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1 PROPOSITIONS

1.1 AN UPPER BOUND FOR TASK IRRELEVANT INFORMATION

Proposition 1.1. Assume that all trajectories are sampled under a fixed stationary policy. Then, we have

I(dt; rt+1:t+N | st) ≤
N−1∑
i=0

I(dt+i;at+i|st+i).

Proof. As dt is independent of rt+1:t+N conditioned on (st,at:t+N−1), we have

I(dt; rt+1:t+N |st) ≤ I(dt;at:t+N−1, rt+1:t+N |st)
= I(dt;at:t+N−1|st) + I(ot; rt+1:t+N |st,at:t+N−1)

= I(dt;at:t+N−1|st)

= I(dt;at|st) +
N−1∑
i=1

I(dt;at+i|st,at:t+i−1). (1)

Then, we have

I(dt;at+i|st,at:t+i−1) ≤ I(dt,dt+i;at+i|st,at:t+i−1)

= I(dt+i;at+i|st,at:t+i−1) + I(dt;at+i|st,at:t+i−1,dt+i)

= I(dt+i;at+i|st,at:t+i−1) (2)
≤ I(dt+i;at+i, st+i|st,at:t+i−1)

= I(dt+i; st+i|st,at:t+i−1) + I(dt+i;at+i|st,at:t+i−1, st+i)

= I(dt+i;at+i|st,at:t+i−1, st+i) (3)
= I(st,at:t+i−1,dt+i;at+i|st+i)− I(st,at:t+i−1;at+i|st+i)

≤ I(st,at:t+i−1,dt+i;at+i|st+i)

= I(dt+i;at+i|st+i) + I(st,at:t+i−1;at+i|st+i,dt+i)

= I(dt+i;at+i|st+i). (4)

Equation (2) holds as at+i is independent of dt conditioned on st,at:t+i−1,dt+i. Equation (3) holds because st+i is

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).



independent of dt+i conditioned on st,at:t+i−1. By combining (1) and (4), we have

I(dt; rt+1:t+N | st) ≤
N−1∑
i=0

I(dt+i;at+i|st+i).

1.2 CONTRACTION MAPPINGS

Proposition 1.2. There exists a contraction mapping Tπ,i such that the following equations holds for i = 1, 2

Zπ,i(o, a) = (Tπ,iZπ,i) (o, a), (5)
(Tπ,iZπ,i) (o, a) = WiRo(o, a) + ΓiEo′,a′ [Zπ,i(o

′,a′)] ,

where Wi ∈ RL, Γi ∈ RL×L, o′ is sampled with probability Po(o
′|o, a), a′ is sampled with probability π(a′|o′), and all

vectors are column vectors.

Proof. First, we provide the forms of Wi and Γi for i = 1, 2. Then, we prove Tπ,i is a contraction mapping. Given two
functions Z1 and Z2, we define the distance by

Dist (Z1, Z2) = max
o,a

max
0≤i≤L−1

∣∣∣∣ [Z1(o, a)]i − [Z2(o, a)]i

∣∣∣∣.
(1) For directly predicting reward sequences, we have

W1 =
(
1 0 0 · · · 0 0

)T
, Γ1 =



0 0 · 0 0 0
γ 0 · · · 0 0 0
0 γ · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · γ 0 0
0 0 · · · 0 γ 0


.

Then, we have ∣∣∣∣ [(Tπ,1Z1) (o, a)]n − [(Tπ,1Z2) (o, a)]n

∣∣∣∣
≤
∣∣∣∣ [W1Ro(o, a)]n − [W1Ro(o, a)]n

∣∣∣∣+ ∣∣∣∣γEo′,a′
[
[Z1(o

′,a′)]n+1 − [Z2(o
′,a′)]n+1

] ∣∣∣∣
=

∣∣∣∣γEo′,a′
[
[Z1(o

′,a′)]n+1 − [Z2(o
′,a′)]n+1

] ∣∣∣∣
≤γEo′,a′

[∣∣∣∣ [Z1(o
′,a′)]n+1 − [Z2(o

′,a′)]n+1

∣∣∣∣]
≤γEo′,a′ [Dist (Z1, Z2)]

≤γDist (Z1, Z2) .

Therefore, we have
Dist (Tπ,1Z1, Tπ,1Z2) ≤ γDist (Z1, Z2) ,

which implies that Tπ,1 is a contraction mapping.

(2) For predicting the DTFT of reward sequences, we have

W2 =
(
1 1 1 · · · 1 1

)T
,



Γ2 =



γ 0 · · · 0 0 0

0 γ exp
(
− 2π

L j
)

· · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · γ exp
(
− 2(L−3)π

L j
)

0 0

0 0 · · · 0 γ exp
(
− 2(L−2)π

L j
)

0

0 0 · · · 0 0 γ exp
(
− 2(L−1)π

L j
)



.

Then, we have∣∣∣∣ [(Tπ,2Z1) (o, a)]n − [(Tπ,2Z2) (o, a)]n

∣∣∣∣
≤
∣∣∣∣ [W1Ro(o, a)]n − [W1Ro(o, a)]n

∣∣∣∣+ ∣∣∣∣γ exp(−2nπ

L
j

)
Eo′,a′ [[Z1(o

′,a′)]n − [Z2(o
′,a′)]n]

∣∣∣∣
=

∣∣∣∣γ exp(−2nπ

L
j

)
Eo′,a′ [[Z1(o

′,a′)]n − [Z2(o
′,a′)]n]

∣∣∣∣
=

∣∣∣∣γ exp(−2nπ

L
j

) ∣∣∣∣ · ∣∣∣∣Eo′,a′ [[Z1(o
′,a′)]n − [Z2(o

′,a′)]n]

∣∣∣∣
=

∣∣∣∣γEo′,a′ [[Z1(o
′,a′)]n − [Z2(o

′,a′)]n]

∣∣∣∣
≤γEo′,a′

[∣∣∣∣ [Z1(o
′,a′)]n − [Z2(o

′,a′)]n

∣∣∣∣]
≤γEo′,a′ [Dist (Z1, Z2)]

≤γDist (Z1, Z2) .

Therefore, we have
Dist (Tπ,2Z2, Tπ,2Z2) ≤ γDist (Z1, Z2) ,

which implies that Tπ,2 is a contraction mapping. We note that when using Zπ,2 as prediction target, the prediction network
Zθ needs to output 2L-dimensional vector (L dimensions for the real part and L dimensions for the imaginary part). We
actually use W2 and Γ2 in the following form

W2 =
(
1 0 1 0 · · · 1 0

)T
,

Γ2 =



cos( 0
Lπ) sin( 0

Lπ) 0 0 · · · 0 0

− sin( 0
Lπ) cos( 0

Lπ) 0 0 · · · 0 0

0 0 cos( 2
Lπ) sin( 2

Kπ) · · · 0 0

0 0 − sin( 2
Lπ) cos( 2

Kπ) · · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · cos( 2K−2

L π) sin( 2K−2
L π)

0 0 0 0 · · · − sin( 2K−2
L π) cos( 2K−2

L π)



.



1.3 LEARNING TRANSFORMS

Proposition 1.3. For any W ∈ RL, if the infinity-norm of Γ ∈ RL×L is less than 1, the operator Tπ defined by

(TπZπ) (o, a) = WRo(o, a) + ΓEo′,a′ [Zπ(o
′,a′)] ,

is a contraction mapping. The prediction target Zπ defined as the fix point of Tπ satisfies the equation

Zπ(o, a) =

∞∑
n=0

(
Γ

γ

)n

Wen(o, a;π).

Proof. Given two functions Z1 and Z2, we define the distance by

Dist (Z1, Z2) = max
o,a

max
0≤i≤L−1

∣∣∣∣ [Z1(o, a)]i − [Z2(o, a)]i

∣∣∣∣.
Then, we have ∥∥∥∥ (TπZ1) (o, a)− (TπZ2) (o, a)

∥∥∥∥
∞

≤
∥∥∥∥WRo(o, a)−WRo(o, a)

∥∥∥∥
∞

+

∥∥∥∥ΓEo′,a′ [Z1(o
′,a′)− Z2(o

′,a′)]

∥∥∥∥
∞

=

∥∥∥∥ΓEo′,a′ [Z1(o
′,a′)− Z2(o

′,a′)]

∥∥∥∥
∞

≤∥Γ∥∞ ·
∥∥∥∥Eo′,a′ [Z1(o

′,a′)− Z2(o
′,a′)]

∥∥∥∥
∞

≤∥Γ∥∞ ·Dist (Z1, Z2) .

Therefore, we have
Dist (TπZ2, TπZ2) ≤ ∥Γ∥∞Dist (Z1, Z2) .

Because ∥Γ∥∞ is less than 1, we have that Tπ is a contraction mapping.

(TπZπ) (o, a) = WRo(o, a) + ΓEo′,a′ [Zπ(o
′,a′)] ,

Then, by the definition of the fix point, we have

Zπ(o, a) = WRo(o, a) + ΓEo′,a′ [Zπ(o
′,a′)]

= WRo(o, a) + ΓEπ [Zπ(o1,a1) | o0 = o,a0 = a]

= WRo(o, a) + ΓEπ [WRo(o1,a1) + ΓZπ(o2,a2) | o0 = o,a0 = a]

= WRo(o, a) + ΓWEπ [Ro(o1,a1) | o0 = o,a0 = a] + ΓEπ [Zπ(o2,a2) | o0 = o,a0 = a]

· · ·

=

∞∑
n=1

ΓnWEπ [Ro(on,an) | o0 = o,a0 = a]

=

∞∑
n=1

(
Γ

γ

)n

Wen(o, a;π).

We note that the infinite sum in RHS converges. The reason is that
∑∞

n=N

(
Γ
γ

)n
Wen(o, a;π) converges to zero vector, as

∥∥∥∥ ∞∑
n=N

(
Γ

γ

)n

Wen(o, a;π)

∥∥∥∥
∞

≤ Rmax

∞∑
n=N

∥∥∥∥ΓnW

∥∥∥∥
∞

≤ Rmax

∥∥∥∥W∥∥∥∥
∞

∥∥∥∥Γ∥∥∥∥N
∞

1−
∥∥∥∥Γ∥∥∥∥

∞

.



2 DETAILS FOR EXPERIMENTS IN SECTION 4.1

In this section, we provide additional information about the experiments in Section 4.1.

2.1 EXPERIMENTAL SETTING

We evaluate all auxiliary tasks in a modified Cartpole Swingup environment. In each episode, the background images are
sampled from two videos and then kept fixed through the whole episode. We label an observation according to the video that
its background image is sampled from. We use the InfoNCE objective to estimate the mutual information I (ϕθ(ot); st).
That is,

JNCE = −E

[
log

(
∥fw(ϕθ(oi))− f ′

w(si)∥22∑N
i=k ∥fw(ϕθ(ok))− f ′

w(sk)∥22

)]
,

where fw and f ′
w are two networks, ((o1, s1), · · · , (oN , sN )) is a batch of samples. We train these two networks via

maximizing JNCE . We use the final loss as an estimate for I (ϕθ(ot); st). We train a network with a cross-entropy loss to
predict background images and use the loss to estimate the mutual information I (ϕθ(ot);dt). That is,

JCE = −E

[
1

N

N∑
i=1

log qw(di|ϕθ(oi))

]
,

where qw is the classification network, and di is the label of the background image. We train the network qθ by minimizing
JCE . We use log 2 − JCE as an estimate of I (ϕθ(ot);dt). For all methods, we optimize the policy network and value
network via 200K-step online training and then estimate the mutual information using the saved data. Note that all auxiliary
tasks are combined with DrQ.

2.2 ADDITIONAL RESULTS

We show the performance during training in Figure 1. Results show RSP significantly outperforms other auxiliary tasks. In
our experiments, the VAE-based auxiliary task tends to minimize reconstruction losses by reconstructing the background
images as shown in Figure 2.
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Figure 1: The performance of different auxiliary tasks during training in the Cartpole Swingup task.



Observations Reconstruction

Figure 2: Ground-truth and reconstructed images. Results show that representations learned by VAE mainly encode
information about the background images, which is irrelevant to the control task.

BiC-Catch C-Swingup C-Run F-Spin R-Easy W-walk
DrQ (DCS) 138± 20 334± 29 4± 2 378± 125 113± 22 28± 1
DrQ (Our) 99± 99 341± 52 211± 64 543± 245 168± 63 30± 8

Table 1: Comparison between different implementations in multi-distraction environments. Our implementation achieves
similar or better performance than that used in DCS.

3 EXPERIMENTS

3.1 MULTI-DISTRACTION SETTING

Figure 3 shows the snapshots of all six environments. In these tasks, robots face multiple distractions at the same. We
implement DrQ and DrQv2 using Pytorch. We run all experiments in one GPU, Geforce 2080Ti. Our implementation of
DrQ is slightly different from the official implementation of DrQ. (1) Our implementation does not use a target encoder
similar to DrQv2. (2) We use a small batchsize 256 instead of 512 for a fair comparison. (3) We use a small learning rate
5e-4 instead of 1e-3. (4) We use a large replay buffer whose size is 500K instead of 100K. The first two modifications are to
improve the computational efficiency while the last two are to unify the hyperparameters used in DrQ and DrQv2. In Tabel
1, we provide a comparison between our implementation and that used in DCS. Note that these modifications do not reduce
the performance of DrQ, and even improve it in some environments. Our implementation of DrQv2 also uses batchsize 256
and learning rate 5e-4 for a fair comparison. Moreover, for DrQv2, we set the action repeat hyperparameter the same as DrQ.
We directly use the official implementation of DBC, TIA, and TPC for experiments in Section 6.1. All hyperparameters
of RSP are listed in Table 2. Please note that RSP also predicts one-step rewards and we regularize the outputs of policy
networks by l2 norm with a small coefficient 0.01. The action regularization can control the task-irrelevant information used
by the early exploration policy. This trick can not improve the performance of DrQ/DrQv2, but can reduce the performance
variance of RSP with different random seeds in some tasks. For computation efficiency, we use a smaller batchsize 128
instead of 256 for all ablation studies.



Figure 3: The six environments used in our Section. Agents face the camera distractions, color distractions, and background
distractions simoutenously.

Hyperparameter Setting
Input dimension 3×84×84
Stacked frames 3
Discount factor 0.99
Replay buffer size 500K
Batch size 256
learning rate 5e-4
Random cropping padding 4
Seed steps 4000
Encoder conv layers 4
Encoder conv strides [2,1,1,1]
Encoder conv channels 32
Encoder feature dim 50
Actor/Critic head MLP layers 3
Actor/Critic head MLP hidden dim 1024
Actor update frequency 2
Critic target update frequency 2
Critic soft-update rate 0.01
DrQv2: noise schedule linear(1.0, 0.1, 500000)
* RSP network: prediction layers 3
* RSP network: hidden dim 256
* RSP network: output dim 1024
* RSP: share the first linear layer True
* RSP: stop gradients of RL losses True

* RSP: prediction target Zπ,1 in R-Easy, BiC-Catch, W-Walk
Zπ,2 in C-Swingup, F-Spin, C-Run

Table 2: Hyperparameters were used in our experiments. The marker * means the extra hyperparameters used in RSP. The
noise schedule "linear(1.0, 0.1, 500000)" used for DrQv2 means that the exploration noise decays linearly from 1.0 to 0.1
after 500K environment steps.



3.2 RESULTS IN NO-DISTRACTION ENVIRONMENTS

Many methods considering distraction perform worse than DrQ in standard DMC environments. However, the final scores
of DrQ+RSP is comparable with those of DrQ (Table 3).

BiC-Catch C-Swingup C-Run F-Spin R-Easy W-Walk
DrQ 963± 9 868± 10 660± 96 938± 103 942± 71 921± 45
DrQ+RSP 963± 7 864± 12 642± 46 981± 3 973± 4 950± 18

Table 3: 500K step scores in no-distraction environments.

Figure 4: Door Opening in Robosuite benchmarking. We illustrate observations in different episodes.

3.3 COMPARISON IN DOOR OPENING

Here, we compare DrQv2+RSP and DrQv2 in a Robosuite task, Door Opening. Compared with DCS environments, the Door
Opening environment simulates a more realistic robotic scenario, where a robot arm learns to turn a handle and then open the
door. The dimension of observations (3× 168× 168) in Door Opening is also higher than that (3× 84× 84) in DCS. In our
experiments, three kinds of distractions exist during the training phase, including color, light, and camera distractions. We
illustrate the environment in Figure 4. We use hyperparameters similar to that of SECANT. The hyperparameters different
from Table 2 are shown in Table 4. We report results over five random seeds. Figure 5 shows the performance after 150K
environment steps (300 episodes). RSP provides significant performance improvement (+736%) in the Door Opening task.



Hyperparameter Setting
Input dimension 3×168×168
Episode length 500
Policy learning rate 1e-3
Critic learning rate 1e-4
Random cropping padding 8
Seed steps 2000
Critic target update frequency 4
Regularization coef 0.05
DrQv2: noise schedule linear(1.0, 0.1, 100000)
RSP: prediction target Zπ,1

Table 4: Hyperparameters used in the Door Opening task.
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Figure 5: Comparision between DrQv2+RSP and DrQv2 in the Door Opening environment. Results show that RSP
significantly improvide the sample efficiency and final performance.

3.4 ABLATION RESULTS AND VISUALIZATION

Figure 6 visualize the latent spaces learned by six different auxiliary tasks using the data the same as that used in Section 41.
Figure 7 and 8 provide more comparisons between RSP and CPC+Reward.

3.5 COMPARISON BETWEEN VARIANTS OF RSP

In Figure 9 and 10, we provide comparisons between the prediction targets Zπ,1 and Zπ,2, which corresponding to direct and
Fourier respectively. Figure 11-14 further visualize reward sequences and state sequences to understand potential reasons
why Fourier outperforms direct in some tasks. The results show that the variant Fourier outperforms direct in Cheetah
Run, Cartpole Swingup, and Finger Spin environments. We observe the approximate periodicity of reward sequences in
Cartpole Swingup and Finger Spin. We do not observe the periodicity of reward sequences in Cheetah Run. However, some
dimensions of states are approximate periodic. We hypothesize that Fourier outperforms direct in Cheetah Run due to the
approximate periodicity of states. In the Ball in Cup environment, we do not observe periodicity of reward sequences or
state sequences. Therefore, Fourier performs worse than direct in the Ball in Cup environment.

3.6 COMPLETE RESULTS OF OUR BASELINES

This part provides complete results (15) of our baselines in multi-distraction settings. Results show that the baselines hardly
improve the performance compared with DrQ/DrQv2, indicating the difficulty of learning representations when multiple
distractions exist.
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(f) CPC+Reward

Figure 6: Embedding spaces learned by different auxiliary tasks. Results show that RSP can capture information about state
values and tends to map observations with different background images to the same region.



Figure 7: T-SNE of the embedding space learned by RSP. We randomly sample four observations (corresponding to four
colors in the T-SNE figure) and match them with their nearest neighbors respectively (shown in the bottom subfigures). The
results show that neighboring points in the embedding space learned by RSP metric have similar states.



Figure 8: T-SNE of the embedding space learned by CPC+Reward. CPC+Reward tends to map observations with similar
background images to neighboring regions, even though those observations may corresponds to dissimilar states.
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Figure 9: Comparison between the variants direct and Fourier based on DrQ.
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Figure 10: Comparison between the variants direct and Fourier based on DrQv2.

State Reward

Figure 11: State sequences and the corresponding reward sequence in the Cartpole Swingup task.
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Figure 12: State sequence and the corresponding reward sequence in the Finger Spin task.

State

Reward

Figure 13: State sequences and the corresponding reward sequence in the Cheetah Run task.

State
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Figure 14: State sequences and the corresponding reward sequence in the Ball in Cup Catch task.
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Figure 15: Complete results of our baselines in multi-distraction settings.
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