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ABSTRACT

This paper considers the Lipschitz bandit problem, where the set of arms is con-
tinuous and the expected reward is a Lipschitz function over the arm space. This
problem has been extensively studied. Prior algorithms need to store the reward
information of all visited arms, leading to significant memory consumption. We
address this issue by introducing an algorithm named Log-space Lipschitz ban-
dits (Log-Li), which achieves an optimal (up to logarithmic factors) regret of
Õ
(
T

dz+1
dz+2

)
while only uses O (log T ) bits of memory. Additionally, we pro-

vide a complexity analysis for this problem, demonstrating that Ω (log T ) bits of
space are necessary for any algorithm to achieve the optimal regret. We also con-
duct numerical simulations, and the results show that our new algorithm achieves
regret comparable to the state-of-the-art while reducing memory usage by orders
of magnitude.

1 INTRODUCTION

In a multi-armed bandit (MAB) problem, an online algorithm must select from a set of strategies
over a sequence of n trials, with the objective of maximizing the cumulative payoff of the chosen
strategies. These problems form the fundamental theoretical framework for analyzing the trade-offs
between exploration and exploitation that are intrinsic to sequential decision-making under condi-
tions of uncertainty. Algorithms and methodologies for these problems find successful applications
in areas such as online auctions, adaptive routing, and the theory of learning in games (Silver et al.,
2016; Schneider & Zimmert, 2024).

In this paper, we study the Lipschitz bandit problem - a specific type of MAB problem where the
expected reward is Lipschitz continuous(Kleinberg et al., 2008). Existing Lipschitz bandit algo-
rithms heavily rely on storing the reward statistics (e.g. the number of pulls and the mean reward
of an arm observed so far) for the visited arms in the memory. Due to the intrinsic assumption in
Lipschitz bandit problems that arms belong to a large set, these algorithms need to store information
for poly(T ) arms, leading to significant space consumption. For instance, the Zooming algorithm
(Kleinberg et al., 2008) and Hierarchical Optimistic Optimization (HOO) algorithm (Bubeck et al.,
2011) require O(T ) space, while the state-of-the-art A-BLiN (Feng et al., 2022) has a space com-

plexity of O
(
T

dz+1
dz+2 (log T )

− dz+1
dz+2

)
(dz is the zooming dimension). These space requirements are

impractical in many real-world scenarios with high time horizons T , leading to a natural question:

What is the memory cost of achieving optimal regret for the Lipschitz bandit problem?

Recently, learning with constrained memory has garnered significant attention due to its myriad
practical applications. Extensive research has been conducted in various fields, including kernel
methods(Williams & Seeger, 2000), convex optimization(Marsden et al., 2022; Blanchard et al.,
2023), and general machine learning algorithms(Mitliagkas et al., 2013). Memory constraints have
also been explored in the context of multi-armed bandit (MAB) settings, though most studies have
focused on stochastic MAB in a streaming setting (Maiti et al., 2021; Jin et al., 2021; Assadi &
Wang, 2024). These approaches, however, do not apply to the Lipschitz bandit problem, which
involves an infinite set of arms without a stream.
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To solve the problem, we present a novel algorithm, named Log-space Lipschitz(Log-Li) that only
uses a memory of O (log T ) bits space while achieving an optimal regret rate of Õ

(
T

dz+1
dz+2

)
. Log-

Li maintains the empirically best arm and strategically narrows the arm set to learn regions of high
reward. This suggests the main finding in this paper that, surprisingly, there is almost no tradeoff
between regret and space efficiency for the Lipschitz bandit problem. We further complement this
result with a lower-bound complexity analysis and show that Ω (log T ) is necessary for achieving
optimal regret rate. This means that Log-Li is optimal for both space complexity and regret rate.

1.1 PROBLEM DEFINITIONS AND PRELIMINARIES

We consider a compact doubling metric space (A, dA) of arms. Each arm is associated a sub-
Gaussian distribution where the expected reward µ : A → R satisfies the 1-Lipschitz condition that
|µ (x1)− µ (x2)| ≤ dA (x1, x2) for any x1, x2 ∈ A. For simplicity, we assume the parameter for
the subgaussian distribution to be 1, as extending to other value is straightforward.

Let µ⋆ = maxx∈A µ(x) denote the maximal expected payoff. The objective of the algorithm is to
minimize regret, defined as R(T ) =

∑T
t=1 (µ

⋆ − µ (xt)). For convenience, we define the optimal
gap of x as ∆x = µ⋆− µ(x) for all x ∈ A.

Consistent with other works, we restrict our consideration to the metric space
(
[0, 1]d, ∥·∥∞

)
for

simplicity, since we can always embed a doubling space into a Euclidean space with some distor-
tion of metric by the Assouad’s embedding theorem (Assouad, 1983). The ideas underlying our
algorithms can be generalized to other doubling metric spaces.

In accordance with previous work, we define the zooming dimension as follows.

Definition 1. For a problem instance with arm set A, metric dA and expected payoff µ. Let Xr =
{x ∈ A : ∆x = µ∗ − µ(x) ≤ r}. We define the r-zooming number as Nr = N

(
X16r,

r
2

)
, which is

the r
2 -packing number of X16r. The zooming dimension is then defined as

dz := min
{
d ≥ 0 : ∃a > 0, Nr ≤ ar−d,∀0 < r < 1

}
Moreover, we define the zooming constant Cz as

Cz = min
{
a > 0 : Nr ≤ ar−dz ,∀0 < r < 1

}
The zooming dimension dz can be significantly smaller if the set of near-optimal arms is ”small” in
terms of the packing number.

1.2 MAIN RESULTS

This paper investigates the space complexity for the Lipschitz bandit problem and offers both upper
and lower bounds.

Space upper bounds. Our main contribution is the introduction of the Log-Li algorithm, which
solves Lipschitz bandits using logarithmic space. With the Doubling Edge-length Sequence rm =

2−m+1, Log-Li achieves the optimal regret rate of Õ
(
T

dz+1
dz+2

)
using O(log T ) bits.

Theorem 1. With probability exceeding 1−2δ, the T-step total regret R(T ) of Log-Li with Doubling
Edge-length Sequence rm = 2−m+1 satisfies

R(T ) ≤ (512Cz + 16) · T
dz+1
dz+2 (log(T/δ))

1
dz+2 ,

where dz is the zooming dimension of the problem instance. Moreover, the space complexity of
Log-Li is O(log T ) bits.

The details of the algorithm can be found in Algorithm 2 and Algorithm 1. The proof of Theorem 1
can be found in Section 3. The core of bandit algorithms lies in balancing exploration and exploita-
tion. Prior research addressed this balance by storing the results of all explored arms. This approach
allowed their algorithms to deactivate undesirable regions, thereby limiting the number of pulls in
these areas and enabling continued exploration in promising directions.
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Log-Li, however, adopts a different strategy to reduce space consumption. Instead of deactivating
suboptimal regions entirely, it allows revisits to less favorable areas. The frequency of these revisits
is controlled based on each area’s contribution to regret. With careful analysis, the regret rate of
Log-Li is shown to be Õ

(
T

dz+1
dz+2

)
.

In contrast, seminal studies (Kleinberg et al., 2008; Bubeck et al., 2011; Feng et al., 2022) demon-
strate that the optimal regret bound for Lipschitz bandits without space limitations is R(T ) ≲

T
dz+1
dz+2 · (log T )

1
dz+2 . Consequently, Log-Li attains the optimal regret rate for Lipschitz bandits

while utilizing minimal space.

Space lower bounds. Our next contribution is the space lower bounds for the Lipschitz bandit.
Theorem 2. Consider Lipschitz bandit problems with time horizon T larger than a large enough
constant and zooming dimension dz ≤ d. Then for any algorithm, if the regret bound E[R(T )] ≤
1
12T

dz+1
dz+2 , we must have that the space complexity of the algorithm is at least 1

2 log T bits.

Consequently, Log-Li algorithm is optimal in terms of both regret and space. We also conduct
numerical simulations in Section 5, and the results show that our Log-Li achieves regret comparable
to the state-of-the-art while reducing memory usage by orders of magnitude.

1.3 OTHER RELATED WORK

Prior work on MAB. The history of the Multi-Armed Bandit (MAB) problem dates back to
Thompson (1933), with a significant surge of activity in recent decades. Several notable algorithms,
such as UCB (Agrawal, 1995), the arm elimination strategy(Even-Dar et al., 2006; Perchet & Rigol-
let, 2013), the ε−greedy method(Auer, 2002), the exponential weights and mirror descent frame-
workAuer et al. (2002), have been shown to achieve order-optimal cumulative regret. The Lipschitz
bandit problem was first introduced in Kleinberg et al. (2008) and holds significant importance on its
own. The Zooming algorithm (Kleinberg et al., 2008) and the Hierarchical Optimistic Optimization
(HOO) algorithm (Bubeck et al., 2011) were developed for general doubling metric space.

Learning under limited space. Recently, there has been a surge of work on understanding learning
under information constraints such as limited memory or communication constraints. One line of
research follows the breakthrough paper of Raz (2017), which shows that any learning algorithm
for parity problem requires either a memory of quadratic size or an exponential number of samples.
Subsequent works have extended these techniques to other learning problems, such as linear regres-
sion (Sharan et al., 2019) and noisy version of the parity problem (Garg et al., 2021). There is also
significant work on memory lower bounds for random-order streaming models, addressing problems
such as entropy estimation (Acharya et al., 2019) and the needle problem (Lovett & Zhang, 2023).

MAB under limited space. Most works focus on the (stochastic) multi-arm bandit problem in the
streaming setting where both regret minimization and pure exploration are studied. The streaming
pure exploration MAB was first introduced by Assadi & Wang (2020), and algorithms are proposed
to find ε-best arms with O(1) memory and O

(
K
ε2

)
pulls. These algorithms were further developed by

Assadi & Wang (2022) to achieve instance-optimal sample complexity. For the regret minimization
problem, building on earlier algorithms by Liau et al. (2018); Chaudhuri & Kalyanakrishnan (2020),
Agarwal et al. (2022) provided upper and lower regret bounds that are tight in T . The lower bound
was further improved by Li et al. (2023). Additionally, there is another line of work focusing on the
closely related expert learning problem (Srinivas et al., 2022; Peng & Zhang, 2023).

2 ALGORITHM

With space constraints, the agent only has knowledge about a constant number of arms in the envi-
ronment. To fully learn the landscape of the reward, the agent must keep exploring different regions
of the arm set. Since the agent forgets information about most regions, it may revisit areas that have
previously been eliminated, leading to sub-optimal regrets. To overcome this problem, we gradually
partition the regions of the arm set and perform exploration in an iterative deepening manner.

Log-Li operates based on finite partitions of the arm space. To keep exploring while avoiding con-
sistent visits to suboptimal areas, we control the maximum depth the algorithm can search in each
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round. The algorithm must start from depth 1 each round, as it has already forgotten which areas
were previously eliminated. This process may cause redundant visits to undesirable regions. To
mitigate this problem, the algorithm maintains the empirically best arm in the last round and uses
it to perform arm elimination. This strategy prevents us from searching too deeply in suboptimal
areas. By carefully designing partitions and determining the number of pulls for each round, we can
effectively control the overall regret. The learning process is summarized in Algorithm 1 and 2.

Algorithm 1: Logarithmic Space Lipschitz for Each round (RoundFunc)
Input: Time horizon T ; current time t; maximum depth m; current depth h; current cube C;

comparison arm reward µ̃m−1; current round max reward µ̃m.
if t+ nh > T then

return
Play arm xm

C,1, · · · , xm
C,nh

from C . Collect the rewards of these pulls ymC,1, · · · , ymC,nh
and

compute the average payoff µ̂m
h (C) =

∑nh
i=1 ym

C,i

nh
.

if h equals to m then
Compute µ̃m = max {µ̃m, µ̂m

h (C)}.
else

if µ̃m−1 − µ̂m
h (C) < 4rh then

Equally partition current cube into (rh/rh+1)
d subcubes and define B as the collection

of these subcubes.
foreach subcube B ∈ B do

RoundFunc(T, t+ nh,m, h+ 1, B, µ̃m−1, µ̃m).

else
Eliminate the cube C implicitly by ending the recursion.

Algorithm 2: Logarithmic Space Lipschitz(Log-Li)

Input: Arm set A = [0, 1]d; time horizon T .
Initialize: Error probability δ; Number of rounds B; Edge-length sequence {rm}B+1

m=1; current
time t = 0; comparison arm reward µ̃0 = 0

Compute nm = 16 log(T/δ)
r2m

for m = 1, 2, · · · , B.
for m = 1, 2, · · · , B do

Equally partition A to
(

1
r1

)d

subcubes and define B as the collection of these subcubes.
Set µ̃m = 0.
for each subcube B ∈ B do

RoundFunc(T, t,m, 1, B, µ̃m−1, µ̃m).

Cleanup: play the arm corresponding to µ̃m−1 until all T steps are used.

A running example of Log-Li can be found in figure 1. In each round, Log-Li starts from depth
1 and re-examines the rewards of the cubes. By leveraging the empirically best reward from the
last round, we can eliminate suboptimal areas (dark cubes) at the same depth as the previous round
without significantly impacting our regret. Simultaneously, we collect rewards from the promising
regions (white cubes) for further exploration.

It is worth mentioning that the partition process in the algorithm is detailed explicitly for clarity
and comprehension. In practice, the algorithm only requires iterating over the newly partitioned
subcubes sequentially, without the need to explicitly store information for each individual subcube.

Moreover, The overhead running time of the algorithm is O(T ) since at each time stamp we simply
collect a reward and compare it with µ̃m. In comparison, the time complexity of the Zooming Algo-
rithm (Kleinberg et al., 2008) is O(T 2), while the time complexity of the HOO algorithm(Bubeck
et al., 2011) is O(T log T ).
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Figure 1: Runing example of Log-Li. The ith subfigure reflects the results after the ith round.
The dark cubes are the eliminated areas and the white cubes are regions with decent rewards at the
maximum depth of the current round.

3 SPACE AND REGRET ANALYSIS

In this section, we provide space regret analysis for Log-Li. The highlight of the finding is that
O(log T ) bits are sufficient to achieve optimal regret rate of Õ

(
T

dz+1
dz+2

)
summarized in Theorem 1.

3.1 SPACE ANALYSIS

We would start with the space analysis which is more straightforward.

Lemma 1. Algorithm 1 and 2 consumes O(log T ) bits.

Proof. Note that at each timestamp, Algorithm 1 and 2 only needs to store:

• The id and the empirical mean of the best arm in the last round µ̃m−1.
• The id and the empirical mean of the best arm in the current round µ̃m.
• The id and the empirical mean of the current running arm µ̂m

h (C).

Since the number of subcubes we may run is bound by T , we can use log T bits to encode the id
of each subcube. For the empirical mean, we need to store the number of pulls and the sum of the
rewards, which are both bound by T since reward of each pull is less than 1. Therefore, we can
encode the empirical mean in 2 log T bits. The total bits consumed by Algorithm 1 and 2 is bound
by 3× (log T + 2 log T ) = O(log T ) bits.

3.2 REGRET ANALYSIS

In this subsection, we would prove the regret upper bound of Log-Li with Doubling Edge-length
Sequence rm = 2−m+1. Compared to previous research, Log-Li permits revisits to less favorable
directions, which may result in additional regret. However, we will manage the number of these
revisits by controlling the number of rounds to ensure that the overall regret remains bounded.

Consistent with other studies, we first show that the estimator µ̂ is concentrated to the true expected
reward µ (Lemma 2). In the following analysis, we let Bstop be the total number of rounds and Ah

be the set of cubes we visit when the depth is h in round m.

Lemma 2. Define

E :=

|µ(x)− µ̂m
h (C)| ≤ rh +

√
16 log(T/δ)

nh
,∀1 ≤ h ≤ m ≤ Bstop − 1,∀C ∈ Am

h ,∀x ∈ C

 .

It holds that P(E) ≥ 1− 2δ.
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Proof. Fix any cube C ∈ Am
h , we have

µ̂m
h (C) =

∑nh

i=1 y
m
C,i

nh
,E [µ̂m

h (C)] =

∑nh

i=1 µ
(
xm
C,i

)
nh

.

Since µ̂m
h (C)− E [µ̂m

h (C)] obeys subgaussian distribution with parameter 1
nh

. Applying Hoeffding
inequality

P

|µ̂m
h (C)− E [µ̂m

h (C)]| ≥

√
16 log(T/δ)

nh

 ≤ 2δ

T 8
.

By the Lipschitz condition of µ that |E [µ̂m
h (C)]− µ(x)| ≤ rh,∀x ∈ C , we have

P

sup
x∈C

|µ(x)− µ̂m
h (C)| ≤ rh +

√
16 log(T/δ)

nh

 ≥ 1− 2δ

T 8
.

Any cube C ∈ Am
h is played for not less than 1 time, and thus |Am

h | ≤ T . On the other hand, there
are at most Bstop ≤ T rounds. Taking a union bound over C ∈ Am

h and 1 ≤ h ≤ m ≤ Bstop , we
would have that E holds with probability at least 1− 2δ.

We then show that the optimal arm survives all eliminations with high probability (Lemma 3).
Lemma 3. Under event E (defined in Lemma 2), the optimal arm x∗ = argmaxµ(x) is not elimi-
nated in any round.

Proof. Fix any round m ∈ [B]. We use (Cm
h )

∗ to denote the cube containing x∗ in Am
h . We will

show that (Cm
h )

∗ is not eliminated in depth h for 1 ≤ h ≤ m − 1. Under event E , for any cube
C ∈ Am−1

m−1 and x ∈ C, we have

µ̂m−1
m−1(C)− µ̂m

h

(
(Cm

h )
∗) ≤ µ(x) +

√
16 log(T/δ)

nm−1
+ rm−1 − µ (x∗) +

√
16 log(T/δ)

nh
+ rh

≤ 2rm−1 + 2rh ≤ 4rh,

where the second inequality holds for nm = 16 log(T/δ)
r2m

and the last inequality holds for decreasing
property of Doubling Edge-length Sequence. By the elimination rule, (Cm

h )
∗ is not eliminated.

Based on lemma 2 and 3, we can control the loss of cubes in each depth.
Lemma 4. Under event E (defined in Lemma 2), for any 1 ≤ h ≤ m ≤ Bstop , any C ∈ Am

h and
any x ∈ C,∆x satisfies

∆x ≤ 8rh−1

Proof. We again fix any round m ∈ [B]. For h = 1, this is straightforward from the Lipschitz
condition of µ. For h > 1, let

(
Cm−1

m−1

)∗
be the cube in Am−1

m−1 such that x∗ ∈
(
Cm−1

m−1

)∗
. This cube(

Cm−1
m−1

)∗
is well-defined under E by Lemma 3. For any cube C ∈ Am

h and x ∈ C, it is obvious that
x is also in the parent of C (the cube in the previous depth that contains C), denoted as Cpar . For
any x ∈ C, we have

∆x = µ∗−µ(x) ≤ µ̂m−1
m−1

((
Cm−1

m−1

)∗)
+

√
16 log(T/δ)

nm−1
+rm−1−µ̂m

h−1 (Cpar )+

√
16 log(T/δ)

nh−1
+rh−1.

Due to our choice of nm = 16 log(T/δ)
r2m

, we have

∆x ≤ µ̂m−1
m−1

((
Cm−1

m−1

)∗)− µ̂m
h−1 (Cpar ) + 2rm−1 + 2rh−1

≤ µ̂m−1
m−1

((
Cm−1

m−1

)∗)− µ̂m
h−1 (Cpar ) + 4rh−1,
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where the last inequality holds from the decreasing property of Doubling Edge-length Sequence. It
is obvious that µ̂m−1

m−1

((
Cm−1

m−1

)∗) ≤ µ̃m−1. Since the cube Cpar is not eliminated, we can easily
derive the following from the elimination rule

∆x ≤ 4rh−1 + 4rh−1 ≤ 8rh−1.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let Rm denote regret of the m-th round. Fixing any positive number B, the
total regret R(T ) can be divided into two parts: R(T ) =

∑
m≤B Rm+

∑
m>B Rm. In the following,

we bound two parts separately and then determine B to obtain the upper bound of the total regret.

We firstly fix any round m. Recall that Am
h is set of the survived cubes in depth h. According to

Lemma 4 , for any x ∈ ∪C∈Am
h
C, we have ∆x ≤ 8rh−1 = 16rh. Each cube in Am

h is a ∥ · ∥∞-ball
with radius rh

2 , and is a subset of S (16rh). Therefore, Am
h forms a

(
rh
2

)
-packing of S (16rh), and

the definition of zooming dimension yields that

|Am
h | ≤ Nrh ≤ Czr

−dz

h ≤ Cz2
(h−1)dz ,

where the last inequality holds since rh = 2−h+1. The total regret of the m-th round is

Rm =

m∑
h=1

∑
C∈Am

h

nh∑
i=1

∆xm
C,i

≤
m∑

h=1

|Am
h | · 16 log(T/δ)

r2h
· 16rh

≤
m∑

h=1

Cz2
(h−1)dz · 256 log(T/δ)

rh
=

m∑
h=1

Cz2
(h−1)(dz+1) · 256 log(T/δ).

Therefore, we have∑
m≤B

Rm =
∑
m≤B

m∑
h=1

Cz2
(h−1)(dz+1) · 256 log(T/δ)

=
∑
m≤B

(B −m+ 1)Cz2
(m−1)(dz+1) · 256 log(T/δ).

By standard calculation, we should have that for any real number a,∑
m≤B

(B −m+ 1)am

=
∑
m≤B

(B + 1)am −
∑
m≤B

mam = (B + 1)
∑
m≤B

am −

 B

a− 1
aB+1 − 1

a− 1

∑
m≤B

am


=

(
B + 1 +

1

a− 1

)
·
∑
m≤B

am − B

a− 1
aB+1 ≤

(
B + 1 +

1

a− 1

)
· a

B+1

a− 1
− B

a− 1
aB+1

=

(
1 +

1

a− 1

)
· a

B+1

a− 1
≤ 2aB ,

which gives that∑
m≤B

Rm = 256Cz log(T/δ) · 2−(dz+1)
∑
m≤B

(B −m+ 1)
(
2(dz+1)

)m

≤ 512Cz log(T/δ) · 2(B−1)(dz+1).

On the other hand, Lemma 4 implies that the arm corresponding to µ̃B−1 must satisfy that ∆x ≤
8rB−1 = 16rB = 16 · 2−B+1. Therefore, we finally have

R(T ) =
∑
m≤B

Rm +
∑
m>B

Rm ≤ 512Cz log(T/δ) · 2(B−1)(dz+1) + 16 · 2−B+1T.
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This inequality holds for any positive B. By choosing B∗ = 1 +
log T

log(T/δ)

dz+2 , we have

R(T ) ≤ (512Cz + 16) · T
dz+1
dz+2 (log(T/δ))

1
dz+2 .

4 SPACE LOWER BOUND

In this section, we present space lower bounds for Lipschitz bandit problem as summarized in The-
orem 2. Essentially, Theorem 2 says that if we want to achieve the optimal regret bound, we must
consume at least Ω(log T ) bits. Similar to most works, we would first construct problem instances
that are difficult to differentiate and then prove lower bounds on these instances.

4.1 HARD CASE

We would construct a set of problem instances that are difficult to distinguish. Let r = 1

T
1

dz+2
and

K = cz
rdz

= czT
dz

dz+2 . Here cz is a small enough constant satisfying by the definition of zooming
dimension, we can find a set of arms U = {u1, · · · , uK} such that d (ui, uj) ≥ r for any i ̸= j.
Then we consider a set of problem instances I = {I1, · · · , IK}. The expected reward for Ii is

µi(x) =

{
1
2 + r, if x = ui,
max

{
1
2 , µi(ui)− d(x, ui)

}
, otherwise.

Note that here we would have that logK = dz

dz+2 log cz log T = Θ(log T ).

4.2 PROOF OF THEOREM 2

We consider the ”best-cube identification” problem that after t rounds, the algorithm outputs a cube
yt: a prediction for which cube is optimal (has the highest mean reward). For this problem, we may
find that if our space is small, the prediction quality will be very poor.
Lemma 5. Consider “best-cube identification” problem with K ≥ 10 and space complexity less
than 1

2 log(K). Then there exists at least ⌈K
3 ⌉ cubes that, for problem instances in Section 4.1,

Pr [yt = i | Ii] <
3

4
.

Proof. We consider that summing up all the instance cases and use M to denote the memory state.

K∑
i=1

Pr [yt = i | Ii] =
K∑
i=1

∑
m

Pr [yt = i | M = m, Ii] Pr [M = m | Ii]

=

K∑
i=1

∑
m

Pr [yt = i | M = m] Pr [M = m | Ii] ≤
K∑
i=1

∑
m

Pr [yt = i | M = m]

=
∑
m

K∑
i=1

Pr [yt = i | M = m] =
∑
m

1 ≤ 2
1
2 log(K) = K

1
2 ,

where the second equation holds since the prediction is determined by the memory state, and the last
inequation is due to our bound of space complexity. To prove the lemma, assume for contradiction
that we have more than 2K

3 cubes with Pr [yt = i | Ii] ≥ 3
4 . We would have that

K∑
i=1

Pr [yt = i | Ii] ≥
2K

3
× 3

4
=

1

2
K > K

1
2 ,

where the last inequation holds for K ≥ 10 and leads to the contradiction.
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Lemma 5 immediately implies this corollary.
Corollary 1. Consider a “best-cube identification” problem with K ≥ 10 and space complexity
less than 1

2 log(K). Choose a cube i uniformly at random, and run the algorithm on instance Ii.
Then Pr [yt ̸= i] ≥ 1

12 , where the probability is over the choice of cube i, the randomness in rewards
and the algorithm.

Proof. By Lemma 5, we can find a set A such that

Pr [yt = i | Ii] <
3

4
,∀i ∈ A, |A| ≥ ⌈K

3
⌉.

Since we choose the cube uniformly at random, we would have that

Pr [yt ̸= i] ≥ 1

K

K∑
i=1

Pr [yt ̸= i | Ii] ≥
1

K

∑
i∈A

Pr [yt ̸= i | Ii] ≥
1

K
· ⌈K

3
⌉ · 1

4
≥ 1

12

Finally, we use Corollary 1 to finish our proof of space complexity.

Proof of Theorem 2. For T larger than a large enough constant, we would have that K =

czT
dz

dz+2 ≥ 10. Assume for contradiction that we have space complexity less than 1
2 log(K). Fix

round t, Let us interpret the algorithm as a “best-cube identification” algorithm, where the predic-
tion is the closest ui to the arm x that the algorithm chooses. Note that here choosing the closet ui

will only decrease the regret by our hard instance setting. We can apply Corollary 1 to have that
Pr [yt ̸= i] ≥ 1

12 . In words, the algorithm chooses a non-optimal cube with probability at least 1
12 ,

and choosing a non-optimal cube will incur ∆(yt) = µ∗ − µi(uyt
) = r regret. Therefore,

E[R(T )] ≥
T∑

t=1

E [∆ (yt)] =

T∑
t=1

Pr [yt ̸= i] · r ≥ T

12
· 1

T
1

dz+2

≥ 1

12
T

dz+1
dz+2 ,

which leads to contradiction.

5 EXPERIMENTS

x1 = (0.3, 0.1)
x2 = (0.9, 0.9)

x1 = (0.8, 0.7)
x2 = (0.7, 0.3)

x1 = (0.45, 0.55)
x2 = (0.1, 0.9)

Figure 2: the landscape of µ.

In this section, we evaluate the Log-Li algorithm. In the experiment, the time horizon T = 100, 000,
the arm space is [0, 1]2 and the expect reward function is µ(x) = 1−∥x− x1∥2−0.5 ∥x− x2∥2 for
different values of x1 and x2. The landscape of µ can be found in figure 2, where the optimal arm
is always at x⋆ = x1. We select A-BLiN(Feng et al., 2022) and Zooming(Kleinberg et al., 2008)
for comparison. Zooming algorithm achieves an optimal regret rate but with a relatively high time
complexity of O(T 2) and a space complexity of O(T ); A-BLiN delivers performance comparable

to the Zooming algorithm while utilizing space proportional to O
(
T

dz+1
dz+2 (log T )

− dz+1
dz+2

)
and op-

erating in O(T ) time. We will compare the regret rate and space complexity of three algorithms to
illustrate the sublinear trend of regret and space efficiency of our algorithm.
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x1 = (0.3, 0.1)
x2 = (0.9, 0.9)

x1 = (0.8, 0.7)
x2 = (0.7, 0.3)

x1 = (0.45, 0.55)
x2 = (0.1, 0.9)

Figure 3: The cumulative regret v.s. time horizon t.

Figure 4: Number of words Saved by Log-Li, A-BLiN and Zooming for Different µ.

Figure 3 illustrates the performance of the three algorithms under different expect reward µ. When
t is small, all of the three algorithms are in their initial exploration phases, leading to similar perfor-
mance. As t increases, the performance of Log-Li tends to be relatively worse compared to the other
two algorithms because it restarts the search from depth 1 each time to save space consumption.
This could also be a reason why Log-Li experiences increases in regret during the latter stages and
exhibits more instability during the exploration process. However, we should also notice that as the
search progresses further, Log-Li ultimately achieves a sublinear regret curve, with a growth trend
similar to that of A-BLiN. This indicates that the regret rate of Log-Li is asymptotically optimal
even with limited space, which is consistent with our analysis in section 3.

We also report the space usage of the three algorithms in figure 4. It is clear that Log-Li significantly
reduces the number of arms needed to save and thus consumes much less space. It is noteworthy that
this gap will further widen as the time horizon T increases because Log-Li needs to save information
about only 3 arms regardless of T , whereas the other two algorithms require saving statistics of an
increasing number of arms as T grows.

6 CONCLUSIONS

In this study, we explore the space complexity for the Lipschitz bandit problem, presenting both
upper and lower bounds. Our algorithm, Log-Li, is proven to achieve the optimal regret rate using
only O(log T ) bits, whereas prior algorithms require poly(T ) bits. This significant improvement in
space efficiency greatly reduces memory costs and suggests that there is almost no tradeoff between
regret and space efficiency for the Lipschitz bandit problem. Furthermore, the space lower bounds
for the Lipschitz bandit indicate that achieving the optimal regret bound necessitates consuming at
least Ω(log T ) bits. Hence, Log-Li is optimal in terms of both regret and space. We also conduct
experiments to visualize the performance of our algorithm Log-Li. Our work provides novel insights
into designing memory-limited bandit algorithms. It would be valuable to apply the principles of
Log-Li to other related bandit problems.
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