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ABSTRACT

Generalization in embodied Al is hindered by the “seeing-to-doing gap”, stemming
from data scarcity and embodiment heterogeneity. To address this, we pioneer
“pointing” as a unified, embodiment-agnostic intermediate representation, defining
four core embodied pointing abilities that bridge high-level vision-language com-
prehension with low-level action primitives. We introduce Embodied-R1, a 3B
Vision-Language Model (VLM) specifically designed for embodied reasoning and
pointing. We use a wide range of embodied and general visual reasoning datasets
as sources to construct a large-scale dataset, Embodied-Points-200K, which sup-
ports key embodied pointing capabilities. Then we train Embodied-R1 using a
two-stage Reinforced Fine-tuning (RFT) curriculum with specialized multi-task
reward design. Embodied-R1 achieves state-of-the-art performance on 11 embod-
ied spatial and pointing benchmarks. Critically, it demonstrates robust zero-shot
generalization by achieving a 56.2% success rate in the SIMPLEREnv and 87.5%
across 8 real-world XArm tasks without any task-specific fine-tuning, representing
a 62% improvement over strong baselines. Furthermore, the model exhibits high
robustness against diverse visual disturbances. Our work shows that a pointing-
centric representation, combined with an RFT training paradigm, offers an effective
and generalizable pathway to closing the perception-action gap in robotics. More
visualizations and datasets are available on website.

1 INTRODUCTION

Recent advancements in Vision-Language Models (VLMs) (Bai et al., 2025b) have inspired a new
wave of Vision-Language-Action (VLA) models (Kim et al., 2024) aimed at enhancing generalization
in robotic manipulation. While these models exhibit strong visual perception and excel at imitating
expert demonstrations, their manipulation performance degrades significantly in novel settings. This
disparity is widely recognized as the “seeing-to-doing gap” (Yuan et al., 2025): a failure to reliably
translate rich perceptual understanding into effective robotic actions. This gap is largely attributed
to two key challenges: (a) data scarcity, where limited embodied data prevents from sufficiently
grounding language and vision with physical actions (Walke et al., 2023; Lin et al., 2024), and (b)
heterogeneity, where diverse robot morphologies pose a significant challenge to knowledge transfer.

To bridge this gap, we propose pointing as an intuitive and effective paradigm to connect high-level un-
derstanding with generalizable action. A point-centric representation (Yuan et al., 2024b; Deitke et al.,
2024) unifies semantic and spatial information into a compact, embodiment-agnostic format. This
approach is highly scalable, overcoming data scarcity by leveraging broad visual datasets—including
real-world/synthetic robotic data, and Internet data. Simultaneously, its embodiment-agnostic nature
enables knowledge transfer across diverse robot platforms, resolving the heterogeneity challenge.
This paradigm offers a promising path, avoiding the fundamental mismatch between physical actions
and pre-trained data in end-to-end VLAs (Black et al., 2024) while mitigating the cascading errors of
multi-model pipelines in modular VLAs (Liu et al., 2024; Huang et al., 2024c). Despite a surge in
related work, the pointing information from existing methods is often incomplete and too simplistic
for complex decision-making, leading to limited generalization. They often offer only narrow forms
of guidance, such as affordance point (Ji et al., 2025), object visual trace (Xu et al., 2025), or target
region (Yuan et al., 2024b). Crucially, even advanced models like FSD (Yuan et al., 2025), which
anchor instructions through reasoning, are constrained by rigid Chain-of-Thought (CoT) templates
learned via Supervised Fine-Tuning (SFT). This rigid approach fundamentally limits their ability to
generalize to novel tasks.
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Figure 1: Overview of the Embodied-R1 framework and its zero-shot manipulation performance.
Embodied-R1 performs explicit reasoning to generate “pointing” commands, enabling robust execution across a
comprehensive suite of spatial reasoning benchmarks, pointing evaluations, and diverse real-world robotic tasks.

Therefore, we first systematize embodied pointing into four key capabilities in Fig. 2: Referring
Expression Grounding (REG), Region Referring Grounding (RRG), Object Functional Grounding
(OFG), and Visual Trace Generation (VTG). These abilities cover object identity (“What is this
object?”), functional affordance (“How to use/grasp it?”), target location (“Where should it be
placed?”), and can even implicitly convey the execution process (“How to complete the task?”)
through a visual trace. To develop these multi-task abilities, we constructed Embodied-Points-200k, a
large-scale dataset of high-quality instances with verification methods, curated from diverse sources.

We introduce Embodied-R1, an advanced embodied reasoning VLM trained entirely with Reinforced
Fine-tuning (RFT) to master manipulation through “pointing,” as shown in Fig. 1. This training
paradigm provides two critical advantages over standard SFT. First, it enables flexible, free-form
reasoning beyond the rigid CoT templates, significantly enhancing generalization to novel tasks.
Second, it resolves the inherent multi-solution dilemma in embodied pointing. For instance, an
instruction to mark a point in an “empty space” has many valid solutions. While SFT struggles
with this ambiguity and tends to overfit to a single data point, RFT can positively reinforce any
correct answer, fostering a genuine understanding of the task’s spatial constraints rather than mere
memorization. With only 3B parameters, Embodied-R1 achieves state-of-the-art performance on
multiple spatial reasoning and precise embodied pointing benchmarks. It achieves robust zero-
shot manipulation by generating pointing signals as an intermediate representation, grounding its
reasoning in the VLM’s universal perception capabilities. This method preserves the model’s inherent
generalization by avoiding the prediction of low-level, embodiment-specific actions. Empirically,
Embodied-R1 delivers state-of-the-art performance in the SIMPLEREnv (Li et al., 2024c) simulation,
attains a remarkable 87.5% success rate in 8 real-world XArm tasks, and shows notably strong
robustness against common visual disturbances such as changing light and backgrounds.

Our contributions include: @ pioneering “pointing” as a unified, embodiment-agnostic representation
and defining core embodied pointing abilities to bridge perception and decision; @ constructing the
comprehensive Embodied-Points-200K dataset for these capabilities; and € proposing Embodied-R1,
a VLM trained with RFT to resolve the multi-solution dilemma in embodied pointing, delivering
powerful reasoning. @ With only 3B parameters, Embodied-R1 attains state-of-the-art performance
on 11 diverse spatial and pointing benchmarks and enables robust zero-shot robotic manipulation,
achieving 56.2% success in SIMPLEREnv simulation and 87.5% in 8 real-world XArm tasks,
representing a 62% improvement over strong baselines, without task-specific fine-tuning.
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Figure 2: Overview of four embodied pointing abilities.

2 RELATED WORK

Embodied Reasoning in Robotic Manipulation Enhancing the reasoning capabilities of Large
Language Models (LLMs) is a pivotal research direction (Chu et al., 2025; OpenAl et al., 2024; Guo
et al., 2025; Kimi-Team et al., 2025). In embodied Al, recent works have integrated reasoning into
robotic manipulation, primarily through Supervised Fine-Tuning (SFT) with templated Chain-of-
Thought (CoT) approaches. These works involve various forms of templated CoT, such as language
prompts (Zawalski et al., 2024), visual subgoals (Zhao et al., 2025), or spatial relation graphs (Yuan
et al., 2025) to guide execution. While newer efforts explore Reinforcement Fine-Tuning (RFT) (Lu
et al., 2025; Liu et al., 2025a; Chen et al., 2025) or latent planning (Huang et al., 2025), they are often
limited to simulation or online learning. In contrast, our VLM stimulates free-form reasoning by
integrating pointing with RL, avoiding fixed templates. Furthermore, Embodied-R1 utilizes pointing
to precisely anchor reasoning within the scene and directly guide manipulation.

Spatial Reasoning with VLMs Spatial intelligence is essential for general-purpose embodied Al,
enabling robots for precise manipulation (Yuan et al., 2024b; Song et al., 2024) and navigation (Hong
et al., 2023; Li et al., 2024a). Current methods enhance the spatial reasoning of VLMs primarily
through SFT on custom datasets (Du et al., 2024; Ray et al., 2024; Cheng et al., 2024; Chen et al.,
2024). Some approaches also employ spatial CoT for step-by-step reasoning (Yuan et al., 2025; Liu
et al., 2025b). Differently, Embodied-R1 employs RL to elicit emergent reasoning, which we show
leads to stronger out-of-distribution (OOD) generalization compared to SFT-centric approaches.

Visual Auxiliary Signals for Robotic Manipulation Using visual auxiliary signals (Bharadhwaj
et al., 2024; Wen et al., 2023; Xu et al., 2024; Zheng et al., 2024; Yuan et al., 2024a) is a promising
paradigm for abstracting away embodiment-specific details and enhancing cross-robot generalization.
Prior works have explored various signals, including keypoints (Yuan et al., 2024b; 2025), affordance
maps (Huang et al., 2024a; 2023; Li et al., 2024d), bounding boxes (Liu et al., 2024; Huang et al.,
2024b), optical flow (Xu et al., 2024; Wen et al., 2023), and visual trajectories (Yuan et al., 2025;
Ji et al., 2025; Li et al., 2025; Gu et al., 2023). In contrast to these methods, which typically
generate a single type of visual signal, we propose a unified “pointing” definition to express diverse,
multi-granular manipulation intents. We adopt an RL paradigm to explicitly improve zero-shot
generalization in novel environments.

3 EMBODIED-R1: ADVANCING EMBODIED REASONING VIA RFT

This section first details the architecture and embodied pointing capabilities. We then describe dataset
construction and training methodology, concluding with its deployment in real-world scenarios.

3.1 THE ARCHITECTURE AND CAPABILITIES OF EMBODIED-R1

Embodied-R1 is built upon the Qwen2.5-VL architecture (Bai et al., 2025a) and is specifically
optimized for embodied manipulation by mastering four fundamental pointing abilities. These
abilities all generate image coordinates p = (p,q) € [0,w] x [0, h], but differ in their semantic
purpose and output structure. @) Referring Expression Grounding (REG) localizes an object from
a linguistic description by generating a point within its segmentation mask. @ Region Referring
Grounding (RRG) identifies a spatial region from relational language (e.g., “the space between
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Figure 3: Overview of training data: In stage 1, we focus on improving the model’s spatial reasoning capability,
while incorporating a small amount of general reasoning data. In stage 2, we train the model’s embodied pointing
capabilities, which comprise four distinct capability items.

objects™) by generating a point in a suitable free-space location. Furthermore, € Object Functional
Grounding (OFG) identifies functionally critical parts of an object (i.e., affordances), such as a
handle for grasping, by marking a point on that area. Finally, @ Visual Trace Generation (VTG)
produces an ordered sequence of points, 7 = {p; | t = 1,2,...,T}, T denotes the sequence length,
to form a complete, object-centric manipulation trajectory. This embodiment-agnostic path provides
a comprehensive spatial plan for the robot to follow. Visualizations are presented in Fig. 2.

3.2 ENHANCING THE EMBODIED REASONING ABILITIES OF VLM

To develop general embodied pointing capabilities, Embodied-R1 is trained on three data types
detailed in Fig. 3: embodied spatial reasoning for foundational awareness, general reasoning to
preserve existing skills, and embodied pointing to learn the four key abilities.

General and Spatial Reasoning Data The foundation of reasoning data is Embodied-Spatial-84K,
an embodied spatial awareness dataset aggregated from SAT (Ray et al., 2024) and WhatsUp (Kamath
et al., 2023). For objective evaluation and verifiable rewards, all source data were converted into a
unified multiple-choice format. Furthermore, to counteract the issue of catastrophic forgetting and
preserve general reasoning during specialized training, we supplement this with ViRL-subset-18K,
a diverse general-knowledge set. This 18K subset was curated from the ViRL (Wang et al., 2025a)
dataset by filtering for difficulty and balancing content across subjects and types. This process yields
the general-knowledge component of our composite dataset, creating a balanced curriculum that
fosters specialized spatial skills while safeguarding the model’s foundational knowledge.

Embodied Pointing Data To advance a suite of embodied pointing capabilities, we introduce the
Embodied-Points-200K dataset, a high-quality, meticulously curated corpus containing about 200k
samples. To address the multi-solution dilemma inherent in embodied pointing problems, we avoid
constructing “question-answer” pairs typical for SFT. Instead, we structure the data as “question-
verification” pairs, leveraging RFT for training. Subsequently, pre-defined reward functions for each
task evaluate the response based on the verification and calculate the corresponding rewards. We
briefly outline the pipeline for generating point data below. Data generation details are in App. A.

* REG Data: Precise localization is critical for robotic manipulation, but traditional bounding boxes
suffer from inherent ambiguity. We therefore constructed a point-centric REG dataset, integrating
web images from RefCOCO (Kazemzadeh et al., 2014) and embodied data from RoboRefTt (Lu
et al., 2023; Yuan et al., 2024b) and RoboPoint (Yuan et al., 2024b) for broad coverage. We
critically adjusted the success criterion: the model must output a single point instead of a bounding
box. A prediction is considered correct if this point falls within the object’s segmentation mask.

* RRG Data: To enable robots to comprehend complex spatial placement commands, we developed
an automated data generation pipeline for creating relation-aware placement regions. This pipeline
processes a large corpus of open-source embodied dataset (about 1 million), and after rigorous
filtering, yields 33,000 high-quality samples. The core process includes: @ Region Extraction:
extracting the final position of the manipulated object from the terminal frame; @ Region Refer-
ring: calculating the precise placement of the region relative to a reference object in the scene; and
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© Rendering: rendering this spatial placement information back onto the initial image. To ensure
data diversity and quality, we designed a heuristic filtering strategy, which covers a rich variety of
spatial relationships, object configurations, and scenes.

* OFG Data: To cultivate Embodied-R1’s fine-grained understanding of object affordances, we
constructed a 40K-sample OFG dataset. We leveraged the HandAL dataset (Guo et al., 2023),
converting its meticulous annotations of manipulable parts into bounding boxes for ground-truth
verification. To promote generalization, we then employed GPT-40 to generate a diverse set of
function-related questions (e.g., “Which part should be held when using a knife to cut vegetables?”)
corresponding to these functional parts.

* VTG Data: We constructed an object-centric visual trace dataset that exclusively tracks the object’s
movement. The extraction pipeline follows the methodology of (Yuan et al., 2025) and consists of
three main steps: @ Key Object Proposal: Using GPT-4o to identify the primary object of interest
for a given task. @ KeyPoint Identification: A self-supervised keypoint extractor (Huang et al.,
2024c), in conjunction with Grounded-SAM (Ren et al., 2024), is used to automatically identify
the object’s grasping point. @ Point Tracking and Projection: We used Cotracker3 (Karaev
et al., 2024) to compute the dense temporal visual trace originating from the keypoints. Next,
the trajectory is then downsampled into 8 equidistant discrete points and projected back onto the
initial image, creating an “image-visual trace” pair. Notably, using multiple pre-trained vision
models in the process inevitably introduces noise. We implemented rigorous rule-based filtering
and continually validated our approach using a manually annotated test set. Based on this feedback,
we iteratively refined the filtering criteria to improve the quality of the dataset.

Training Strategy Based on the collected data, Embodied-R1 adopts a two-stage training process:
the first stage focuses on enhancing spatial reasoning, as spatial reasoning serves as the foundation
for point comprehension; the second stage trains embodied pointing capabilities using point-centric,
multi-task mixed data. At each stage, we train a policy 7y (y|z) to generate y by maximizing the
expected reward: maxg B, pEyry(.|o) [7(y, 7)]. Training is performed using the GRPO (Guo et al.,
2025) algorithm. The behavior policy 7y, generates G candidate responses {yZ}ZG:1 for a given input
x. The advantage for the i-th response is then computed by normalizing rewards.

A - r(yi, ) — mean({r(y1, x),. .. ,r(yc,a:)}).

it = (1)
std({r(y1,x),...,r(yg,x)})
Then we incorporate a clipped surrogate loss with the clip function:
5(9) 1 i% . [ Wé(?/i,t T, Yi,<t) A cl'p( We(yz‘,t|3€71/i,<t) 1 1+ )/1 ]
= — mm | —— —————~ A ¢, Cll — 0,1 —¢€, € it -
G i=1 t=1 ﬂ-gnld (yi7t|x’ yi,<t) ! 7-‘-Oold (yi,t|1:7 yi,<t) ¢
(2)

3.3 MULTI-TASK REWARD DESIGN

To stabilize multi-task training, where simpler tasks can dominate policy optimization, we design a
modular reward system. Each task is assigned a total reward R , which is a normalized weighted sum
of components from a reward library. This scaling is crucial for balancing learning across tasks.

The following is the complete reward function library. @ Format Rewards: A binary reward
Ttormat(y) = I(tags valid(y)) enforces a structured output y, including required tags like
<think> and a unified coordinate representation <point>[[...]]</point>. @ Accuracy
Rewards: For general QA tasks, an accuracy reward 7, (y, g) = I(y = g) is used, where g is the
ground-truth answer. € Point in Mask Reward: For pointing tasks, point in mask reward function
Tmask 1S determined by whether the predicted output point p lies within the ground-truth answer mask
My,. The reward function can be formally expressed as rmask (P, Mg ) = I(p € Mgy).

@ Point Distance Reward: To improve learning efficiency, we also designed a dense auxiliary reward
7dis, Which is used to guide the predicted point to approach the target region My. The Euclidean dis-
tance is d = ||p— g||2, where g is the center of the M. Given pixel distance thresholds Dyin_nresh and

Dmax_thresh, Tdis 18 then defined as 74is(p, Mg) = min (1.0, max (0.0, 1.0 — w))

D 'max_thresh — D 'min_thresh

@ Visual Trace Reward: For evaluating generated visual trace, rewards are derived from trajectory
similarity metrics comparing the predicted trajectory 7 with the ground-truth trajectory 7. First,
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Table 1: Performance comparison on spatial reasoning benchmarks. Bold indicates the highest value among
open-source models, and underlined values show the second-highest scores.

CVBench CRPE SAT BLINK EmbSp. ‘ Rank
Count 2DRel 3DDep 3DDis Avg. Subj. Pred. Obj. Avg. Val Real MV RelDepth SpRel Obj Avg. Test |

Closed-source models

GPT4V 62.4 71.1 79.8 68.3 704 767 651 685 70.1 448 507 55.6 59.7 727 549 60.7 36.1

GPT40 65.9 85.5 87.8 78.2 794 819 718 736 758 494 575 602 74.2 692 598 659 49.1
Open-source models

LLaVA-1.5-13B 58.2 46.6 53.0 478 514 574 542 552 556 514 416 414 53.2 69.9 525 542 35.1 9.4
SAT-Dynamic-13B 61.5 89.7 80.7 73.0 762 606 57.6 652 61.1 877 549 444 734 66.4 459 5715 51.3 6.6
RoboPoint-13B 56.5 77.2 81.5 577 682 663 624 709 665 533 466 444 62.1 657 566 572 51.4 72
ASMv2-13B 58.9 68.9 68.9 68.9 664 69.2 590 653 645 639 467 444 56.5 650 639 575 574 7.2
FSD-13B 62.4 86.5 88.0 86.7 809 752 651 704 702 732 633 46.6 70.2 783 467 605 63.3 4.6
RoboBrain-7B 64.3 76.6 84.0 72.0 742 813 71.8 748 76.0 453 522 55.6 75.8 81.8 451 64.6 69.3 4.4
Qwen2.5VL-3B 68.4 72.8 77.0 68.2 71.6 807 710 761 76.0 487 451 444 66.9 79.7 557 617 62.8 5.6
Embodied-SFT 66.4 92.3 85.8 838 821 747 713 738 733 593 655 504 81.5 783 549 663 63.1 37
Embodied-R1 w/o CS 704  90.2 84.5 810 815 803 699 754 752 70.0 739 474 72.6 79.7  56.6 64.1 65.4 34
Embodied-R1 70.6  90.8 84.7 848 827 82 707 15 76.1 700 763 511 76.6 804 574 66.4 674 2.1

we compare the number of points in the 7 and 7. Using the longer one as the reference, we
interpolate both trajectories to have the same number of points and then proceed with the calculation
Root Mean Square Error (RMSE): drmsk (7, Tgt). Similarly, we use the Drmsg_min and DrMSE_max
hyperparameters to ensure that the reward remains between 0 and 1. The reward is calculated as:

Tirace (T, Tet) = min (1.0, max (0.0, 1.0 — dRMSE(TJgO*DRMSE'"““)).

DrMSE_max — DRMSE_min

Total Reward: The total reward R for each task is formulated as a combination of these individual
reward components. We define the reward function library F = {rformat, T'aces Tmask Tdiss Ttrace }- Each
component function evaluates a specific aspect of the model’s performance. Since we conduct mixed
training on multiple tasks, in order to ensure that each task is equally and sufficiently trained, we
constrain the total reward R for each task to the range of O to 1, which is implemented as follows. R
is formulated as a weighted-sum combination: R = ) - w, - r. The task-specific weights w, are
normalized to sum to one (ZT c7 wr = 1). This structure guarantees that the total reward R is also
bounded within the range [0, 1] and allows us to tailor the reward signal for each task’s specific needs.
For example, the RRG task requires simultaneously satisfying the format requirements, ensuring that
the predicted points are within the specified region, and accelerating training by employing dense
distance rewards. Rrrg is defined as Rrrg = 0.17format + 0.27gis + 0.77rmask- This consistent scaling
of rewards across tasks is crucial for stabilizing. We refer to App. B for detailed hyperparameters.

3.4 ACTION EXECUTOR OF EMBODIED-R1

Through its pointing mechanism, Embodied-R1 can be flexibly integrated with various downstream
action executors. This architecture allows Embodied-R1 to initiate reasoning at any task stage,
dynamically select the required pointing ability, and couple its output with a motion planner for
zero-shot robotic control. Besides, similar to Hamster (Li et al., 2025), Embodied-R1 can also serve
as a high-level planner that integrates with learning-based methods to enable closed-loop control.
Here, we implement this through two primary pipelines. Affordance Points Branch (-P): In this
branch, Embodied-R1 leverages its RRG and OFG capabilities to predict key points for grasping and
placement. These points then serve as targets for a CuRobo (Sundaralingam et al., 2023) motion
planner, which generates a collision-free trajectory for the robot’s end-effector. Visual Trace Branch
(-V): This branch utilizes the object-centric visual traces generated by VTG. The 2D trace 7 is first
mapped to 3D Cartesian coordinates using the pinhole camera model and initial depth information.
These discrete 3D points are then interpolated to form a continuous motion trajectory in SE(3) space,
which the robot follows for execution, similar to the FSD (Yuan et al., 2025) methodology.

4 EXPERIMENTS

To validate Embodied-R1’s generalization in robotic manipulation, we conducted extensive experi-
ments evaluating its Seeing (spatial reasoning and pointing capabilities) and Doing (manipulation
tasks) dimensions. Our evaluation encompassed 11 QA benchmarks, 4 simulated tasks (SIM-
PLEREnv) (Li et al., 2024c), and 8 real-world robot (xArm platform) tasks. We used the Qwen2.5-
VL-3B-Instruct (Bai et al., 2025a) model as the initial model. First, we trained using the Embodied-
Spatial-84K and ViRLsubset-18K datasets. Then, we continued training with the second-stage
EmbodiedPoints-200K dataset. For all experiments, we focus on comparing SFT models trained with



Under review as a conference paper at ICLR 2026

Where2Place & VABench-P —— Region Referring Grounding (RRG)

the
I hope to grab the yellow : me ree rey e Put the banana in the pot Put the bow! inside the Place the gray bowl in the
screwdri kit . tal

driver on the left. e elloy e cardboard fence. ble.

VABench-V —— Visual Trace Generation (VTG)
1

w .

youneedtograspthemug | youneedtograsptheknife | youneed to use the turner | you need to pick the trowel | you need to grasp the knife | you need to use the turner

rrrrrr You need to pick the trowel

Figure 4: Visualizing Embodied-R1’s Performance on Various Pointing Tasks.The model can follow diverse
text instructions and generalize its capabilities to novel, unseen environments.

the same batch size and data, which we refer to as Embodied-SFT. For training details, please refer to
App. B and App. C. We also provide additional experiments in App. F.

4.1 EVALUATION OF SPATIAL REASONING CAPABILITIES

Setup: To evaluate the foundational spatial reasoning from our first training stage, we bench-
marked Embodied-R1 on five diverse benchmarks: CVBench (Tong et al., 2024), BLINK (Fu et al.,
2024), CRPE (Wang et al., 2025b), SAT (Ray et al., 2024), and EmbSpatial-Bench (Du et al.,
2024). Baselines included leading closed-source models (GPT-40, GPT-4V) and various open-source,
spatially-enhanced VLMs such as SAT-Dynamic (Ray et al., 2024), RoboPoint (Yuan et al., 2024b),
and FSD (Yuan et al., 2025). We also included two key ablations: Embodied-R1 w/o CS, which
excludes the ViRL common-sense dataset, and Embodied-SFT, a variant trained only with SFT.

Results: As shown in Tab. 1, Embodied-R1 demonstrates state-of-the-art performance among
open-source models with only 3B parameter. It achieves an average rank of 2.1, significantly
outperforming its variants trained without common-sense data (Embodied-R1 w/o CS, Rank 3.4)
or with only SFT (Embodied-SFT, Rank 3.7). We believe that more diverse data can stimulate
exploratory reasoning capabilities. Embodied-R1 surpasses larger, specialized embodied models,
including RoboBrain-7B and FSD-13B, underscoring the effectiveness of our RFT training strategy.

4.2 EVALUATION OF POINTING CAPABILITIES

Setup: To comprehensively evaluate Embodied-R1’s embodied pointing abilities, we tested it across
our four defined capabilities. For REG, we used RoboReflt (Lu et al., 2023), which challenges models
with relational references between similar objects. For RRG, we selected Where2Place (Yuan et al.,
2024b) and the more complex, reasoning-intensive VABench-P (Yuan et al., 2025). We assessed
OFG on our custom Part-Afford Benchmark, derived from RGBD-Part-Affordance (Myers et al.,
2015) by filtering 2000 grasp-related affordances. This benchmark encompasses 105 types of kitchen,
workshop, and gardening tools, designed to evaluate the generalization capability of affordance
prediction in OOD scenarios. Finally, we followed the VABench-V (Yuan et al., 2025) evaluation
methodology for VTG capacity, measuring MAE, RMSE, and LLM Scores.

Results are presented in Tabs. 2 and 3, with visualizations in Fig. 4. Key observations are as follows:

(O1) Powerful general VLMs perform poorly on pointing tasks, such as GPT-40 and Qwen2.5-VL,
indicating the necessity of specialized training with data for these capabilities. This indicates that it is
necessary to train embodied VLMs with strong spatial reasoning and pointing abilities.

(02) Embodied-R1 demonstrates superior performance across key benchmarks. In Tabs. 2 and 3,
across all benchmarks for REG, RRG, OFG, and VTG, Embodied-R1 consistently outperforms both
general and specialized baselines, including other pointing-focused models like FSD and RoboPoint.
As shown in Fig. 4, a single Embodied-R1 model masters this diverse skill set, demonstrating high
accuracy even with small objects and complex spatial relationships in cluttered scenes.

(03) Embodied-R1 generates highly accurate visual traces for robotic manipulation. On the
VABench-V benchmark, Embodied-R1 achieves the lowest RMSE and MAE, indicating its ability to
produce precise point sequences for traces, a crucial aspect for reliable action execution. Embodied-
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R1 also demonstrates significant improvement, indicating that R1 focuses on reasoning about the
ideal visual trajectory rather than rote memorization. We refer to more visualization in App. E.

(O4) Embodied-R1 significantly outperforms models trained solely with SFT. Compared to the
Embodied-SFT, Embodied-R1 demonstrates substantial improvements across these tasks, validating
the benefits of RFT in developing strong generalization capabilities for embodied pointing.

Table 2: Performance on 4 Pointing benchmarks. The Table 3: Performance on VABench-V. Lower
score is the accuracy of points falling within the target region. values are better for RMSE/MAE, higher is better
for LLM Score.

Model \ RoboRefit Where2Place VABench-P Part-Afford

GPT4o0 15.28 29.06 9.30 10.15 Model RMSE| MAE] LLM Score {
ASMv2 48.40 22.00 10.07 13.75

RoboBrain 10.10 16.60 7.00 2525 GPT40 1361 1135 44
RoboPoint 49.82 46.01 19.09 27.60 DINOv2 Predictor 1283 117.5 4.0

FSD 56.73 45.81 61.82 9.55 RoboBrain 1216 1038 4.5
Qwen2.5VL 74.90 3111 9.89 23.42 FSD 78.3 03.4 6.2
Embodied-SFT |  83.85 4125 50.46 40.20 Embodied-SFT 109.4 65.2 6.2
Embodied-R1 85.58 69.50 66.00 56.63 Embodied-R1 771.8 45.0 7.3

Table 4: SimplerEnv Evaluation on WidowX Robot. The results are averaged over three rounds of experiments,
with each round consisting of 24 runs. Some results are derived from (Qu et al., 2025).

Type | Model Spoon—Towel | Carrot—Plate | Green—Yellow | Eggplant— Basket |

Avg.
| Grasp Succ. | Grasp Succ. | Grasp Succ. | Grasp Suce. |
OpenVLA 4.1% 00% | 333% 0.0% | 12.5%  0.0% 8.3% 4.1% 1.0%

End-to-end VLA | RoboVIM (FT) | 54.2% 292% | 25.0% 25.0% | 45.8% 12.5% | 583%  583% | 31.3%

Spatial VLA (FT) | 208% 16.7% | 29.2% 25.0% | 62.5% 29.2% | 100.0% 100.0% | 42.7%

\
RT-1-X 16.7%  0.0% | 20.8%  4.2% 8.3% 0.0% 0.0% 0.0% 1.1%

Modular VLA MOKA 75.0% 458% | 64.0% 41.6% | 833% 33.3% | 50.0% 12.5% 33.3%
SoFar 69.4%  555% | 73.6% 56.9% | 81.5% 62.5% | 68.0% 40.2% | 53.8%
RoboPoint 583% 16.7% | 41.7% 208% | 542% 8.3% 66.7% 25.0% 17.7%
Affordance VLA | FSD 583% 41.6% | 583% 50.0% | 91.6% 333% | 37.5% 37.5% | 40.6%

Embodied-R1 652% 62.5% | 81.9% 68.0% | 93.0% 36.1% | 62.5% 58.3% | 56.2%

Right: Simulation, Novel Embodiment

Left: Partial Real-world Experimental Tasks and Hand-drawn Sketches

Mid: Visual Disturbances Tasks

Figure 5: Left: Snapshots from a variety of our real-world experimental manipulation tasks. Middle: Demon-
stration of the robustness under significant visual disturbances, such as background and lighting changes. Right:
Specifically designed tests evaluating the zero-shot generalization of VTG in entirely OOD scenarios, including
simulation, a novel robotic embodiment, and hand-drawn sketches. See App. E for complete execution process.

4.3 EVALUATION OF EMBODIED-R1 FOR ROBOT MANIPULATION

SimplerEnv Simulation We evaluated Embodied-R1 in the SimplerEnv, where it generates affordance
and target points for a CuRobo (Sundaralingam et al., 2023) planner to enable zero-shot deployment
on a WidowX arm. We compared its performance against a comprehensive suite of baselines across
three categories: end-to-end VLAs (OpenVLA (Kim et al., 2024), RoboVLM (Li et al., 2024b),
and Spatial VLA (Qu et al., 2025)), modular VLAs (SoFar (Qi et al., 2025) and MOKA (Liu et al.,
2024)), and other affordance VLAs (RoboPoint (Yuan et al., 2024b) and FSD (Yuan et al., 2025)). As
presented in Tab. 4, Embodied-R1 achieves a state-of-the-art success rate of 56.2%, outperforming all
baselines and demonstrating strong generalization. Notably, its zero-shot performance surpasses even
specially SFT models. These results suggest perception-centered approaches (modular and affordance-
based VLASs) generally exhibit stronger zero-shot generalizability than end-to-end methods.

Real-World Robot Evaluation. We conducted zero-shot real-world evaluations on an XArm 6
robot across eight tabletop manipulation tasks. The setup used a third-person Intel RealSense L515
camera (640x480), with all objects, scenes, and tasks being OOD to test generalization. As shown
in Tab. 5, Embodied-R1 achieves an 87.5% zero-shot success rate, an improvement of over 60%
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Table 5: Real-world experimental evaluation results. The first two tasks were conducted 5 times each, while
the other tasks were conducted 6 times each. The best results are highlighted in bold. [x]: The instruction for
each trial is a randomly selected color. Nearest object*: the object closest to the camera’s viewpoint.

Pick Move Move the vise Place the fork Pick the [x] toothbrush Move the nearest Put the screwdriver ~ Move the moka ~ Avg
up the the egg to to the in the and place it object™ to the right between drawer pot to the
strawberry  the bowl red basket green bin to the bucket side of the drawer and the vase right of drawer
Succ. Succ. Grasp. Succ. Grasp. Succ.  Correct Obj.  Succ.  Correct Obj.  Succ. Grasp. Succ.  Grasp.  Succ.  Succ.
MOKA 0.0% 40.0% 0.0% 0.0% 16.7% 0.0% 16.7% 16.7% 83.3% 167%  833%  0.00% 16.7% 0.00% 9.2%
RoboPoint 40.0% 60.0% 50.0% 0.0% 0.0% 0.0% 16.7% 0.0% 0.0% 0.0% 66.7% 0.0% 0.0% 0.0% 12.5%

FSD 20.0% 80.0% 66.7% 333% 16.7% 16.7% 16.7% 0.0% 0.0% 0.0% 66.7% 333% 167% 16.7% 25.0%
Embodied-R1-P  100.0% 100.0% 66.7% 50.0% 100.0% 100.0% 100.0% 83.3% 100.0% 100.0% 100.0% 100.0% 50.0% 333% 83.3%
Embodied-R1-T  100.0% 100.0%  100.0% 100.0% 100.0% 100.0% 100.0% 66.7% 100.0% 100.0% 100.0% 100.0% 33.3% 333% 87.5%

Table 6: Performance Comparison between SFT and Table 7: Performance of Embodied-R1 under

RL on RRG benchmarks. visual disturbances. BC: Background Change,
LC: Light Change, HC: Height Change.

RL Think Where2Place VABench-P Disturbance  Grasp (%)  Succ. (%)

4 v 65.50 65.39 Original 100 100
v X 63.00 60.50

BC 100 100
X v/ 41.25 47.67 BOALC g3 g3
X X 36.85 50.46 +

BC+LC+HC 83 83

compared to the RoboPoint and FSD baselines. We attribute this significant improvement to the
baselines’ poor performance on tasks requiring spatial reasoning (e.g., moving the nearest object)
and their low success rates in grasping challenging rigid objects like a screwdriver. In contrast, the
Embodied-R1 correctly identified these cases and achieved high success rates, demonstrating the
effectiveness of reasoning process. Overall, Embodied-R1-V generated more accurate annotations
than Embodied-R1-P, resulting in a slightly higher average success rate. In App. D, we conducted an
in-depth analysis of failure cases and execution time.

To further test robustness, we selected a task requiring spatial reasoning and introduced zero-shot
visual disturbances, including changes in background, lighting, and height. As shown in Tab. 7,
Embodied-R1 demonstrated outstanding generalization against all disturbances. Surprisingly, it
located the target and completed the task even under the poorest lighting conditions, while background
changes had no impact on performance. This experiment validates that pointing serves as a universal
representation that maintains both performance and robustness under visual distractions.

4.4 FURTHER ANALYSIS AND ABLATIONS

Embodied-R1 Exhibits Strong Generalization. Despite being trained exclusively on real-world
data, Embodied-R1 demonstrates remarkable zero-shot generalization on VTG tasks across entirely
unseen scenarios (Fig. 5 (right)). It makes accurate predictions in simulations, suggesting a promising
direction for sim-to-real transfer. Furthermore, Embodied-R1 adapts to different embodiments,
highlighting the advantage of our embodiment-agnostic visual traces. Notably, its accuracy holds
even in abstract scenarios, correctly marking a real screwdriver on a hand-drawn box.

Ablation on SFT vs. RL. To dissect our training paradigm, we compared RL against SFT and
analyzed the impact of an explicit reasoning process. We trained four variants on RRG benchmarks.
The results in Tab. 6 show that RL-based models consistently outperform their SFT counterparts,
highlighting the crucial role of RL in OOD generalization. Our full model (RL w/ Think) performed
the best, confirming that the reward-driven paradigm is most effective when combined with reasoning.
In App. F, we provide further experiments, including an analysis of integration with learning-based
methods, an ablation study on the benefits of mixed training, and results using RGB-D inputs.

5 CONCLUSION

We introduce Embodied-R1, an embodied reasoning VLM that bridges the critical “seeing-to-doing”
gap in robotic manipulation. By training Embodied-R1 with a two-stage RFT paradigm on our
large-scale curated dataset, we significantly enhance its spatial reasoning and embodied pointing
abilities. Through its core pointing mechanism, Embodied-R1 masters a suite of capabilities, including
grounding, spatial referencing, affordance marking, and visual trace generation, which are further
applied to downstream robotic manipulation. Empirically, Embodied-R1 achieves state-of-the-art
results across multiple benchmark tests and demonstrates robust zero-shot generalization in robotic
manipulation tasks, offering a promising pathway toward more capable and general-purpose embodied
Al A detailed discussion of limitations is provided in App. G.
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REPRODUCIBILITY STATEMENT

To promote transparency and reproducibility within the scientific community, we provide de-
tailed training parameters and resources in the appendix. The complete code for both train-
ing and inference has been uploaded to an anonymous GitHub repository: https://github.
com/iclr-submission-15454/Embodied—-R1. In addition, we provide video demos of
model execution and more visualization examples on the project homepage; we refer readers to
https://iclr-submission—-15454.github.io/ for more information. We commit to
making all datasets and model checkpoints publicly available after the anonymity period.

ETHICS STATEMENT

This paper is dedicated to advancing the field of robotic manipulation towards the creation of more
effective and versatile robotic assistants. Our research strictly adheres to responsible practices and
aligns with the ICLR Code of Ethics. All training data was sourced from large-scale, open-access
robotics datasets, with all assets utilized in full compliance with their original licensing and terms of
service. We recognize that while the intended applications of this research are positive, the long-term
societal impacts of increasing robotic autonomy warrant careful consideration.
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A  AUTOMATIC DATA GENERATION PIPELINE

In this section, we provide additional explanations regarding the generation of certain datasets. The
generation processes of both the RRG and VTG datasets are improved based on Yuan et al. (2025).

3D RRG Data Generation using Isaac Gym Simulation Furthermore, we leveraged the Isaac Gym
simulation engine to generate a synthetic dataset of 3D object rearrangements, equipping the model
with 3D spatial awareness. In this task, which takes RGB-D images as input, the model is required to
place objects in the correct relative positions according to instructions. Task success is automatically
determined and fed back by the simulation based on the true physical state. The dataset comprises
10,028 tasks, each situated in a tabletop scene containing multiple objects. The input for each task
consists of processed RGB and depth images, accompanied by a language instruction describing the
desired target position of an object within the scene (e.g., "place the cup between the book and the
spoon"). Based on these instructions, the model is required to output the 3D position of the target
object in the camera coordinate system, specified by its pixel coordinates (X, Y) and a depth value D
in millimeters. The D value is obtained either through monocular depth estimation or by reasoning
from the scene geometry. The generation process of our dataset is informed by the methodology of
Open6Dor Qi et al. (2025). The object set utilized contains over 200 items spanning more than 70
distinct categories, originally sourced from the YCB Xiang et al. (2017) and Objaverse-XL Deitke
et al. (2023) datasets. These objects underwent a rigorous selection process to ensure their physical
integrity and semantic suitability for tabletop arrangements. All selected objects were subsequently
scale-normalized and uniformly represented using a consistent mesh format.

In terms of scene configuration, between two and five objects were randomly selected from the object
set and placed on a tabletop with random initial poses. For each configured scene, we rendered both
RGB and depth images. The depth values represent ground truth measurements, with the scene’s
depth range spanning from 600 mm to 1700 mm. For subsequent processing convenience, the depth
images were normalized to an 8-bit grayscale format (0-255). We filtered out low-quality scenes,
such as those exhibiting implausible object placements or severe occlusions. To augment the dataset’s
quality and volume, we expanded a subset of high-quality, filtered data by algorithmically generating
variations in task descriptions, such as substituting directional prepositions or altering object relations.
Then, the task instructions are formulated in two primary types: basic directional commands (e.g.,
left, right, top, behind, front) and relational commands (e.g., "between," "center of"). All instructions
adhere to a standardized template, for instance, "Place object A in front of object B," where A and B
are objects present in the scene. During training, the model receives RGB and depth image inputs and
is required to output the target’s coordinates (X, Y') and depth value D. The simulated environment
then executes and evaluates the predicted position, giving positive rewards for correct predictions.

VTG Dataset Generation Pipeline For each video sequence, we first process the initial frame to
perform instance segmentation on the manipulated object, thereby obtaining its pixel-wise mask.
Instead of relying on a single tracking point, which is susceptible to tracking failure from occlusion or
rapid motion, we sample a set of three distinct query points from within this mask. This multi-point
initialization serves as a redundancy measure, significantly enhancing the robustness of the tracking
process. These points are strategically chosen to represent the object’s initial state before they are
passed, along with the full video sequence, to the tracking model for trajectory prediction. The core
of the trajectory generation is handled by the CoTracker model Karaev et al. (2024), which takes the
initialized query points and video as input. The model concurrently tracks each point throughout the
sequence, yielding a set of three candidate trajectories. As these trajectories may vary in quality and
completeness due to transient tracking errors, a selection criterion is required to identify the single
most representative path. We employ a path length heuristic for this purpose, calculating the total
Euclidean distance of each trajectory. The trajectory with the longest path is selected as the definitive
motion path for the object. The rationale behind this criterion is that the longest trajectory is most
likely to have successfully tracked the object through its entire course of motion without premature
termination. Following the selection of the representative trajectory, a two-stage refinement process
is applied to produce the final visual trace. The raw trajectory, composed of discrete frame-by-frame
coordinates, is first smoothed using cubic spline interpolation. This step transforms the discrete points
into a continuous, smooth curve, effectively filtering out high-frequency noise and jitter inherent in
the tracking process. From this smoothed curve, we then uniformly sample eight equidistant points.
This final set of eight points constitutes the visual trace—a structured, discretized representation of
the object’s motion, suitable for downstream analysis and model consumption.
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We found that this process inevitably faces prediction errors from pre-trained visual models, such as
incorrect object grounding or incomplete motion trajectory tracking. To mitigate these issues, we
employ stringent rule-based filtering methods using hyperparameters such as size thresholds and
trajectory length thresholds. Before annotating each dataset, we iteratively adjust these rules and
conduct manual sampling inspections. Only when the filtering rules are robust enough do we apply
them to the full data generation pipeline, ensuring the high quality of the data.

B IMPLEMENTATION DETAILS OF EMBODIED-R 1

Training Hyperparameters: We conducted model training on eight NVIDIA A100 40G GPUs.
The first phase was trained for 2 epochs, and the second phase for 1 epoch, with each phase taking
approximately 48 hours. The backbone model used is Qwen2.5-VL-3B-Instruct ', with a maximum
context length of 4096 and a maximum response length of 2048. The optimizer selected is AdamW,
with a learning rate of le-6 and a weight decay coefficient of le-2. In Embodied-R1, we performed
reinforcement learning training based on GRPO Shao et al. (2024), set the number of samples to 8,
and introduced a KL penalty (coefficient 1e-2), with a global batch size of 128 for each step. For all
experiments, we focus on comparing SFT models trained with the same batch size and data, which
we refer to as Embodied-SFT. As for Embodied-SFT, we used exactly the same data but trained with
a supervised learning loss, kept the batch size at 128, and trained for 3 epochs.

Reward Hyperparameters: To enable stable multi-task training, we constrain the total reward
for each task to the range of 0 to 1 and define the total reward R as a weighted combination
R = ZTE # wy - 7. Bach task utilizes a different combination of reward terms. Here, we provide
the hyperparameters for each task in the Tab. 8. We would like to add two clarifying points: First,
if the task output fails to meet the required parsing format, subsequent analysis cannot proceed
successfully, so the reward is set directly to 0. Second, for the VTG task, we introduced an additional
constraint on the format: the generated visual trace must consist of exactly 8 points. In practice, we
found that without this constraint, the model in the VTG task was prone to reward hacking behavior.
It would tend to output only two points to form a straight line, which easily yields a high reward
and prematurely terminates exploration. By enforcing the 8-point constraint, we compel the model
to perform more complex curve interpolation, thereby improving the performance of visual trace
generation. We provide a detailed comparison in the App. F.

Table 8: Detailed Reward Functions for Each Task

Task Reward Function R

General QA R = 0.1 7¢ormat + 0.9 7ace
Spatial QA° R = 0.1 7format + 0.9 7ace

REG R = 0.1 7tormat + 0.9 rmask

RRG R = 0.1 rtormat + 0.6 rmask + 0.3 7qis
3D RRG R = 0.1 7tormat + 0.9 7eny

OAG R = 0.1 7tormat + 0.8 rmask + 0.1 7qis
VTG R = 0.1 7tormat + 0.9 "trace

'https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
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C EMBODIED-R1 PROMPTS FOR EACH TASK

Referring Expression Grounding (REG) Prompt

Provide one or more points coordinate of object region this sentence describes: Your In-
struction. The results are presented in a format <point>[[x1,y1], [x2,y2], ...]</point>. You
FIRST think about the reasoning process as an internal monologue and then provide the
final answer. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags. The answer consists only of several coordinate points, with the
overall format being: <think> reasoning process here </think><answer><point>[[x1, y1],
[x2, y2], ...]</point></answer>

Region Referring Grounding (RRG) Prompt

You are currently a robot performing robotic manipulation tasks. The task instruction is:
Your Instruction. Use 2D points to mark the target location where the object you need to
manipulate in the task should ultimately be moved. You FIRST think about the reasoning
process as an internal monologue and then provide the final answer. The reasoning process
and answer are enclosed within <think> </think> and <answer> </answer> tags. The answer
consists only of several coordinate points, with the overall format being: <think> reasoning
process here </think><answer><point>[[x1, y1], [x2, y2], ...]</point></answer>.

Object Functional Grounding (OFG) Prompt

Please provide the 2D points coordinates of the region this sentence describes: Your In-
struction. The results are presented in a format <point>[[x1,y1], [x2,y2], ...]</point>. You
FIRST think about the reasoning process as an internal monologue and then provide the
final answer. The reasoning process and answer are enclosed within <think> </think> and
<answer> </answer> tags. The answer consists only of several coordinate points, with the
overall format being: <think> reasoning process here </think><answer><point>[[x1, y1],
[x2, y2], ...]</point></answer>.

Visual Trace Generation (VTG) Prompt

You are currently a robot performing robotic manipulation tasks. The task instruction is:
Your Instruction. Use 2D points to mark the manipulated object-centric waypoints to guide
the robot to successfully complete the task. You must provide the points in the order of
the trajectory, and the number of points must be 8. You FIRST think about the reasoning
process as an internal monologue and then provide the final answer. The reasoning process
and answer are enclosed within <think> </think> and <answer> </answer> tags. The answer
consists only of several coordinate points, with the overall format being: <think> reasoning
process here </think><answer><point>[[x1, y1], [X2, y2], ..., [x8, y8]]</point></answer>.

D IN-DEPTH ANALYSIS BASED ON REAL-WORLD EXPERIMENTS

Table 9: Real-world Execution Time (s)

Task Embodied-R1  OpenVLA (FT) MOKA FSD
Move the sponge 10s 23s 28s 14s
Pick up the cucumber 8s 12s 18s 10s

Real-World Execution Latency. We benchmarked the real-world execution latency of Embodied-R1
against various model archetypes, including the end-to-end OpenVLA (O’Neill et al., 2023), the
modular MOKA (Liu et al., 2024), and the affordance-based FSD (Yuan et al., 2025), with results
reported in Tab. 9. Although Embodied-R1 employs a reason-then-execute process, it achieves the
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fastest performance. This efficiency stems from its single-pass inference approach, where reasoning is
performed only once before execution begins. In contrast, OpenVLA requires step-by-step inference
and mandatory fine-tuning for new tasks, while modular methods like MOKA incur substantial system
overhead due to their multi-component pipelines. Furthermore, among reasoning-based models, the
3B-parameter Embodied-R1 outperforms the 13B-parameter FSD, demonstrating superior inference
efficiency due to its smaller size. Therefore, Embodied-R1 strikes an effective balance between
powerful zero-shot manipulation capabilities and low real-world latency.

Comparison with the A0 Model. We compare Embodied-R1 to the AQ (Xu et al., 2025) model,
which also generates object-centric visual traces but is trained exclusively through Supervised Fine-
Tuning (SFT) and lacks a reasoning process. In our zero-shot generalization experiments, we found
that despite extensive tuning efforts, AO consistently failed to generate reliable trajectories, resulting
in a success rate approaching zero. As shown in Fig. 6, we present a side-by-side visual comparison
of the trajectories generated by Embodied-R1 and AO in our real-world robot experiments.

Embodied-R1 Embodied-R1

Pick up sponge and place it Pick the green toothbrush and Move the nearest object to the
outside plate place it in the basket right side of the drawer

Embodied-R1

Figure 6: Comparison of Visual Trace Generation between Embodied-R1 and A0 Models in Real-World
Experiments

Failure Case Analysis. Here, we provide an analysis of the failure modes for the results in Tab. 5.
The MOKA pipeline exhibited low success rates across the majority of tasks. Its failures were often
due to a cascade of errors originating from multiple stages: incorrect object recognition, failure to
select the correct keypoints, or erroneous reasoning from the GPT module, which collectively led to
extremely poor performance. Furthermore, even when MOKA did succeed in grasping an object, it
struggled with accurate placement. For RoboPoint and FSD, the core issue was their extremely low
success rate on tasks that require reasoning, such as "find the nearest object” or "pick the toothbrush
of the correct color." Additionally, these models suffered from limited pointing accuracy, leading to
low success rates when attempting to grasp challenging objects. In contrast, Embodied-R1 possesses
robust spatial reasoning and precise pointing capabilities, allowing it to perform exceptionally well
on most tasks and overcome the limitations of the other methods.

E MORE VISUALIZATIONS

Below, we provide visualizations of the real-robot execution process and the VTG tasks. For addi-
tional video materials, please see our project website: https://iclr—submission—-15454.
github.io/

More Visualization of Real World Manipulation Process We showcase the process of Embodied-
R1 performing real-world tasks in Fig. 7. To further evaluate its robustness, we visualize the process
of Embodied-R1 performing Task 6 under different visual disturbances in Fig. 8.

More Visualization of VTG Task We provide additional visualization examples of Embodied-R1’s
predicted visual traces in Fig. 9. It can be seen that Embodied-R1 achieves accurate visual trajectory
prediction across various scenarios.
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Task 3: Move the vise to the red basket

.

Task 4: Place the

e .. 73

fork in the green bin

e

Task 7: Put the screwdriver between drawer and the vase

Task 8: Move the moka pot to the right of drawer

Figure 7: The process of Embodied-R1 performing real-world tasks.

F ADDITIONAL EXPERIMENTS

The Phenomenon of Reward Hacking in VTG Tasks We carefully designed the reward function so
that the reward for each task is only related to the final goal, thereby avoiding reward hacking caused
by intermediate rewards. However, we found that in the VTG task, designing the reward solely based
on the distance between the predicted trajectory and the target trajectory can still result in reward
hacking. The model quickly learned that in visual trajectory generation tasks, accurately predicting
the starting and ending points is both crucial and relatively easy, leading it to converge rapidly to
outputs with only these two points while ignoring the generation of intermediate trajectory points.
We observed that by forcing the model to output multiple points and applying reward constraints
for format reward, it becomes possible to generate complete visual traces. Therefore, we explicitly
require the model to output a visual trace with eight points; otherwise, all rewards are set to zero
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Background+Light+Height Change

Figure 8: The process of Embodied-R1 performing Task 6 under different visual disturbances.

=

i it
move brown chip bag near move green jalapeno chip move green can near Place the teapot on the place the burger meat in the
7up can bag near apple sponge stove oven

move the tomato from the cloth
to table between the capsicum
and broccoli

Put the blue block on the Put the orange object on Put the blue marker in the
orange plate the pan yellow mug

put the red thing inside the
silver container

Figure 9: Visualizing Embodied-R1’s Prediction on VTG Tasks across Various Scenarios

(since the format reward is not satisfied, subsequent analysis will not be performed). As shown in
Tab. 10, we present the results on VABench-V, demonstrating the performance differences with and
without the trajectory point number constraint. After modifying the reward function, the model is
better able to fit the visual trace, achieving lower RMSE and a higher GPT score.

Table 10: Comparasion of w/ and w/o Point Num Reward. Bolds are better.

VABench-VisualTrace RMSE| MAE]| GPT Scoref
w/ Point Num Constraint 77.83 44.97 7.27
w/o Point Num Constraint 105.2 59.7 5.57

Qualitative Comparison: Embodied-R1 vs. SFT To provide a deeper insight into the performance
gains of our model, we conducted a qualitative analysis comparing Embodied-R1 with the SFT
baseline. As illustrated in Fig. 10, the difference in capabilities is stark. In the first task, “move the
orange toy inside the right sink in the bin,” Embodied-R1 first articulates a clear plan: it identifies
the toy’s initial position, determines the need to move it towards the sink’s center, and then guides it
into the bin. This logical reasoning translates into a precise and successful visual trajectory. The SFT
baseline, however, produces an erroneous trajectory that fails to place the toy correctly. Similarly,
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for the second task, “place blue chip bag into white bowl,” Embodied-R1 correctly reasons that
the task requires moving to the bag, lifting it, positioning it over the bowl, and then lowering it.
This step-by-step plan underpins the generated trajectory, which successfully completes the task.
The SFT model again fails, generating a flawed path that does not accomplish the goal. These
examples strongly suggest that the explicit chain-of-thought reasoning in Embodied-R1 is critical for
understanding complex instructions and planning accurate, multi-stage visual trajectories, a capability
that the standard SFT approach evidently lacks.

Thinking: To move the orange toy inside the : *
right sink into the bin, I need to first identify its :
osition relative to the sink. The oran?e toy is :
ocated on the edge of the sink, so T should :
start % moving it towards the center of the :
sink. Then, I'll need to guide it into the bin. To :
do this, I'll use the sink’s edges and corners as :
reference points to ensure accurate movement. :

Thinking: To place the blue chip bag into the : /§
white bowl, | need to first move towards the :
blue chip bag. Then, | should lift it up and :
Y Eosmor] it over the bowl. Finally, I'll lower the :
4 Dlue Chlﬂ bag into the bowl. This sequence will : g

at the blue chip bag is placed inside :

Task: move the orange i~
toy inside the right sink :
in‘the bin i

Task: place blue chip§
bag into white bowl

ensure t
the bowl.

Figure 10: Qualitative comparison of Embodied-R1 and the SFT baseline. Our model Embodied-R1,
leverages chain-of-thought reasoning (middle column) to generate a successful visual trace (left column). In
contrast, the SFT baseline, which lacks an explicit reasoning process, produces incorrect trajectories (right
column) for the same tasks.

Table 11: Comparison of Mixed Training of Multiple Datasets and Only Training Corresponding Dataset.

Mixed  Unmixed
Training  Training
Part-Afford 56.63 51.25

Where2Place 69.50 65.50
VABench-P 66.00 65.39

Advantage of Mixed Training We performed multi-task joint training of the various abilities required
for embodied pointing and reasoning in the second stage. The advantage of this approach is that
all abilities can share general knowledge of point coordinates and semantic space alignment during
training, thereby achieving better performance. To validate this idea, we conducted multiple sets of
experiments comparing the performance of mixed training and unmixed training. In the unmixed
training setting, only the data corresponding to the benchmark ability is used; for example, training
for one epoch only on the HandAL dataset and then testing on the Part-Afford dataset. As shown
in Tab. 11, joint training consistently improves the success rate across multiple tasks compared to
unmixed training. We believe that mixed training enables knowledge sharing among multiple abilities,
enhances semantic understanding of spatial information, and thus leads to better generalization.

Case Analysis of Embodied-R1 As shown in Fig. 11, we demonstrated the reasoning pathways of
Embodied-R1 when facing different tasks. Even without any SFT stage, Embodied-R1 exhibited
a human-like and rational reasoning process: it first infers the target object to focus on based on
the task goal, then analyzes the relative spatial relationship between the object and the surrounding
environment, and subsequently performs step-by-step reasoning to determine the target location (in
RRG and VTG tasks), strictly adhering to a structured process of reasoning before providing the final
answer. In some cases, Embodied-R1 still demonstrates a clear and accurate reasoning process even
when confronted with cluttered scenarios.

Integration with Learning-Based Pipeline To explore how Embodied-R1 can augment learning-
based policies, we benchmarked its integration with Diffusion Policy Chi et al. (2023) across 10
tasks in LIBERO-spatial with 50 demonstrations per task. We use the standard Diffusion Policy as
a baseline, which predicts action sequences using only the current RGB frame. In our aggregation
method, Embodied-R1 serves as the high-level model, which first generates a complete visual trace
based on the initial observation and language instructions. The visual trace is then used as explicit
guidance to assist in training a trajectory-conditioned diffusion policy. As detailed in Tab. 12, the

22



Under review as a conference paper at ICLR 2026

[ Q: Identify some points within the free space that is beside the glass cup and to the left of the weights. ]

<think>To identify points in the free space beside the glass cup and to the left of the weights, | need to
consider the layout of the objects on the table. The glass cup is placed on the table, and there are two
dumbbells to the right of it. The free space would be the area between these objects. However, since the
question asks for points in the free space, | should focus on identifying areas where no objects are present.
This could include the entire surface of the table or any gaps between the objects.</think>
<answer><point>[[350, 298], [346, 297]]</point></answer>

Q: Provide one or more points coordinate of objects region this sentence describes: | would like to pick up the
white electric toothbrush.

<think>The white electric toothbrush is located on the left side of the sink, closer to the edge of the counter. It
appears to be lying horizontally on the countertop.</think>
<answer><point>[[156, 304], [158, 307]]</point></answer>

& | Q: Put the marker in the pot. Use 2D points to mark the manipulated object-centric waypoints to
’ guide the robot to successfully complete the task.

<think>To put the marker in the pot, | need to first locate the marker and the pot. The marker is
likely on the table or nearby, while the pot is on the table as well. | will move towards the marker
and then position it inside the pot. This requires me to move from the marker's location to the
pot’s location.</think>

<answer><point>[[660, 300], [654, 287], [639, 260], [612, 240], [598, 230], [586, 250], [586, 280],
[589, 298]]</point><answer>

Figure 11: Case Analysis: Embodied-R1 possesses embodied reasoning capabilities. It can progressively locate
relevant objects and infer spatial relationships according to task instructions, and ultimately provide coordinates
through pointing based on embodied scene analysis.

addition of Embodied-R1 guidance provides a substantial performance uplift, increasing the average
task success rate by over 10%. We believe this is because, compared to the sparse, goal-oriented
guidance from language instructions, the visual trace provides rich spatiotemporal context and
dense guidance. By clearly mapping out the object’s entire intended path, the trace helps the policy
disambiguate instructions that might seem ambiguous when looking at a single static image, thus
improving performance.

Table 12: Performance on the LIBERO-spatial benchmark. FSD provides a significant improvement when
integrated with a Diffusion Policy (DP) baseline.

Tasks DP Baseline DP + Embodied-R1
Libero Spatial (10 Tasks Avg.)  76.1 £ 1.6 89.6 + 0.7

3D RRG Capability of Embodied-R1 To explore 3D capabilities, we fine-tuned an RGB-D variant
of our model, named Embodied-R1-RGBD. This variant was trained on synthetic object datasets from
YCB (Xiang et al., 2017) and ObjaverseXL (Deitke et al., 2023), which provide paired RGB and depth
images (see App. A for data generation details). Unlike the RGB-only baseline (Embodied-R1-RGB),
this model processes RGB and depth inputs separately to predict both the target region’s position and
the object’s depth. We evaluated this 3D capability on the Open6DOR-Position benchmark (Qi et al.,
2025). As shown in Tab. 13, the Embodied-R1-RGBD variant demonstrates strong performance,
validating our model’s effectiveness in generating precise depth information for embodied tasks.
However, on tasks involving complex spatial relations (level 1), we observed a slight performance
degradation compared to the 2D version. We hypothesize that at higher relational complexities,
interpreting depth maps may be more susceptible to hallucinations, leading to errors. While this is
a preliminary exploration, we believe incorporating depth information is a promising direction for
future enhancement.

G LIMITATION AND FUTURE WORK

Despite the state-of-the-art performance achieved by Embodied-R1 across numerous benchmarks
and real-world tasks, this work has several limitations that present avenues for future research.

* Potential for Integration with Learning-based Policies. Our current approach primarily pairs
the perception and reasoning capabilities of Embodied-R1 with a classical motion planner. A
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Table 13: Performance on Open6DOR-Position Benchmark

Benchmark Level0  Levell Overall

GPT-4V 46.8 39.1 452
Qwen2.5-VL Bai et al. (2025b) 59.5 36.2 54.9
VoxPoser Huang et al. (2023) 35.6 21.7 32.6

SoFar Qi et al. (2025) 9.0 815 93.0
Embodied-SFT 624 447 58.9
Embodied-R1-RGB 685 594 668
Embodied-R1-RGBD 998 509 902

promising future direction is to integrate the model as a high-level front-end for a learning-based
conditional policy, which promises to enhance execution efficiency and reactivity in dynamic
environments. While several studies Bharadhwaj et al. (2024); Gu et al. (2023); Xu et al. (2024)
have explored conditioning policies on visual traces to improve performance, these works focus on
downstream policy design and do not provide a general-purpose visual trace predictor. We present
preliminary experiments in App. F where a simple integration with Diffusion Policy conditions the
strategy on visual traces. Notably, Embodied-R1 improves performance on LIBERO tasks without
any additional fine-tuning. Therefore, this integration path holds significant potential and warrants
further exploration.

* Untapped Potential in Long-horizon Tasks. The current framework is designed to process
single-step instructions and does not natively include a mechanism for decomposing long-horizon
commands (e.g., "prepare a meal"). However, this could be addressed through a modular, hierar-
chical approach. Embodied-R1 is well-suited to act as a robust execution module for individual
sub-tasks. A high-level embodied planner could first decompose a complex instruction into a
sequence of simpler steps, which would then be passed to Embodied-R1 for execution, enabling
the system to tackle complex, multi-stage problems.

* Inherent Limitations of the “Pointing’’ Representation. While the pointing representation is
effective for localization, placement, and trajectory generation, it may be insufficient for the full
spectrum of complex robotic manipulation. Tasks requiring precise force control, twisting, wiping,
or intricate interactions with deformable objects demand a richer representation than 2D coordinate
points. We believe this issue can be mitigated by coupling the high-level “pointing” commands
with a learnable downstream policy that can translate these targets into complex, dynamic actions.
The design for Embodied-R1 reflects our primary focus on providing a promising solution for
zero-shot generalization, for which a simplified, embodiment-agnostic intermediate representation
is a key advantage.

* Preliminary Integration of 3D Information. The exploration of an RGB-D version of the
model is still in its early stages. The paper notes that in tasks with complex spatial relations, the
performance of the RGB-D variant can be slightly lower than its 2D counterpart. It is hypothesized
that “depth map understanding may be more prone to hallucinations,” indicating that robustly
fusing 3D information into the model requires further development.

H USEofrF LLM

We utilized LLMs as a writing assistance tool during the preparation of this manuscript. The use of
LLMs was strictly limited to polishing the text, which included improving grammar, refining sentence
structure, and enhancing overall clarity and readability. The core research concepts, methodologies,
and conclusions were developed entirely by the authors.
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