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6. VAE
6.1. 2D-VAE Quantization
Variational Autoencoders (VAEs) enable significant data
compression by encoding each image as a probability dis-
tribution in a learned latent space, having the architecture
like in Fig. 5. The 2D-VAE used in this paper optimizes the
following loss function:

LVAE = Eq�(z|x) [log p✓(x | z)]�DKL (q�(z | x) k p✓(z))
(7)

The first term minimizes the reconstruction loss when
decoding the latent representation of an image, while the
second term, the KL divergence, ensures each encoded dis-
tribution aligns with a normal prior distribution. Combined,
the objective balances the quality of decoded images and
the smoothness of the latent distribution.

In order to ensure a fair comparison with previous work,
the weights of the VAE are quantized through post-training
static quantization, reducing the bid-width from 32 to 8 bits:

xq = round
⇣x
s

⌘
+ z (8)

Where s is the scaling factor, and z is the zero point.
By applying linear quantization, the size of the pre-

trained model is reduced to one-fourth of its original size.
Empirically, the quantized VAE continues to yield high ac-
curacy during experimentation. Compared to other methods
such as quantization-aware training, static quantization has
the advantage of retaining a high level of accuracy while
offering lower computational complexity during the quanti-
zation phase.

7. Implementation Details
In this section, we provide implementation details of our
experiments, including the selection of VAEs, the prepro-
cessing steps applied to video datasets, and the measures
taken to ensure a fair comparison.

7.1. Additional VAE Selection
We have adopted and quantized SD-VAE-FT-MSE[1] and
CV-VAE[47] in our experiments. The variational autoen-
coders are used to encode video sequences into a compact
latent space, enabling efficient dataset distillation. When
dealing with IPC 1, where storage constraints are par-
ticularly strict, we employ SD-VAE-FT-MSE, a 2D-VAE,
which compresses videos as independent frames, allowing
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Figure 5. Architecture of Variational Autoencoder(VAE).

for highly compact storage. In contrast, for IPC 5, we uti-
lize CV-VAE, a 3D-VAE, which explicitly models temporal
dependencies in video sequences. Unlike 2D-VAEs, which
treat frames as separate entities, 3D-VAEs capture motion
continuity and temporal redundancy, effectively reducing
redundant information across consecutive frames. This re-
sults in a more structured latent representation, ensuring
that only the most informative motion features are retained,
leading to improved efficiency in video dataset distillation.
This selective choice of VAE architectures ensures that our
distilled datasets achieve the optimal balance between com-
pression efficiency and information retention across differ-
ent IPC levels.

7.2. Quantized VAE Model Size
We apply post-training static quantization on SD-VAE-
FT-MSE, compressing the model from original 335MB to
80MB, achieving around 76% compression rate.

7.3. Fair Comparison
Throughout our experiments across four video datasets un-
der two IPC settings (1 and 5), we rigorously ensure that the
storage used by our method does not exceed predefined stor-
age constraints. For example, in MiniUCF IPC 1, previous
methods allocate a storage limit of 115MB. Under the same
setting, we sample 24 instances per class and apply HOSVD
with a compression rate of 0.75, saving the core tensor
and factor matrices. The resulting distilled dataset occu-
pies 27MB, while the quantized 2D-VAE requires 80MB,
leading to a total memory consumption of 107MB, which
remains within the 115MB storage budget. The detailed
storage consumption can be found in Tab. 5.

7.4. Sampling Methods
In Tab. 6, we have provided a detailed accuracies on differ-
ent sampling and dataset distillation techniques evaluating
on the dataset SSv2 when IPC is 5.



Dataset MiniUCF HMDB51 Kinetics-400 SSv2
IPC 1 107 MB 107 MB 148 MB 223 MB
IPC 5 475 MB 475 MB 455 MB 458 MB

Table 5. Storage consumed by our method for each dataset. Stor-
age represents the total size of the distilled tensors and the associ-
ated VAE model.

Random DM + VDSD MTT + VDSD IDTD Kmeans DPPs only Ours
3.9± 0.1 4.0± 0.1 8.3± 0.1 9.5± 0.3 7.2± 0.3 9.3± 0.1 10.5± 0.2

Table 6. Performance of different dataset distilation and data sam-
pling methods on the SSv2 dataset under IPC 1.

8. Peak Memory Analysis
To assess the efficiency of our method in terms of mem-
ory consumption, we compare the peak GPU memory us-
age during dataset distillation with other methods: DM and
VDSD. As shown in Tab. 7, our method achieves the lowest
peak memory consumption at 11,085 MiB, significantly re-
ducing memory usage compared to DM (20,457 MiB) and
VDSD (12,545 MiB).

Method DM VDSD Ours
GPU Memory 20, 457 MiB 12, 545 MiB 11, 085 MiB

Table 7. Peak memory comparsion between different dataset dis-
tillation methods on MiniUCF when IPC is 5.

Our method minimizes peak memory usage by operat-
ing in the latent space and leveraging training-free compres-
sion via HOSVD, significantly reducing redundant memory
allocation during dataset distillation. This lower memory
footprint allows our approach to scale to larger datasets and
higher IPC settings while maintaining efficiency.

9. Runtime Analysis
To assess the computational efficiency of our method, we
compare its distillation runtime with VDSD across differ-
ent datasets. All experiments are conducted on an NVIDIA
H100 SXM GPU. Our training-free method demonstrates
a significant speed advantage, particularly on large-scale
datasets, due to its latent-space processing and training-free
compression strategy.

On small-scale datasets, such as HMDB51 and Mini-
UCF, our method completes the dataset distillation process
in under 10 minutes, whereas VDSD requires 2.5 hours.
The efficiency gain is even more pronounced on large-scale
datasets, where our method finishes in approximately 1 hour
on Kinetics-400 and SSv2, while VDSD exceeds 5 hours.

These results confirm that our latent-space approach
significantly reduces computational overhead compared to
pixel-space distillation methods like VDSD. By leverag-
ing structured compression techniques such as HOSVD and

eliminating costly iterative optimization steps, our method
achieves faster dataset distillation without compromising
performance. This makes our approach highly scalable and
practical for real-world applications, especially in large-
scale video analysis scenarios.

10. Visualization
We provide the reconstructed and decoded frames of our
method for MiniUCF across 20 classes in Fig. 6.



Figure 6. Reconstructed and decoded frames of our method for MiniUCF with a 3D-VAE.
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