A. Appendix A

We expand and provide more details regarding the differ-
ent elements of the S2MGen pipeline. To ensure reproduca-
bility of our work, we provide extensive details into all the
generation parameters for all the datasets and the training
hyperparameters for the experiments.

A.1. Camera Position and Direction

In this section, we show the effects of the parameters
DPfocal and Prrone on F' (Figure 9b) and © (Figure 9a) re-
spectively. The equations for this section are described in
3.3. The values of pfocqr and pyron: can be tuned to obtain
datasets with varying ratios of zoomed-in and face-frontal
shots respectively.

A.2. General Experimental Details

For all of the experiments published, we use a U-Net ar-
chitecture with skip connections, with Kaiming initializa-
tion. We use ReLU activations and dropout for regular-
ization. While training on Synthetic data and testing on
real datasets, we use 10% of the corresponding real train-
ing datasets as the validation set to choose checkpoints for
inference.

The loss function used is Cross Entropy loss with in-
verse frequency weighting. This is important to alleviate
the effects of data balance being varied between differ-
ent datasets. For example, adding clothing or increasing
the focal length in the dataset generation pipeline reduces
the amount of skin pixels in the training data. The leads
to model performance differences being overdependent on
changes in data balance. We weight the Cross Entropy loss
calculated at every pixel by the factor o based on the imple-
mentation by Sushko et al. .

HxW 3
min(Zf*W I(yjc = 1), threshold)

o =

where,

I is an indicator function satisfied if the class c occurs at
the pixel j in the ground truth mask y.

threshold is used to limit alpha when class occurrence
tends towards zero. We set threshold as 10% of the image
size.

A.3. Evaluating S2MGen’s Tunable Parameters

We create various versions of the Synthetic Dataset to
perform experiments described in Section 4.2. We list the
values of the tunable parameters used in Table 4 to create
these versions. For the varying focal length experiments,
we generate three different datasets (Full Body, Portraits
and Faces) by sampling focal length uniformly within the
mentioned f,;, and f,,q. values. We then train on mixed

ISushko, Vadim, et al. ”You only need adversarial supervision for se-
mantic image synthesis.” arXiv preprint arXiv:2012.04781 (2020).
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Figure 9. Varying pfoca: and psron¢: Sample transformations of
the probability distributions of © and F' while varying pf,on¢ and
Dfocal TESPectively. As we increase p front¢, the likelihood of face-
frontal images increases (© is more likely to be closer to 377’). As
we increase Pysocal, the likelihood of close-up shots increase (F'
more likely to be closer to fiqz than fi,in)

Exp. Optional

Section Description Size  Deiothing  Poackground  fmaz  fmin

4.1 - variable 0.8 0.8 300 200
4.2 - 5000 variable 0.8 200 35
42 - 5000 0.8 variable 300 200
42 Full Body 5000 0.8 0.8 200 35
42 Portraits 5000 0.8 0.8 300 200
42 Faces 5000 0.8 0.8 310 300
43-47 - 8000 0.8 0.8 300 200

Table 4. Parameter Values Used to Create Synthetic Dataset
Versions: We list all the parameter values used to create dataset
versions used for experiments in Section 4.

versions of these datasets by varying the sampling ratios
between them. However, this can also be approximately
achieved one-shot by solving for pf,cq; in equation 2 by
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(a) Qualitative results with the ECU dataset.
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(c) Qualitative results with the HGR dataset.
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(b) Qualitative results with the SFA dataset.
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(d) Qualitative results with the Abdomen dataset.

Figure 10. More Qualitative Results: We show some examples of performance gain we observe when doing cross-dataset and in-dataset
inference on the ECU, SFA, HGR, and the Abdomen dataset with and w/o pretrained model on synthetic data generated from S2MGen.

substituting X and F' with the required ratio and transition

focal length respectively.

For all of the finetuning experiments in the following
sections, we pretrain the model on synthetic data generated



Experiment IoU Acc F1-score

ECU Training + SimCLR 0.8156  0.96 0.8925
ECU Training + Synthetic Pretraining + SimCLR  0.8328 0.9649  0.9034

Table 5. Effect of SimCLR [9] pretraining on ECU performance.
We see that SimCLR initialization for the U-Net backbone im-
proves performance for both with and without synthetic pretrain-
ing.

using the paramters described in the last row of 4 and fine-
tune for 10 epochs with a learning rate of 10~6.

A.4. Real to Synthetic Domain Gap

In this section, we expand upon the experiment details of
section 4.5.

A.4.1 Supervised Domain Adaptation

Finetuning: The finetuning details are described in A.3.
Balanced Gradient Contribution: Balanced Gradient
Contribution (BGC) is a method of regularizing the target
domain ¢ (real), using the source domain s (synthetic), that
was previously explored as a method of adaptation in Ros
et al. [59]. We implement BGC on every mini-batch update
using the following equation:

ZBGC(X7 Y) = Z(Xtvyt) + AZ(XaYs)

where ) is chosen as 0.9 and ¢ is Cross Entropy loss with
inverse frequency weighting as in Eq. 3.

A.4.2 Unsupervised Domain Adaptation

Fourier Domain Adaptation: FDA [78] is a domain align-
ment process, where the low frequency spectrum of source
images are replaced with that of the target images. This al-
lows the model to learn useful higher order information and
remain unaffected by the misalignment of low-level image
statistics. The FDA experiments are done with single-scale,
with 3 = 0.01 and without entropy minimization.

DANN: DANN [17] uses an adversarial domain align-
ment approach. The network is trained to learn domain-
invariant intermediate features with the use of a domain
classifier/discriminator block. For the DANN experiments,
we redesign the discriminator as a PatchGAN discriminator
structure trained with weight annealing in the initial epochs.
PixMatch: PixMatch [41] uses psuedolabels to regularize
the model as a method of domain adaptation. During train-
ing, by constraining the model to predict consistent labels
on the target domain with and without perturbations, the
network learns to adapt to target domains. For the PixMatch
experiments, we enforce only the augmentation consistency
with a weight of 0.1.
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Figure 11. Skin Tone Qualitative Examples: We show examples
of improvement in segmentation performance on images belong-
ing to Fitzpatrick skintone scale 6 by the injection of S2MGen into
the training pipeline

Figure 12. Foundational Models: Results of Skin Segmentation
with open source Foundational Segmentation Model OV-Seg



A.5. Effects of Unsupervised Pretraining

We experiment with unsupervised pretraining in 5 using
SimCLR. We pretrain the U-Net encoder for 200 epochs on
50k images from the OpenlmagesV6 dataset [34]. We see
general improvement in model performance through Sim-
CLR initialized weights, however subsequently pretraining
the model with synthetic data shows a considerable im-
provement in performance. This shows that performance
gain by synthetic data pretraining is additive and can be
used in addition with other augmentations/improvements.

A.6. Foundational Models

Recently foundational models such as SAM [29] have
shown incredible progress in promptable image segmen-
tation. Extensions of SAM using CLIP [52] to allow for
text prompts have been explored in OV-Seg [37], LangSAM
[18] etc. We hoped to compare the performance of su-
pervised synthetic data with unsupservised data annotated
using foundational segmentation models. But as shown in
Fig.12, initial experiments for CLIP based prompting show
insufficient results for skin segmentation. The model often
misses skin regions and instead picks up hair (left example)
and clothing (right example) as skin.

A.7. Qualitative Analysis Continued

In continuation with section 4.4, we show more qualita-
tive examples in Fig. 10 of adding S2MGen data into the
training pipeline. In each subfigure, we show the results on
arandomly selected image from each of the test datasets, on
three models - the third row corresponds to a model trained
only on synthetic data, the fourth row are the results of a
model trained only on the specific real training set and the
last row corresponds to the results of a model pretrained
on synthetic data and finetuned on the real training set. As
observed in the section 4.4, we see that S2MGen performs
reasonably well and the performance is improved by adding
real data, however biased the real datasets are. S2MGen
also improves the performance of the real datasets, espe-
cially in cross-dataset performance.

A.8. Skintone Diversity - Qualitative Analysis

In this section, we show qualitative results for section
4.7. We sample images from the ECU dataset that belong
to the Fitzpatrick 6 skintone group using the skintone labels
from Xu et. al [76]. We show performance improvement by
the injection of synthetic data, both by finetuning and BGC.
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