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A DATA DETAILS
A.1 EEG Acqusition

Mild Cognitive Impairment (MCI) Dataset. The MCI dataset was
acquired from a local hospital using a 64-channel Brain Products
EEG system. This system was configured as Figure A1 with the
following electrodes: Fp1, Fpz, Fp2, AF7, AF3, AFz, AF4, AF8, F7,
F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6,
FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP9, TP7, CP5, CP3, CP1,
CPz, CP2, CP4, CP6, TP8, TP10, P7, P5, P3, P1, Pz, P2, P4, P6, P8,
PO7, PO3, POz, PO4, PO8, O1, Oz, O2, and Iz. The electrodes at
AFz and FCz were designated as ground and reference, respectively,
and were excluded from the data analysis. A sampling rate of 5000
Hz was utilized during the EEG recording process. Data from the
ground and reference channels were excluded from the dataset.
A total of one hundred participants with cognitive decline were
initially recruited. Following the inspection of medication history
and other case-relevant factors (conducted by clinical physicians)
as well as strict age-matching with the control group (carried out
by engineering personnel), a final cohort comprising 46 subjects in
the MCI group and 43 subjects in the HC group was deemed eligible
for the study. Participants were instructed to sit comfortably and
maintain a state of eyes-closed relaxation for an 8-minute recording
session.

Alzheimer’s Disease (AD) Dataset. The AD dataset was procured
from clinical monitoring at an external center, utilizing a 16-channel
Symtop EEG amplifier. This system employed the International 10-
20 system for electrode distribution, a configuration derived from
the more comprehensive 10-10 system but with fewer channels,
specifically: Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3,
Pz, P4, P8, O1, and O2. The electrodes utilized for the AD data
collection are marked in a darker color in Figure A1. Data capture
for each participant lasted one minute, operating at a sampling
frequency of 1,024 Hz. The linked earlobes, A1 and A2, served as
the reference points. Under expert supervision, each participant
contributed two samples—one with eyes closed and the other with
eyes open. Each sample was ensured to have a minimum effective
duration of 8 seconds, devoid of any significant artifacts or poor
recording intervals.

Parkinson’s Disease (PD) Datasets. Two PD datasets were col-
lected from the University of New Mexico (NMU Center) and the
University of Iowa (IU Center), employing a 64-channel Brain Vision
EEG system. This system utilized the International 10-10 system
for electrode distribution, as depicted in Figure A1, encompassing
the following channels: Fp1, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5,
F3, F1, Fz, F2, F4, F6, F8, FT9, FT7, FC5, FC3, FC1, FCz, FC2, FC4,
FC6, FT8, FT10, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP9, TP7, CP5,
CP3, CP1, CPz, CP2, CP4, CP6, TP8, TP10, P7, P5, P3, P1, Pz, P2,
P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, and O2. During EEG
data acquisition, the sampling rate was set to 500 Hz. Concurrently,
the online reference was configured to channels CPz and Pz for
the NMU and IU centers, respectively. Data from these reference
channels were excluded from the publicly accessible repository. At
the NMU Center, resting-state EEG recordings were obtained from

54 subjects under both eyes-open and eyes-closed conditions. At the
IU Center, recordings were conducted with 28 subjects solely under
the eyes-open condition. The PD and Normal Control (NC) groups
are well-balanced according to the participant numbers across both
datasets. To critically evaluate the adaptability of the proposed
MACS framework under varying data collection conditions, it was
initially trained using data from closed-eye sessions at the NMU
center. Subsequently, the performance of the trained model was
assessed by applying it directly to open-eye data from the IU center.

Ethical Declaration. The acquisition of EEG data was conducted
in strict adherence to ethical guidelines, with approval from the
relevant ethical committee, which remains confidential to comply
with anonymity rules. Informed consent was duly obtained from
all participants prior to their involvement in the study.

Figure A1: Topographic mapping of electrode positions uti-
lized for EEG dataset collection. The electrodes F9, F10, FT9,
FT10, P9, P10, PO9, PO10, O9, and O10 were not included
in the 64-channel Brain Products EEG system used for the
Mild Cognitive Impairment (MCI) dataset collection. Addi-
tionally, the electrodes Fpz, F9, F10, P9, P10, PO9, PO10, O9,
O10, and Iz were excluded from the 64-channel Brain Vision
EEG system used for the collection of two Parkinson’s Dis-
ease (PD) datasets. The electrodes marked in darker color
indicate inclusion in the 16-channel Symtop EEG system for
the Alzheimer’s Disease (AD) data collection.

A.2 EEG Preprocessing
To ensure efficiency, the raw EEG datasets undergo preprocessing
through an automated standard pipeline, as described by Ávila et
al. (2023) [1]. This pipeline includes filtering, outlier detection, re-
referencing, and independent component analysis, designed to elim-
inate artifacts attributable to low-frequency drifts, high-frequency
noise, headmovements, cardiac activity, and eyemovements. Due to
the extensive manual processing and expert monitoring conducted
on the AD clinical dataset, we bypassed the standard preprocessing
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pipeline for this preprocessed data. A total of 63 effective electrodes
were employed for the two PD datasets, each utilizing a different
reference electrode. For the MCI dataset, 62 effective electrodes
were used, while the AD dataset employed 16 electrodes. To ensure
temporal resolution consistency, all EEG recordings were uniformly
downsampled to 250 Hz. For spatial alignment in the transferabil-
ity test, linear interpolation was employed before inputting the
data into the MACS framework to maintain consistency across the
datasets.

B IMPLEMENTATION DETAILS
B.1 MACS Encoder Architecture
Here, we provide additional details on the MACS Encoder’s two
fundamental structures - the convolution starter 𝑔𝑠𝑡𝑟 and the tem-
poral clipper 𝑔𝑐𝑙𝑝 - that are omitted from the main body of the text
for brevity.

Convolution Starter. The convolution starter 𝑔𝑠𝑡𝑟 constitutes a
spatial one-dimensional convolution layer and a temporal convolu-
tion layer. Each layer is equipped with 𝑑 kernels, with the spatial
layer utilizing kernels of size (𝑑, 1) and the temporal layer employ-
ing kernels of size (1, 25), where 𝑑 denotes the number of EEG
electrodes. We selected a kernel size of 25 sampling points for the
EEG’s temporal layer, corresponding to the preprocessed sampling
rate of 250 Hz. This kernel size enables the convolutional filter
to extract features from a receptive field representing 100 ms of
neural activities. The stride for both convolution operations is set
to 1, ensuring a comprehensive analysis of the input signals. This
architecture is designed to effectively capture generalized spatial
and temporal patterns within the EEG data.

Temporal Clipper. The output generated by the convolution starter
𝑔𝑠𝑡𝑟 is a feature embedding denoted by 𝑋𝑑,𝑇𝑠 . This embedding is
partitioned into 𝑖 non-overlapping feature clips { 𝑋𝑑,𝑡𝑖 } 𝐼

𝑖=1 by the
temporal clipper 𝑔𝑐𝑙𝑝 . Consequently, the chosen value of 𝐼 plays a
critical role in determining the temporal scale at which the dynamic
functional network is analyzed in the subsequent manifold-based
dynamic attention block 𝑔𝑑𝑎𝑡𝑡 . For instance, to observe brain syn-
chronization conditions at a one-second temporal scale, 𝐼 should
be configured as 𝑇𝑠/𝑓 𝑠 for the embedding 𝑋𝑑,𝑇𝑠 . Experiments have
been conducted to evaluate the effects of the selected hyperparam-
eter, as illustrated in Table 3 of the main text. These experiments
ensure that the temporal resolution is appropriately aligned with
the desired analytical scale.

B.2 Evaluation Metrics
The metrics used to assess the model’s performance include ac-
curacy, precision, recall, and the F-1 score. Building on the model
trained at the fragment level, an ensemble strategy is employed to
generate subject-level predictions. This approach involves averag-
ing the probabilities at the fragment level and then determining the
subject-level label using the optimal threshold, which is identified
by employing Youden’s J statistic [2]. It is crucial to note that this
strategy is consistently applied across all comparative methods to
ensure fairness in the evaluation process.

C EXTENDED EXPERIMENTAL RESULTS
C.1 Comparison Study
To guarantee fairness in the comparative analysis, all state-of-the-
art (SOTA) methods implemented identical fold divisions, fragment
partitioning, cross-validation approaches, and evaluation strategies.

Table A1 delineates the comprehensive results of this compara-
tive study, showcasing full evaluation metrics. While MACS may
not achieve the highest scores in every single metric, it demon-
strates superior overall performance in the recognition of both MCI
and PD, surpassing SOTA methods.

Qualitatively, the MACS framework was compared with three
SOTA methods by visualizing the learning progress. This was
achieved using t-SNE mappings to depict the embedding features
of trusted samples identified by the model across various epochs.
Based on their original ground truth labels, before they were re-
classified as part of the unreliable annotation sets through label
interchanging, the samples identified by the model as trusted were
categorized as either appropriately trusted or misplaced. The main
text details the model training process on the MCI dataset, show-
casing the efficiency of the MACS framework. Complementing this,
Figure A2 in the Appendix displays the results obtained from the
PD dataset.

For Sel-CL [3], Promix [4], and our proposed MACS frame-
work, training began at the initial epoch, and thus we visualize
the progress starting from epoch 1 with intervals of 5 epochs. For
the CTW method [5], which includes a warm-up phase before
training, t-SNE visualization commenced after the warm-up phases,
beginning from epoch 15 with the same 5-epoch intervals.

As the model trains, the desired outcome is that more samples
are correctly selected, which enhances representation learning and
facilitates the formation of class-specific clusters. The observations
on both the MCI dataset (Figure 5 in the main text) and the PD
dataset (Figure A2) have demonstrated the efficiency of the MACS
framework.

C.2 Hyperparameter Tuning Study
Memory Length. The multi-view contrastive loss is a pivotal com-

ponent in our MACS framework, as it significantly depends on the
adequacy of positive and negative pairs for effective contrastive
learning. However, the prevalent scarcity of clinical data poses a
substantial challenge. To circumvent the constraints imposed by
batch size and to capitalize on the more extensively available data
during the learning process, we adopt a storage strategy as outlined
by [6]. This strategy involves retaining the preceding𝑀 features
in memory, with𝑀 denoting the memory length. As illustrated in
Table A2, the influence of memory length on the model’s perfor-
mance was assessed for both MCI and PD datasets via an N-fold
cross-validation experiment. This hyperparameter tuning study
determined the optimal memory lengths to be 300 for the MCI
dataset and 100 for the PD dataset. The results reveal a bell-shaped
relationship between memory length and model performance, sug-
gesting an optimal point appears to correlate with the dataset size,
as evidenced by the MCI dataset containing approximately three
times more EEG fragments than the PD dataset.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 20

Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 20

Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 20

Epoch 15 Epoch 20 Epoch 25 Epoch 30 Epoch 35

Appropriate Trust-NC Appropriate Trust-PD Mispalced Trust-NC Mispalced Trust-PD

M
A
C
S

[ T
hi

s 
w

or
k 

]

(a) 

S
el
-C
L

Li
 e

t a
l.,

 C
V

P
R

 2
02

2

C
T
W

M
a 

et
 a

l.,
 IJ

C
A

I 2
02

3

(b) 

(c) 

P
ro
m
ix

X
ia

o 
et

 a
l.,

 IJ
C

A
I 2

02
3

(d)

Figure A2: Qualitative comparison of the MACS framework with state-of-the-art methods: t-SNE visualization of latent
distribution in Parkinson’s disease (PD) data throughout training progress.

k-Nearest Neighbors. The parameter 𝐾 determines the number
of nearest neighbors selected to infer potential labels, using the
k-Nearest Neighbors algorithm in the Stratifier 𝑓𝑆𝑡 module of the
MACS framework. A thorough exploration of 𝐾 , employing N-fold
cross-validation, is summarized in Table A2. In the experiments, the
minimum value of𝐾 and the interval are contingent upon the batch
size of MCI and PD datasets. Similar to memory length, 𝐾 exhibits
an ’inverted-U relationship’. Thus,𝐾 ’s optimal configuration should
be well-coordinated with the batch sizes.

Temporal Scale. As delineated in Appendix B.1, the variable 𝐼
dictates the temporal scale employed for analyzing characteris-
tics within the dynamic functional networks. To this end, a series
of experiments were conducted, exploring the effects of temporal
scales, extending from the millisecond level to the second level.
The findings presented in Table A2 indicate that adopting a second-
level temporal scale is necessary for achieving robust and improved
outcomes. Specifically, the temporal scale was configured to 2 sec-
onds for the MCI dataset and 1 second for the PD dataset. The
decision to configure the maximum temporal scale for PD data at

1 second was informed by the minimal length of PD data, which
stands at 2 seconds. This configuration was strategically chosen to
ensure that a minimum of one sample is capable of yielding two
distinct data segments, thus meeting the structural prerequisites of
our model. The emergence of more effective EEG markers at the
larger temporal scales, as presented in Table A2, may be attribut-
able to the ’slowing’ phenomenon in brain activity, which is more
prominently manifested at broader temporal scales in patients with
neurodegenerative diseases [10, 11]

C.3 Region of Interest Localized by MACS
We applied a class-discriminative activation algorithm inspired by
the Grad-CAM method [12] to localize the region of interest (ROI)
identified by the MACS framework while analyzing abnormalities
in MCI, AD, and PD based on EEG signals.

To enhance our understanding, we computed the average ac-
tivation across all samples within each dataset, resulting in the
generation of four ROI heatmaps corresponding to MCI, AD, PD
(MNU center), and PD (IU center). Concurrently, we aimed to assess
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Figure A3: The class-discriminative activation heatmaps generated by the MACS framework highlight localized Regions of
Interest (ROIs) for detecting abnormalities in EEG signals under MCI, AD, and PD conditions. These heatmaps were averaged
across all samples within each dataset, including the MCI, AD, and PD (from both the NMU and IU centers) datasets. The
scatter plots illustrate the consistency between each sample and the averaged results, statistically quantified by the Spearman
coefficient (𝐶∗/𝐶∗∗, indicating meaningful correlation) and the corresponding p-values (𝑝∗/𝑝∗∗, signifying significance).

the uniformity of the sample-specific responses relative to their re-
spective averaged ROI activation maps. To achieve this, we utilized
the Spearman rank correlation method, as detailed in the referenced
pipeline [13], calculating the correlation coefficients between the
averaged activation maps and each sample, along with an over-
all quantification metric termed 𝑅𝑂𝐼𝑓 . The higher 𝑅𝑂𝐼𝑓 indicates
greater consistency between all samples and their average result.

Here, a Spearman correlation coefficient (𝐶𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛) of 1 (or -1)
indicates a perfect positive (or negative) correlation, while a coef-
ficient of 0 signifies the absence of correlation. In each heatmap’s
right panel, the visualization includes blue triangle markers that
identify individual samples. The correlation significance within
these heatmaps is demarcated by two lines: a dotted green line at
𝐶𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = 0.3 differentiates between negligible and meaningful
correlations, and a solid green line at 𝐶𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = 0.5 highlights
correlations ranging from moderate to perfect. To establish the
statistical relevance of these correlations, p-values were calculated.
Correlations with p-values below 0.05 are marked by a solid red
line, indicating statistical significance, while a dotted red line at p
= 0.01 delineates a more rigorous threshold for significance.

Similar patterns are observed in conditions of MCI and AD,
notably with significant ROIs in the parietal-occipital and frontal-
temporal lobes. This may be indicative of a pathological continuum
fromMCI to AD, with MCI being an earlier stage in the progression

towards the more pronounced dementia typical of AD. This evi-
dence supports that the MACS framework effectively captures the
core patterns in AD, potentially providing EEG evidence of compen-
satory mechanisms in the early stage [14]. Analogous ROIs, such
as the right frontal-temporal lobes and left temporal-parietal lobes,
are observed in PD conditions, despite the data originating from
two different centers. This observation suggests that the model is
capable of capturing shared features across diverse datasets, thereby
enhancing its transferability.

D DATA AVAILABILITY
The PD datasets are publicly accessible and can be downloaded from
http://predict.cs.unm.edu/. Access to the MCI and AD datasets will
be granted upon request to the corresponding author and subject to
the approval of the collaborating hospitals following the publication
of this work.

E CODE AVAILABILITY
To facilitate the reproduction of our experiment, we have made
the core code available anonymously at https://anonymous.4open.
science/r/EEG-Disease-MACS-0B4A. Upon official publication, the
complete project will be released publicly through our research
group’s GitHub repository, ensuring full access for the community.

http://predict.cs.unm.edu/
https://anonymous.4open.science/r/EEG-Disease-MACS-0B4A
https://anonymous.4open.science/r/EEG-Disease-MACS-0B4A
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Table A1: Comparative study of state-of-the-art methods for learning with well-annotated and unreliable annotated data.

[MCI] 4-Fold [PD] 3-fold
Scenarios Methods Ratio Accuracy Precision Recall F1 Accuracy Precision Recall F1 Overall Accuracy

[7] [Ju et al., TNNLS, 2022] Tensor-CSPNet / 80.78(7.93) 81.57(10.34) 74.57(14.03) 77.70(11.63) 75.92(6.41) 81.94(6.36) 66.67(11.11) 73.20(8.16) 78.35(3.44)
[8] [Pan et al., NeurIPS, 2022] MAtt / 81.97(3.96) 85.59(11.00) 75.80(13.60) 79.56(8.29) 79.63(11.56) 73.94(12.11) 96.30(6.41) 83.07(7.56) 80.80(1.65)
[9] [Wang et al., NeurIPS, 2023] COMET / 73.25(26.02) 71.24(21.39) 69.70(26.69) 70.09(24.82) 75.47(9.75) 77.24(0.71) 75.54(11.06) 74.92(14.17) 74.36(1.57)

Clean
Annotation

Encoder in MACS Final Epoch / 87.65(4.31) 88.89(10.39) 84.48(7.43) 86.47(7.73) 85.18(8.48) 90.00(10.00) 81.48(23.13) 83.46(11.67) 86.42(1.75)
0.3 75.40(10.28) 74.37(15.59) 83.80(17.57) 76.75(9.80) 75.93(3.21) 70.71(3.50) 88.89(0.00) 78.73(2.20) 75.67(0.37)[5][Ma et al., IJCAI, 2023] CTW 0.5 65.17(9.34) 68.01(19.02) 75.82(17.90) 68.33(5.39) 29.63(6.41) 23.59(20.94) 37.01(33.95) 28.79(25.85) 47.40(25.13)
0.3 55.14(18.94) 68.20(27.52) 60.13(22.21) 56.17(11.49) 79.63(8.49) 85.61(12.92) 74.08(23.13) 77.34(10.97) 67.39(17.32)[4][Xiao et al., IJCAI, 2023] Promix 0.5 42.94(24.19) 50.10(35.05) 33.07(25.86) 35.19(23.16) 42.59(25.66) 40.56(30.56) 37.04(27.96) 38.50(29.25) 42.77(0.25)
0.3 79.75(4.69) 74.80(11.99) 90.28(11.45) 80.83(7.21) 81.48(6.41) 89.74(17.77) 77.78(22.22) 80.25(8.15) 80.62(1.22)[5] [Ma et al., IJCAI, 2023]

[4] [Xiao et al., IJCAI, 2023] CTW Encoder + Promix 0.5 39.13(12.36) 48.31(35.83) 44.67(15.01) 42.23(15.87) 57.41(21.03) 66.40(19.93) 50.37(8.98) 54.17(18.17) 48.27(12.93)
0.3 63.29(22.32) 73.49(11.27) 45.47(22.52) 54.82(19.42) 66.67(5.56) 68.81(7.84) 62.97(6.41) 65.42(4.49) 64.98(2.39)[3] [Li et al., CVPR, 2022] Sel-CL 0.5 41.65(20.95) 47.56(15.55) 52.31(9.01) 48.42(10.22) 66.67(9.62) 87.50(21.65) 44.45(19.25) 55.54(17.76) 54.16(17.69)
0.3 74.16(7.73) 73.56(15.84) 76.15(15.33) 73.41(11.98) 57.41(21.03) 51.59(45.07) 37.04(32.08) 43.06(37.35) 65.79(11.84)[3] [Li et al., CVPR, 2022] Sel-CL+ 0.5 50.74(20.52) 53.81(9.67) 53.78(6.80) 53.53(7.55) 64.82(3.21) 77.78(19.24) 51.85(25.66) 56.57(17.50) 57.78(9.96)
0.3 85.38(4.41) 84.08(11.74) 88.89(10.39) 85.56(4.90) 83.33(5.56) 93.33(11.55) 74.08(16.97) 81.05(8.49) 84.36(1.45)[4][Xiao et al., IJCAI, 2023] Encoder for Promix 0.5 59.39(16.10) 57.49(32.70) 46.28(29.29) 50.10(28.77) 33.33(5.56) 20.63(18.03) 22.22(22.22) 21.03(19.36) 46.36(18.43)
0.3 72.08(12.76) 85.52(17.61) 65.50(24.78) 70.05(9.37) 83.33(5.56) 89.63(10.02) 77.78(19.24) 81.51(9.04) 77.71(7.95)[3] [Li et al., CVPR, 2022] Encoder for Sel-CL 0.5 61.56(27.09) 63.28(26.34) 75.35(20.23) 66.15(21.75) 38.89(24.22) 32.22(42.21) 18.52(23.13) 23.49(29.89) 50.23(16.03)
0.3 85.43(4.16) 87.94(11.70) 83.44(15.74) 84.18(7.01) 83.33(5.56) 93.33(11.55) 74.08(16.97) 81.05(8.49) 84.38(1.48)[3] [Li et al., CVPR, 2022] Encoder for Sel-CL+ 0.5 68.38(21.49) 81.18(26.52) 60.07(27.99) 63.89(17.70) 40.74(17.86) 40.36(19.19) 37.04(16.98) 38.47(17.93) 54.56(19.54)
0.3 88.74(4.61) 86.15(12.39) 91.16(5.92) 88.18(7.23) 87.04(3.21) 93.33(11.55) 81.48(6.41) 86.40(1.90) 87.89(1.20)

Unreliable
Annotation

MACS Final Epoch 0.5 68.68(10.34) 83.47(13.61) 52.39(24.08) 61.07(13.00) 57.41(21.03) 56.67(24.34) 51.85(27.96) 53.73(25.50) 63.05(7.97)

Table A2: The investigation of hyper-parameters in MACS includes: ’Memory Length’, which represents the number of previous mini-batches used for storing
pairs; ’Temporal Scale’, which denotes the scale of time considered for constructing dynamic functional networks in manifold mapping; and ’K Value’, which
indicates the number of nearest neighbors considered in the k-Nearest Neighbors approach.

[MCI] 4-Fold Cross-Validation [PD] 3-Fold Cross-Validation
Parameters Configuration Accuracy Precision Recall F1 Configuration Accuracy Precision Recall F1

0 83.10(6.93) 78.41(17.67) 92.46(8.95) 83.64(9.09) 0 85.18(3.21) 85.46(4.78) 85.19(6.41) 85.15(3.37)
200 87.60(4.46) 87.29(12.65) 86.30(5.96) 86.39(7.58) 50 83.33(0.00) 81.76(5.09) 83.01(5.58) 83.30(0.93)
300 88.74(4.61) 86.15(12.39) 91.16(5.92) 88.18(7.23) 100 87.04(3.21) 93.33(11.55) 81.48(6.41) 86.40(1.90)
400 86.31(5.55) 85.36(12.25) 85.60(13.86) 84.71(9.69) 200 85.18(3.21) 89.17(10.10) 81.48(6.41) 84.69(2.61)

Memory Length

500 85.33(4.52) 84.67(13.37) 84.21(4.80) 84.07(7.77) 300 83.33(0.00) 89.17(10.10) 77.78(11.11) 82.19(2.11)
2s 88.74(4.61) 86.15(12.39) 91.16(5.92) 88.18(7.23) 1s 87.04(3.21) 93.33(11.55) 81.48(6.41) 86.40(1.90)
1s 87.65(4.31) 87.12(10.98) 87.26(10.90) 86.75(7.87) 500ms 81.48(3.20) 89.17(10.10) 74.08(16.97) 79.33(6.90)Temporal Scale

500ms 74.06(6.09) 67.24(13.56) 94.36(7.86) 77.60(8.15) 250ms 83.33(0.00) 89.17(10.10) 77.78(11.11) 82.19(2.11)
15 86.46(3.87) 93.03(8.13) 76.92(18.90) 82.69(11.65) 8 83.33(0.00) 85.00(4.33) 81.48(6.41) 82.97(1.07)
20 87.60(4.46) 82.68(13.28) 93.94(7.01) 87.39(7.30) 12 83.33(0.00) 89.17(10.10) 77.78(11.11) 82.19(2.11)
25 88.74(4.61) 86.15(12.39) 91.16(5.92) 88.18(7.23) 16 87.04(3.21) 93.33(11.55) 81.48(6.41) 86.40(1.90)K Value
30 87.60(4.46) 82.96(12.50) 93.94(7.01) 87.61(6.87) 20 85.18(3.21) 93.33(11.55) 77.78(11.11) 83.90(3.76)
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