
1_04AT*51Z) 2

vm m

Under the assumption that

T 1/8 2 - ~
02<> > "~ (4A +1)B + 90| 27| 12 4 09| Z7 |0y 2.
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we set
800

m /AN (Z%)

8(A+1) o\ V8 = VT —1r* 3
—o |22 (T 74 [ Y202 (7 /m)3/8
e, a< s ) raz o ) VT
00

8
)\7‘* (Z*) (,7_/\/7%)3/8> N

For some universal constant

Cy < ac|| Z*||Vr —1*(1/v/m)*® + ack(r//m)*/®
B -\ 19/16
+ ca ((T _ 7,*)5/8(r*)1/8”X”11/16 <>

Jm

+<4i*r*)l/8X||11/16 <<\/%>11/16+<\/%>21/32>>

and consequently the window is of length at least

Ci =

and

927

B

64 <02 <r/m”8>J
Observe that throughout both parts

1A < s (A17_21/16 i 4A§7_13/16 _’_4A§Tl/47_1/8 T A§T25/32m1/64m1/4)

- - 21/16 ~ - 1/8
S03(7’7T*)S/S(T*)l/SHXHH/IGm <W> +C3HX||22/32 (T_r*) %

r 13/16 - 25/32
% <m24/32 <\/Fn> + (\/ﬁ) m47/64m17/64>

Consequently,

||At||F < ( *)5/8( *)1/8||X||—21/16 ( T >21/16
— <c3(r—r r —
m||Z* vm

B o \U/8 s\ 18/16
+C3HX||_21/16 <’/’—T*) (\/ﬁ) .

E Proofs of the Intermediate Results in Phase I (Appendix [B.1)

E.1 Proof of Lemmal3

Let
T i—1 (7ri=1\ 1 rri—1
Bl pa(v iy uet

Then, it can be established by induction that for ¢ > 1
- ¢ t—i .
Ut Ut = Bt = <W2 LA AZ ) g
; + —ATA(Z")
Invoking Lemma 3] there holds that

~ . o ~ . . .
B < (1200 +2 (p+ (1L+260)A0) ) U= @) T U

< 2 (1420042 (p+ (L2004 ) ) U R0
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Further, observe that

H(W2 s 2 aaz) B = | (W Lzt S araz) - wew)| T IE.

(0%
m

Invoking Wey!’s inequality and Lemmal[I] we have
A (w2 + %A*A(Z*)) <140\ (Z2Y) + 2V adye 1)\ (Z7).

Consequently we have
t
1B < Y (14 a1+ 2650+ 11) M (27))" "%
i=1

x (1 20, +2 (p +(1+ 254)A4)) U2 T Y.

3o

‘We upper bound
U= 30| < mingr, mdy |0 < min{r,md) ()0 + 0"~ 0=))°
< 8 min{r, md}| T ||* < 8 min{r, md} (1 +a(l+ 2\/7752(r*+1))xl(2*))3“_2) 1013,
Observe that
|01 < 1TV + A AZ) TV + |V = DU° + A AZ*) (T - )U°|
< (14 a1 + 2V )M (Z) 1TV + (5 + ap2(1 + 8o Vi)M(29)) IZ — U]
< (14 a(t + 2V )M (29) (ITU°N2 + 92V (T = U1
where in (a) we invoke Lemmas [[]and[4} Thus,
[0 U7 < Smingr,md) (1 -+ a1+ 2\/7752(r*+1)))\1(2*)>3(i_1) «
x (170 + p V(@ = U )

Combining we obtain

¢ _ \tH2i-3 g .
1B < (1 ta(l+ 2\/7752(T*+1)))\1(Z*)> = (1 20,42 (p +(1+ 254)A4)> x
=1
3
x 8min{r,md} (JI70° |2 + o2V |(Z — 7)U°) )

< 4m~1
T (14 2V 0a e 11)) M (27)

_ 3t
x (14 a(l + 2V 8y )M (27) (I70°] + o2V (T - U°))

13 min{r, md} (1 128, 42 (p +(1+ 254)A4)) x

3

E.2 Proof of Lemmal6]
Denote by v; the eigenvector corresponding to the largest eigenvalue of W? + > A*A(Z*). Then,
~ t
O To, > (UO)T (/\1 (w2 n %A*A(Z*))) .

Invoking Weyl’s inequality and Lemma 2] yields

M (W SAZ) =0 (W S 2) = LWz - AT A2

m m m
Z 1 + Oé(l — 2\/7'7*52(T*+1))A1(Z*).
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Consequently, combined with Lemma [5] we obtain
1B _ 4!
1T~ M(Z) (1 + 2V 0 1))
(Lt @M (Z)(1+ 2V 0o 40)) ™ (ITU°] + M2V (T = T)U°))°
(1+ adi(Z9)(1 = 2/ By 11y)) 100 s '

Therefore,

p? min{r, md} (1 + 204 +2 (p +(1+ 264)A4)) X

X

(42v7r* 83 (x 11)) M1 (Z7)

. |\JUH+p1/2\/r*|\(1—J)U|\)3
2(
o> 4(1+204+2(p+(1+204)As) ) oo

= I ((1+a)\1()7(*)(1+2\/r7*6,‘*+1))3)
I+aX; (X*)(1=2Vr*8a(x 1))

In

E.3 Proof of Lemmal(7l
The condition on « implies, invoking Lemma|l0[because v < "‘1—772 that

Orx (MtUO + Et) > (1- 5p)ﬂar* (Mt)amin(v}—MJU) - ”EtHa

and
t770 tys L= 0% t i
o (MU + EY) 2 === poee (M) owmin (Vg U)-
Further,
VJ_ TVUt < ;
”( JIWJ) ” (1_5/))(1_7)

and consequently because
1(Vz) Vel < 1(Vag) Vgl + 1(Vaag) Vel
To bound ||(V£) " V.7 am7]| we invoke the Davis-Kahan sin(©) theorem yielding
12 — TA*A(Z*) T © V(2
(27 17~ TAATVT = M(Z) =~ b (2

where in (a) have assumed that A, (Z) > v/r*\;(Z*)6,~ and used that A fulfills the RIP. Therefore,
we conclude

1(VE) " Varugll <

\/Far*)\l(z*) + Y
Ao (Z) = Vr#6mM(Z) - (1=6,)(1 =)

Further, from Lemma[TT]and our assumption on + it follows that

1(VZ) Vil <

—2
K
”UtQt’J_H < ?Ucrr* (Mt)amin(V;AIjU)'

Finally, under our conditions on &,+, p and v, it holds that || (V7:) " Viy¢|| < & implying that we can
invoke Lemma [T T which yields
1 1-94
omin(U' Q") > igr*(Ut) > Tp/wr* (M) omin (Vo MITU) — ||EY|.

E.4 Proof of LemmafSl
Our goal is to find conditions under which for some ¢ there holds that for ¢ < %

_ 19 (M) (00 a M |TU| + (¢ + 09 0) W = DU + 1B _
(1 75p)ﬂ0'7,*(Mt)O'min(V}—MjU) -

Ve (63)
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hold. Sufficient conditions for the above to hold are
o1 (M) (00 (MU + (6% + ap ) (T - T)U]))
521 = 8o (M) (Vg 7U)
K21 = 0p)pos (M) omin (V7 ar 7 U)-
Using Weyl!’s inequality we have

(a) _
ore 1 (M) S 14~ [WZW = A AZY)|| < 1+ a2V g4y ha (2°)

(@) _ _
o (M) > 1+ ad(Z%) — a2Vr*Sg(e 11y M (27),
where in (a) we have used Lemma 2] Thus, sufficient conditions for and are
_ t—1 _
i (14 02V oy (29) (L4 02V 8 s M (Z) 1TV )
_ o\t
4-u(1+fﬂyﬁigaﬁ+nxgz*» Qﬂ-+apﬂ%0|uz-j)Uu
c _ _ N\t
< D521 5 (14 @A (2) — a2V M (29) Guin(VinggU),
C _ _ N\t

1B < S0 = 6)n (14 A (27) = a2V b 11 M(ZY)) Omin(VarsU)-

A sufficient condition for is

o2 (LT a2V/r* 8y 1) M (Z) | TU| + (p° + ap 1) |(Z = T)U ||
éSJmin(V}—MJU) (1 + 012\/7'7*52@*4-1))\1(2*))

) (1 + A (Z7) = a2/ b3 41y M1 (27) )t

1+ 0[2\/7:52(,,«*_;'_1))\1(2*)
Thus, by definition of ¢, the above holds for all £ < ¢,.

(64)

(65)

(66)

(67)

(68)

(69)

We find next conditions under which hold. Observe that holds for ¢ € [t*]. Aiming at using

Lemmal5} we find next conditions under which ¢, < ¢*. To this end, we ask

(1 + 2\/7752(7.*_;'_1)))\1(2*) > ln(o—)x
gmin{r,md}(|TU|+p/2Vr* | (Z-UI)* | —
4(1 Jr77)/J mU T o1l
- 1 1+aX (Z) (14207 T% 8 1 1))
n (1 +all+ 2W62(T*+1))A1(Z )) +3ln (1+04>\1(Z*)(1*2a\/7752(r*+1)))
In <1+o¢)\r* (Z*)*QZ\/F(;Q(MJrl))\l(Z*)) ’
1+a2Vr* 8o 1) M1 (Z27)

—1In

X

2A

where for convenience we defined £ 26, + 2(p + (1 + 264)A,). Using do(rrt1) < ﬁn

o < 372 Z*|| 71, we have
/\1(2*) + 6\/7:62(r*+1)/\1(2*)
- )\T’* (Z*) - 4\/7752(7‘*4_1))\1(2*)
Thus, for ¢, < ¢* it suffices that

(14 ar+(2%)) < 1262

(1 4+ 2v/1* 03+ 11)) M1 (27)
4(1 4 n)p2 min{r,md} (| TU||+Vr*pl/2|(Z-T)U||)?

m[|U ol

In

> 96x%1n (o),
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which can be rearranged to yield

m(l + 2\/7752(T*+1)))\1(Z*>||UTU1|| o 962

2
< 3

4(1 + p) min{r,md} (|TU|| + Vr*p!2|( = T)U]))

We have thus established that up until ¢, ||E*|| can be bounded by invoking Lemma E Thus, we
evaluate the upper bound on || E*|| from Lemma [5 on the RHS of to establish a sufficient
condition for to hold. By evaluating and rearranging we obtain

42
m(l + 2W5Q(T*+1))A1(Z*)

« (Lo (14 2V aagein ) M(29) (1901 + 02Vl - )01

p? min{r, md}(1 +n)x

3

< g(l — 8, (1 + al (2*) - a2\/7“7*52(r*+1)>\1(2*))t Tmin (Va7 U)-
A sufficient conditions for the inequality above to hold is
2 1 =0p) (L4 2Vr*0a 1)) M(Z*)momin (Va7 U)
= 8x2min{r, md}(1 + A)(|TU| + p/2Vr*|(Z - T)U|))?
L+ o (Z%) = 20/ 05y 1y M1 (27) N
: ( (14 (L4 2V by i) M (27) ) ’
whereby algebra there holds that
(1 + A (Z7) = 207103 (pe 4 1) M1 (27)
(1+ o (14 2vr*ba311)) )\1(2*))3
Therefore, a sufficient requirement on 2 for is
2 c(1=0,) (14 2V daies1y) M(Z*)momin (V7 7 U) % (o) 1257
~ s min{r,mdh(1+ 1) (|TU]| + p/2Vr) (2 - T)U))°

) > exp(—12x2In(0)).

E.5 Proof of Propositions 2 and ]

We start with the part that is common to both propositions and then particularize for each of the two.

With probability at least 1 — O (exp(—cod)) it holds that

d d
1701 <22 a0 < L

Further, with probability 1 — O(e~") there holds
vm

U o1 > <

Finally, observe that Umin(VjT wrU) = ﬁamm(v];[ U) where the elements of U are i.i.d. and

distributed as A/(0,1/4/7), and consequently, we Theorem 8.8 in [34] from which we conclude that
for every € > 0 there holds with probability at least 1 — (¢;£)"~" ! — exp(—cyr) that

ViV =T yme2 2 ifr > 2
min VT U) > > 2 B
min(VargU) = vime VT ~ | vmE otherwise.
Case 1 (Proposition [2) » > 2r* Setting ¢ = e:/z there yields with probability at least 1 —
exp(—r/4) — exp(car) that
6_1/2(2 _ \/5)

Omin(v‘;]ij) > \/ﬁ 2%,
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Consequently,

2 (1 + 2a\/7j62(r*+1))‘1(2*)) min my/m 5967
< 4(1 4+ n) min{r, md} Qmﬁé\/g(l+m)3 )

c(1 =38, myme 22 —+2) .,
o
1602/@2m\/m%\/g(1 + prrm)®

with
(L 028 M (Z) VI § 4 (0 + /20 fm
o < dcok — ,
= c(1+ a2V b3e 41y M (27)))y/me=112(2 — /2)
and
—1/2 22
O i< g < 2ot
2

Case 2 (Proposition@) r* < r < 2r*. With probability 1 — ((315)"_’“*Jrl — exp(—car), it holds

3
Umin(V;MjU) Z \/H;

Consequently,
2 < (1 Za2\/r>*5z(?~*+1)>\1(2*)) s my/m 5=96r?
(1+ ) min{r, md} oy J2(1 + V)
c(1— 5p)mﬁ5 0712;{2 ,
802/12m\/7ng\/g(1 +/prem)3
with
<o 71(1 + 02V * Gy 1) M (27)) ) 24 +_(P2 + apl/QV)m\/g’
(1 4+ 20V/1*8g(px 11) M1 (£7%) ) /e

and

Vms < B < 2y/ma?.
T

E.6 Technical lemmas: auxiliary to proving Lemma

Lemma 10. Suppose that A satisfies the (0(r*+1), 2(r* + 1))—RIP property. Then, if
0, <1,

and W satisfies Assumption|[I| with p such that

p2 < 252(7-*4’,1)‘2
~ 4AmS(1+ 252(T*+1))2’
then,
Orx (Ut) > (1 - 6P)NUT* (Mt)gmin(V;MjU) - HEt”
and

0 41(0Y) < pope 1 (M)A + 0278 )M (Z) 1TV
+ oy (M) (0 4 ap 20) (@ = )0 + | B

39



Then, if
A2 o (ML= 8,)0min(VI g U) — piome o1 (M) (1 n 2a\/7*52(r*+1))\1(2*)> 17U
= pop (M) (0% + ap! ) (T = YU - | B > o,

it holds

p0r A (MO TU| + poys 1 (M) (0% + ap'2v) |(Z = DU + [|E]

J_ T
el <

Proof. From Weyl’s inequality it follows that
op (MUY + EY) > 00 (MIU?) — | BY|| > 07e (VuMITUO) — || B,
o (VMIU®) > 0in(ViMVi VG U®) > 0 (MP)omin (VA UO).
Observe that
O-min(V/\T/tUO) > O'mln(V/\—E[VjMJV;MjUO) > Umin(v_/\T/l VJMJ)Umin(V;MJUO)'
Further,
Tmin(VarVama) = 1= (Vi) "Vamall.
Invoking the David-Kahan sin(©)— theorem we have
Vel (Via) T (Z = T A A(Z) T Vg |
minie[r*],r*+1§j§md {|)\i(~7Mu7) - )‘J(M>|}
Observe that from Weyl’s inequality and Lemma2]
A (TMT) > 1+ ads (Z7) — abps VA (Z7),
)\T*+1(M) S 1+ O[262T* \/F)\l(Z*)

Further, invoking Lemma@ we obtain

(Vi) " Vamalle <

VI PAL(Z%) (1 + /1% 69, )
A’I‘* (Z*) - 362(T*+1)\/7:)\1(Z*) '

25,

(Vi) " Vamallr <

With the choice of p selected by the lemma there holds §, < 1 and therefore
Tmin(VarU®) = (1= 8,)0min(Vy p 7 U°)-
Consequently, it follows that
o (MU + EY) > (1 = 8,) o+ (M) min (V007 U) — || EY.
Observe that
o1 (M'U°) < 0 g (MITIMUO) < 0 (MY (01 (MTU) + 01 (M(Z — T)U?)) .
Consequently invoking Lemma 4] we obtain
Tre i1 (MU + EY) < pioe 1 (ML) (1 + a2\/7752(r*+1))\1(2*)> 17Ul
o1 (M) (0% + ap 2 Z) 1+ Voo DIE = TIUN) + 1B
Further, we write

MU + B = nZ'WVp ViU + 2V (Vi) TU° + EL.

2H
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Under the assumption that V[ U is of rank r*, M'VyV, U is full ranked. Then,
Vi VMV VLU is of rank r* and Vir4 is spanned by the left singular vectors of Z!V V|, U.
Under the assumption that

A >0,
it follows from the Davis-Kayan sin(©) theorem that
H
Vit viel < ML

whereby using omin(V(U) = (1 — 6,)0min(V] 1, U) and that
[H[| < plMVig (Vi) " TN + g MVig (Vi) T (Z = DU + (1B
< pope 1 (MOITU + pllVia (Vi) "MUZ = DU + [ E*l.
In this way,
plVia(Vi) "TMAT = DU < plVig(Vig) " MTHM(Z = T)U|.
Invoking Lemmafd] we have

HIVEA(V)TMHE = DU < o1 (M) x (0 4 ap 220 (27) (14 V62 ) ) (@ = DU,

yielding

(Vi) "Vl <

pore 1 (MONTUN + pop 1 (M) (0?4 ap' P (Z7) (1 + Vi* oo ) (T = DU + |1 Bl
1 .

Observe that

(Vi) Vol > 1(VA) " Vamg (Vimg) " Vorl 2 omin(Vi) "Vama ) I (Viag) Vol

where
omin(Vid) ' Vimg) 2 1= (Vi) "Vamgll =1 -6,

yielding the result. O
Lemma 11. Assume that ||(V4) Vit | < & for some t > 1. Then, the following hold:
o (UY)

2 )
1(VZ) TVl < Tl (VZ) TV,
U Q|| < 207 41(U").

Opx (UtQt) Z

The proof of Lemma follows readily from that of Lemma 8.4 in [34]].

F Proofs of the Intermediate Results in Phase II (Appendix

F.1 Proofs of Lemmal[9

(i) The proof of this statement follows readily from that of Lemma 9.4 in [34]] and thus is omitted.
(ii)
VLUQ = V) <W2 + %A*A(Z* - Ut(Ut)T)) UtQt
—v]. (W2 + % (z* - WUt(WUt)T)) UtQt
+ V) (%(A*A(Z* —UtUYHT) - Wz - Ut(Uf)T)W) U'Q'.
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Observe that
1 1
VW2 =(—=1) V], | W?el)=(—=1, 0V, |.
ZW (\/m 'rn® A ( ®d) \/m’rn® A
Further, X = /mVz-% ¢Q % and consequently

VZT* Ut+1Qt — (I + OZZ%»)(VZ*)TUtQt _ %VZT* UtQt(Qt)T(WUt)TUtQt

F VLS (ArAZ U U T - W(ZF - uluhHHmw) uQ!
—(

= (I +aX2)VLU'Q (1 -

«

E(Qt)T(Ut)TVZ* VZT* Ut@t)

(6%
— S VLUNUYTW (VA (VE) ) U'Q!

24,

+ % Vi (A*A(Z* = U UM T) = W(z* — U UH )W) U'Q!

£ A,

2
+ % SLVLUNUY TV VEURQE .

£ A,
We now rewrite each A; as

[0
A; = PVLUTQ! (I — @)U VeV Uth) .

In order to proceed with A; we focus on the term (V5 ) T U'Q*. Under the assumption that V) U* is
of rank 7* we have

(V) TU'Q" = (VA)TU'Q! (VAU'QY) ™ (VEU'Q).
Using the singular value decomposition UtQ" = Vet Xy Qgt ot yields
(VA)TU'Q" = (VE) Vg Sug: Qg (VI Vg Sriar@ig) (VAVig SrigrQligr)
= (V) Vg (VA Vi)~ VA UQ
Therefore, we write A;
V2 UU) WV (Vz) DU'QE = Vz. UNU") WV (Vi) Vg (V4 Vi) T VAU Q!

post-multiplying by (I — 2 (U*Q") "V V. U'Q) ~! and its inverse (a sufficient condition for the
inverse to exist is given by 9|/ X||2 < 1 which holds under the assumption on «)

Py = VLU U TW(VA(VE) WV (VA Viig) ™ x
(I - %v} UtQt(UtQt)TVZ*> VLUNQ!

We proceed now similarly with A5 yielding

Ay = %Vzi (A*A(Z* —UHUNT) = W(Z* = UNUHTIW) Virege (V4. U QN VL UQ!
following the steps as for the case of A; we have

Py =V (A*A(Z* = U UT) = W(Z* = UNU) )W) Vipege (Vi Viregr ) ™ x
x (1 - %Vzi UtQt(UtQt)TVZ*)

Similarly,

Ay =22V, UNQ! (I - —(@"HYT (U Vz.V,. UtQt)_1 (@) (U") Vze x

«
m

Lp;
«

X VLULQ! (1 — (@)WY Ve V;UtQt) .
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Consequently, under the assumption that
Z*|7 'k % and |U'|| < 3v/m| X
0 < oo |27 and U < 3] X
and using Weyl’s inequality we have

T prt+1 ot 2 « o o?
O'min(VZ*U+Q)ZO-min I+aZX_*P1+*P2+7P3 X
m m m
(0% « OZQ «
= Omin (1 +05% = 2P+ 2P+ 2Py ) 0 (VL U'QY) (1 - VU'Q)
ag <+O[X m1+m 2+m3>0 (Z Q) mmln(Z Q)
= (6% (6% Oé2 «
> (140 (2) = ZUP = SR = S Poll ) omin(VZ-U") (1 - viUY).
> (1400 (2) = 21711 = 2122 = S0Pl ) in (VU0 (1= 02 (VLU
We now bound each of the quantities || P;|| with

—1
1P \

VAU'QUU'Q)TW (VAVA) ) Vg (VAVirg) ™ (1= SVLUUY Tz )

By assumption ||(VA) T Viege || < CIR™ Vimplying omin((V) " Viregr) > 1 — 1571 and conse-
quently observing that Z*W = WZ

1(VZ) T WVigell < [[(Vz) TVoegrll

there holds
1P| < 1TLQYIP VA Ve | |[VA W Vo | - HUtQtHQH(VZL*)TVUiQ_fHQ
Guin (VI Viregr) (1= 2IVLUM?) ~ (1= ern1)(1 = 29]X]?)
tt||2 1T 2
< o Sy < U@V Vg
<AUQPern < 36m|| X |[ern 2.
Similarly,
1By < IAAE = UHWHT) —w(ze — U ) )W)
Omin (VS Viege) (1 — 2||V,LUY?)
_ Az Ut unT) - Wz - Ut Hw
B (I —ck=1) (1 — 95~21/81000)
SA|ATAZT U U T) =Wz = U W
and
ipy < IXIPIVZU'QUE _IXIPIVAU'QE _ IXIPIVA. U Q)

1— 2|V LUtQt2 —  1—-g[X]? ~ 1-9(1/81000)x=1’
under the assumption that o there holds
1Ps < 201X (V7. U'Q'1* < 18m| X"
Combining all estimates together with ||[UQ?||? < 9m|| X||? yields
Omin(V4.UTIQY) > (14 ar«(Z*) — a36ex7 | X|? — o?18) X
—%4HA*A(Z* -U'UH)") -w(zr - Ut(Ut)T)WH) x
X omin (VAU (1= 02, (VU1

A (Z7) -2
Observe that o < ST000] X2 | X||~2 and therefore

18
o
81000

— A A AZ = U UT) = W2 = U U)W omin (VA UY) (1= 02 (VAUY)).

Omin(V4UTIQY) > (1 + aM (Z%) — ey 36872 X || - A (Z%)
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Therefore
aminw;Uf“Qt)z<1+a<1—55c1> 02in(X)) omin(VAU") (1= o2, (VLUY).

Under the assumption that c; <15 there holds

Omin(VAUQ) = (14 502,,(X)) ommWZ*Ut) (1- S0k (vEun)
t E - _ t g t
= owin(VAU") (1+ 02 (X) (1 o2in(VAUY) = ok (VAUY)
> Ut 2 o\ a 2 Ut
Omin VZ U + 4 ) m mm(VZ U ))
where we have used that
1% (VAU >1— L_H_ngn)‘q‘? S 2
Tmin{¥Z+ 81000m =

The final result follows by noticing that o, (V. UH) > 00 (VL. UFLQY).

(iii) The proof of this statement is practically identical to that of [34, Lemma 9.2], and thus is omitted.
However, [34, Lemma 9.2] builds upon [34, Lemma B.1] of which we provide a suitable version for
our purpose in Lemma|[12]

(iv) For convenience, define
UtHlott! — ( 2, @ )Ut t4+1 70
Q W? + mM Q (70)
_ (Wz + %M) (VUtQtVI;QtUtQt(Qt)TQt-&-l +UtQt,L(Qt,L)TQt+1). 1)
Due to the assumption on ||[U*Q%*|| and because (Q*)TQ!*! is invertible which follows from

LemmalE we have that the matrix V/, vegrU tQY(QY) T QM is invertible and we may consequently
write

UtQt,l(Qt,L)TQt-&-l
_ UtQt,L(Qt,L)TQt-&-l (VJ'tQtUtQt(Qt)TQH-l)_l VU—'rtQt %
ap
% VUtQtV[;QtUtQt(Qt)TQtJrl.

Therefore, we have

Ut+1Qt+1 — (W2 + %M) (I+ P)VUtQtVUtQtV(;QtUtQt(Qt)TQt+1.
Define the matrices
! A 2 2 it
7'e (W2 mM) (I + P)Vyeg
£ g tOt
22 (I+ M) I+ PV

Because the matrix U'Q" is full rank, there holds ||(V4) " Vierigeri|| = |[(ViA) TV ||. We now

argue that span(V}) C span(Vz) and consequently ||(V5:) T Vz || < [[(V£) T Vz||. We observe that
the main deviating factor between the matrices Z and Z’ are the terms W? + ~Mand I + M

respectively. It suffices then to establish that span(W? + 2 M) C span(] + £ M) as the term
(I 4+ P)Vyr is common to both matrices. Observe that because M is symmetric by construction, it
suffices to choose a sufficiently small such that

1
Il <3 e
m 2
for I + <M = 11. This implies that span(I + = M) = R™<. This implies that

(V) TVoergusll < NVZ) TVl = 1(VZ) TV2QE N = IV 2(2T2)7 2. (73)
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From here we proceed similarly to the proof of [34, Lemma 9.3] with the following definitions of B;

By 2 % (XX —wutwuh)T), (74)

B, & % (A A(Z* = U UHT) = W(Z* = U UH W), (75)

By & UtQt,l<Qt,L)TQt+1 (V(;QtUtQt(Qt)TQt+l)_1 VUT:‘,Qt, (76)

B2 2 MP, (77)
m

B2 M+P+EMP. (78)
m m

Suppose the following holds (a fact that will be proved later)
1 1
—51 2 Ve BVuegr + Vijuge B Vg + Ve BT BVpegr = 51. (79)

Following an identical procedure to that in [34, Lemma 9.3], we obtain
1
Z(Z72)7Y2 = Vipuge + BViege — S+ B)Vugr Vijeg(B+ BT )Vyegr — D
1
D £ (I + B)Vige <2VUTtQtBTBVUtQt — C) :

The expansion of the term (V)" Z(Z " Z)~'/2 becomes analogous to that in [34, Lemma 9.3]. To
upper bound the term () defined analogously as in [34, Lemma 9.3] we have

(I =v' (I + By — %VUtQtVUTtQt(Bl + B1T)> Vg
= (V&)T (1 + % (I = Vi Vi) (2° — WUt(WUt)T) Viror
= (Vz) Viege — %(VZL*)TVUtQtVUTthZ*
- %(Vi)T(I ~ Vg Vigig)WUH(QNQY) T + Q1H(Q" ) YWU") Ve
Observe that span(WU'Q!(Q) ") C span (V¢ ) and consequently,
(I = Vet Ve )WU'Q' = 0.
Therefore
(1) = (VA) Vg = — (V) Vg Vijege 2*
- %(VZ% )T = Ve Vi) WU QS (WU'QMH) T Ve
= (Vz) Vg (I - %Vrjﬂ@tZ*VUtQt>
- %(VZ%F(I — Vi Viig WU QWU QM) T (Ve Vi + Vg (Vi) ")V
Observe that V. WU'QH+ = V. UIQH = VIS (QY) T QL = 0. Therefore,
IOI < NVE) Vel (1= S omin(Vih e 2 Vi) + - 1(VE) T Voege U Q1 (80)

where Umin(V[;QtZ*VUtQt) = Umin(X)o-min(V[}rtQtVZ*)- By assumption owmin (V. Virige) >
1 — ck! setting ¢ < % We thus obtain

IO < V) Vel (1= 5Ae (2)m + = [U7Q" ) 81)
< VA Vorgrll (1= 520 (2 +aer- (29)). (82)
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. 1
Setting ¢ < 5

a 77 %
IO VA Vel (1= 50(2)). (83)
For (I7) it follows in the same way as in [34] (c.f. page 59)
a
1Dl < —A"AZ" ~ Ut =w(z -utu) Hwl. (84)
1
I < (V)7 (B~ i Viig: (Ba+ B) ) Virar )
with
B3 — UtQt,J_(Qt,J_)TQt+1(VUTtQtUtQt(Qt)TQFFl)flVUTtQt (86)
_ UtQt’l(Qt’L)TQt—H((Qt)TQH_l)_l(V[;QzUtQt)_lvl}rtQt, (87)
and
1Bl < IU° Q" 1@ ) T Q™M@ T Q™) T Il (Vi U'Q) M- (88)
Using Lemmaunder which it holds that i, ((QY) TQ*T1) > 1
Q"N T QI Q|| £ T i1
Bs|| < <4 ’ 8
H 3” o Umin((Qt)TQt—i_l)amin(UtQt) N ”(Q ) Q H ( 9)
From the same lemma it follows that
A (Z7) URQIIT Q|
tLINT O+ < NV
Qe <o (2 o IR 1A Vol 00
4
+ | AA) (2 U U T) =Wz - U)W o1
therefore, using the above and that ||U*Q%|| < ck=2/m\,- (Z%), |U'Q?|| < 3v/m|| X || we have
for ¢ < 57555
o _
I(IID)|| < 2[|Bs|l < 8[(Q"H) Q™| < mﬁﬁun(X)H(Vz{)TVUtth 92)
+ BQ%HA*A(Z* —UlUH ")y —w(zr —utuH)Hw. (93)
Similarly,
20 20 * * t t\ T
IV < 2 Ball = = MPI| < —=[|A"A(Z" = UH(U") )]ll| Bs |l (94)

We have already obtained a bound on || Bs|| meaning that we are to bound the remaining matrix
yielding under the lemma’s assumptions that

|A*A(Z* — U U T)|| < 1ler2,
and therefore with ¢ < 5%
o _
IV < 520 (Z)1(VE) Vi
+ 352c%||A*A(Z* — Ut Uy =Wz — Ut UHHW||
and
1 1
IO < 5 | (VAT BV Ve (B + B WVurge | < 5IBIIB + BT < 1B
Observe that
« « «
1BI < | S M+ P+ ZMP| < 1Bl + M| + | B
m m m
< (14 S ATAEZT = U UHT) =Wz = UH U T (1Bl + = M|
< s @A) Vigr |+ 1T JAAZT = UHUYT) = W(Z* = UM (U)W
+ |zt — WU WU .
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Therefore,

V)1 < 8 g e 2V Vi

4 MO g - T - AT - U

30[ ZT WUt WUtT 2<3C¥2 Z* WUt WUtT 2
+ 20027 - ooty v TP < 22— vty v

3ack™4 -
Booyr M ENVE) Vorr|?
3(17)%ck™4 * * *
4 LT Wiz — Ut W - A Az - U T))L

Similarly as in [34] we have

1
VDI < 102Dl < | (V)T + BVingr 5V B BViegr )|

<2(|B|I*+Cl)
IC|l < 3|[Vijeqe BVueqr + Vifeue B Viregr + Vijege BT BViege |-

Following [34, Lemma 9.3] there holds that

—4

ak 7 AT 2

2
VDI <56 (32512* = WU WO TP + e

Pk A AZ - U T) - W Ut(Ut)T)W“) |

The final results follows readily combining all the above bounds.

We are left to establish that holds.

Observe that by definition the matrix is symmetric. Consequently it suffices to prove that

2|B| + BT B <

N | =

From the upper bound on (VI) it follows from the derivations in [34, Lemma 9.3] that

I1B|| < 100/ X2 + M)\ A(Z*) + 33car- (Z7).

Consequently, for the above to hold it suffices to chose ¢ such that

1
1 -2 2 < -
Ock™“ + 40()/@ +33c2k72 < 5

which follows under the restriction on c¢ as stated in the lemma.
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(v) We write

Z* _ Ut-‘,—l(Ut-‘rl)T — Z* _ WQUt(WQUt)T _ EWQUt(Ut)T(Z* _ WUt(WUt)T)
m

(Z* o WUt(WUt)T)Ut(Ut)TWQ

Se

+ %W2Ut(Ut)T (W(Z* -~ UHUHYTIW — A*A(Z* - UHUHT))

«

+— W(z* -UUH "YW — A" Az = UYUH ) U U T w?

- %Z(A*A(Z* - UNUH) T )HUUH) T(ATA(Z - UNUY)T))

=W (I - %WUt(Ut)TW) (z* —UtUuH") (I - %WUt(Ut)TW) W+ WUHUHTW
- WAUHUY)TW? — :—;WQUt(Ut)TW(Z* —-utuH)Hwutwh)w

+ %WQUt(Ut)T(W(Z* —UHUHT)W — A*A(Z* — UHTHT)

+ %(W(Z* —UHUY )W — A A(Z* — UL U UL U T W?

042

— SAAZ - UM U UN TATAZ - U U)T),

We are interested in bounding the following terms

VZT* (Z* o Ut+1(Ut+1)T) —
V). (1 - %Ut(Ut)T> (2" — wutwuh)T) (I - %Ut(Ut)T) W

2(I)

T %VZi (z* = WUt WU T UHUH T (W = W2)

&1

2
- %v} LU Tw(z — Ut uhH)Tywutwh)Tw

&(111)

+ %VZI UtuH)Tw(zr - vt uhHTw - AFAXX T —UHUYHT)

2(1v)

+ %VZi((W(Z* —UHUH YW — AT A(ZF — Ut (UH HUH U THw?

[I>

)

2
- CVEA Az U O U T AAZ - U

2w
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We begin with term (1):
(1) = V. (I——Uﬁ(U% ) (Z" = WHwH I - U U)W

=V} ( Ut Ut) T) Vi V(25— (UHUH) T — %Ut(Ut)T)W
+ VL ( Ut Ut) T) (VA (VEA) —wHwHHI - %Ut(Ut)T)W
=V} (I - —Ut Ut) T) Vg V) (Z (Ut)(Ut)T)(I - %Ut(Ut)T)W

2(I.a)

VA (1= S UUYT) (VA V) U WY ) = S0 0 TIW

£(L,b)
Therefore, we obtain

o
Iz @)l < |[1 - VAU U Ve

H\vzi ~Ut @I - Sutet)w
< (1= 202, (vLU'QY) VA (2 vt )|
By assumption amm(UtQ ) > ™\, (Z*), which leads to
Il < (1= Soxe (29) VA (27 = v @) T

20
We now proceed with the quantity

ICE o)l < %mVZT*Ut(Ut)TW(VZJ_*(VZJ_*)T)Ut(Ut)Tm

= VAU QU QY WA VA ) TUUT|

I

«
< EHVZT*UtQtH||(VZL*)TWUtQt”W(VZL*)TUt(Ut)T
where because Z*W = W_Z™*, there holds
(V) WU QM| < [|(Vz) TU QY.

We can now use the same procedure as in the proof of [34, Lemma 9.5] and obtain, under ¢ <

9 400’
that

ez < 2 vz 2 - vty |+ 2 g T
Proceeding to (I1), we have
|||(II)|H§%H|VZT* Ut hH|[ITt@hHow = w2l
< OB s 2 (2 — 0t @) < 90l KIRRIVE (20 ~ U L
Combining
|||1|||+|||H|||s(1—Oﬁ§f”+9an)‘fn2p) vz — vty
+ 2 rgr gy

Following the proof of [34, Lemma 9.5], we obtain, under ¢ < 81000,

||(III)|||<a/\T*(Z*< V(2 = U U T + — H|UtQ“UtQ“TH|>

200 H 1000
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Similarly, we have

Aes (27 «
I+ 1o < 22E (v wten T - 2]+ et et .
Lastly,

2 9 2
VDIl < 1T P[4 Az - 0D < —IXIPee|| 2+ = U0

< 9Lﬂ||5(||r“<:f’€’4||}Z* Ut X1+ 10t2)
- m
< %||X||210m|\X||QCn’4|||Z* — Ut(Ut)T|||
< 900X (Z)||| 2 = Ut |-
Using [34, Lemma B.4], yields
(VDI < 90a7.(Z%) (4][[Vz. (2" = U (@) D] + [[v* "+ (U@ ) T)
Combining all bounds, we finally obtain

VA (2" = o1 @] < (1= 5557 (27) +9allXI1%) [V (2" = Ut
)‘r*(Z*) tyt, L rrt At LN T
+a D e T

F.2 Technical lemmas: auxiliary to proving Lemma |2|

Lemma 12. Assume that o < aminf||Z*|~!, m|[WAW — A*A(A)||} for some ¢ €
(0,1/1200) and that ||Ut|| < 3v/m||X|. Moreover assume that V,J,U'T1Q" is full rank. Then,
if|(VE) " Virege|| < ex™! there holds that

(V) Vsl < 2 (”(VZJ_*)TVUtQt |+ %IIA*A(N)H) (95)
1
(V) T Vgerige|) < = (96)
Proof.
UQ = (Wt SATA(Z - Ut U)T)) U 97)

and denote by Vit gt Xyt Qtht the singular value decomposition of U¢Q*. Denote by

y £ (w2 + %A*A(XXT - Ut(Ut)T)) Viror. 98)

By assumption the matrix ¢ e Qgt ot 1s full rank and the matrix ¥ = Vy Xy Qy- has the same
column space as U1 Q?. It follows that

[(Vz:) Y|

1(Vz) " Voesigell = 1(Vz) "Wl < (V) "TWEy QU Il (By Qy) M = =2
Umln(Y)

99)

Then,

Tmin (V) > 0min(V4.Y) = omin (V4 Viegr) — — || (V7. (AA(Z* = U (U T)) Vi) |

(100)

«
m

Observe that by assumption ||(V£) T Viyege|| < ex™1if ¢ < 1 there holds that omin (V). Viregr) >
1 — ck~! implying that the matrix V], Vi« @t 1s of rank r* (full-rank). Observe that there holds that

[A"AAN] < A" A(AY) = WAWI| + | 2% = WU WU || (101)
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LIATAAY | < ¢+ (12| + 9] X|? < 11c (102)
m m

where we have used that

a < cmin{|[ X[|72,m[|(V? — A" A) (AN 71} (103)
and
1] < 3v/m|| X||. (104)
Thus, there holds
Omin(Y) > 1 —cxt —1lc. (105)
Under the assumption that ¢ < i there holds that
1
Omin(Y) > 3 (106)
In this way we Further,
&% *
I(VZ) Y < (V) Vgl + —[lATA(AY]. (107)
Observe that by construction
Vi) Vi =|(V5) "V, 108
[(VZ2) Vorgell = 1(Vz) Vureigell, (108)
and therefore
a *
IVA) Vieaqell <2 (|VA) Virgrll + o A A ) (109)
Similarly,
« *
IVZ) Y < (V) "W Vieqel | + —ATA (A | (110)
where using that W2Z* = Z*V? we obtain
1(Vz) " W Vgl < (V) Vi, (111)
consequently,
V)Y a
) Vpenge || < 122 Y +) Vg + —|A*A(Z* — Ut U T
V) Vel € B2 <2 (V) Vel + A" = U@ (12

We can further bound

S AZT - UNUY ] < 120 - UHUYT] S ATAQY) - AW 13)
< = (mlI X2 +9m|[X|1?) + ¢ < 1le. (114)
Consequently,
1
(V) TVierige || < 2ex™! +22¢ < = (115)
under the assumption that ¢ < %00.
O
Lemma 13. Assume that |UtQ" || < 20min(U'Q?) and ||UY|| < 3v/m|| X || holds. Further, assume
that
IWAW — A* A(AY)|| < ema?,;, (X) (116)
(V) Ve | < e (117)
a<cer Y ZF 71 (118)
U Q" || < en™v/ml|X]| (119)

1
for some ¢ < 515+ Then, there holds that

Ap 7* UtQt UtQt,L a .
@)@ < (2 o SECNTL) vty Toing + a2 pwaw - aaqat)

6400
(120)
and
Tmin (@) TQ!) > 1/2 (121)
Proof. Follows identically to that in [34]. O
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G Proofs of the RIP Properties and Consequences

G.1 Proof of Lemmal[l]

By definition of the map A we have

N 2
1 1 _
2 _ T T
M= Y ({(moverctio - 11l) @ 402) + miae 2)) (122)
(a) o 1 1 N m m 1
< (L+e,) m*|A(Z)3 + <1 + E) — > <Ae, > (mwvw)jwvu)k - m) [Zb‘k> ;
w =1 j=1k=1
2A
(123)
where in (a) we use Young’s inequality for any €,, > 0. Similarly, for any ¢, € (0, 1)
1
@I > 0 - m?l A2+ (1- ) 4 (124

We now proceed by upper bounding A. Because the matrix W' is doubly stochastic we can write

2
1§ S 1 )
A= o Z <Ae,zkz_:l (mwv(mwv(z)k - m> ([Z)% — Z)> . (125)

=1

2

1 _
MWy (0)jWy(e)k — m‘ [(Ae, 126 = 2)| | - (126)

Because w;; > 0 for all ¢ and j there holds

2
max Wiy — —5

Z!?

WiWiem — —| < mmgx
1

<m (14 )W Tl < 2mp. (128)

1 1
= mmax (wik + ) ‘wzk - — (127)
ik m

N m m
A< S amtp | 300 (A (2l - 2)| (129)

mno = j=1k=1
1 N m m B m m B B
<Dy Amp (An [0 = 7)) < am®0? 303 A2 - 2)[°- - (130)
(=1 j=1 k=1 j=1k=1

Using that A fulfills the (52, 2r) RIP we obtain
= 1 5
IAZ)II3 < (1+ &) (1+ 620) m? || ZI|7 + (1 + E) 4m®p* (14 000) | 2 = T 2T |5 (13D)

= ]. =
IA(Z)13 > (1 — &) (1 = 82) m?|| 2|7 — (Eel) AmPp? (1 + 62,)|Z = TZT 3. (132)

62r

T then

Sete, = ¢, =

(1+eu)(1+ 02r) = 1+ 265, (133)
(1—e)(1—d2) >1— 26y, (134)
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and

1\ 1420,
B 527’

L) f ol
627" 527“

and consequently

1+ 209,
IA(Z)12 < (1+ 26,) | T 2T ||% +4m5p25—f’

- o1+ 20,
A3 > (1= 2620) 1T ZT|Ife = 4m®p? ——

r

G.2 Proof of Lemmal[2]

due to linearly of the operators we have

(L+0)2 - T27|°

(1+02)12Z = TZT|*.

(135)

(136)

(137)

(138)

IWZW — A*AZ)|| < | TZT — A ATZI)| +IW(Z - TZIW — A*A(Z -~ TZJ)| -

1>

We start off with (1) which can be rewritten as

()= max (Jw'J,JZ2T) - (Alw"), ATZT))

vi||v]]2<1

1 1 1
= (1924 00) T = 17 (2= o0") T = 1A 0 + T27) I

vi||v]|2<1

1 (a) 1 1
M = 29)18) € e (119 (24007 91 - {1012 - w1

vi||v]|2<1

1420y, 1— 26y,
SE2R0) 77 4T g 4 LR

. 17(Z = w0 T) I

Ay
JF%H)HWT - JWTJH%> < max (Sl (Z + 00" )IT |

vi|lv|[2<1

A,
= S |7 (Z = 0TI + =25 oo — vaTJn%)

Ay,
— max <52<,.+1> (172715 + 1T 00T TN7) + =52 oo” — Jme@)

vi||v]|2<1

(I) 2(11)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

where in (a) we have used Lemmam Under the assumption that AQ(TH) < 0g(r+1) there holds

(a)
(I) < 62+ ) | TZT % + S2(r41) < 2090415

(147)

where we have used in (a) that |7 Z7||3 < 1. Consequently, due to the linearity of the operators

involved, there holds for any Z fulfilling the conditions of the lemma that
IWZW — A" A(Z)|| < 26241) 1 2] -

We now proceed with term (/1) and write

(II) = max | (v W(Z -~ TZIIW) — (A(w "), A(Z - TZJ))

vifvfl2<1

L(I1.a) 2(11.b)
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where

—(I1b) = —(A(wv" — T T, A(Z -TZT)) — (AT T),A(Z-TZJ))  (150)
< Ao = T DNAZ = TZT)| + AT " DINAZ - T2T)) (151)
(@)

< Npiipyllov” =T TN pl|Z = TZT||p (152)

. Ay,
1+ 26500 By | T00 T TIPIZ = T2T N < 225 oo — JooT T (153)

Ay -
+ 2207 = 72715+ (L4 20 Aaean | To0 TR Z - T2 P, (1549
where in (a) we have invoked Lemma|l|and

(IL.a) = (00, WZ(I — T)W + TZ(IL -~ W) < 2L = I Z|lr < 20|12~ TZT | -

(155)
combining
(I1) <2012 = TZT |p + (1 + 205041)) Do) |1 2 = TZT |7 (156)
R e <A2(§H)W R s 252”5”)A2(”1) vaTJH%) .asy
Under the assumption that | Z — JZJ||% < 1 there holds
(IT) < 2p+2(1 + 205r41)) Ag(ri1), (158)

and using the linearity of the operator, there holds for all matrices fulfilling the constraints of the
lemma that

(I1) <2 (p+ (L4 205051) Ao ) 112 = TZT | - (159)

Gathering both results the desired results follows.

G.3 Proof of Lemma[3
Denote by Z = szl Aviv;

md

IWZW = A A)(Z)|r < S Nl Woi] W — A A(v0]) . (160)

=1

Invoking Lemma [I] there holds
IWZ2W — A*A)(2)||r < (161)

< g i (254 +2 (p +(1+ 254)A4)> - (254 +2 (p +(1+ 254)A4)) 1Z]..  (162)
=1

G.4 Proof of Lemmald

I(Z = D)AAZ")| = | A AZ)E - D), 163
and
1 N
AT = o ; (U’V(s wy) S)> ® As(As, Z7) (164)
1< i
il d o Z:; (6v(s )EV(s) ) ® A(As, ZF)WV. (165)
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Thus, because W is p.s.d. there holds

N
1
(I_j)A*A(Z*) = (W—J)%ZGH eV(s)ev s)) ®A <A57Z*>W
s=1
1 & T )
— 1/2 _ L 1/2 1/2 . 12
=W mn ; (m Wy (s) ( (S)) ) ® A(Ag, Z*)W/ =

Consequently, we have

I(Z — T)A"AZ")| < p'/?

1 & 2,12 (/2 T A A 7
%z} mewyy (Wy()) ) © As{ds, Z7)
Under the assumptions of the lemma we can invoke Lemma [2] yielding

(T — T)A*AZ")|| < o2 (1271 + b20+ 1 2" | )
Following the same procedure

I(Z = DA AZ)NT =D < p1Z7]| + b2r- [ 27| F) -
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