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The manipulation of electronic polymers’ solid-state properties through processing is crucial
in electronics and energy research. Yet, efficiently processing electronic polymer solutions
into thin films with specific properties remains a formidable challenge. We introduce Polybot,
an artificial intelligence (Al) driven automated material laboratory designed to
autonomously explore processing pathways for achieving high-conductivity, low-defect
electronic polymers films. Leveraging importance-guided Bayesian optimization, Polybot
efficiently navigates a complex 7-dimensional processing space. In particular, the automated
workflow and algorithms effectively explore the search space, mitigate biases, employ
statistical methods to ensure data repeatability, and concurrently optimize multiple

objectives with precision. The experimental campaign yields scale-up fabrication recipes,
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producing transparent conductive thin films with averaged conductivity exceeding 4500
S/cm. Feature importance analysis and morphological characterizations reveal key design
factors. This work signifies a significant step towards transforming the manufacturing of

electronic polymers, highlighting the potential of Al-driven automation in material science.

Introduction

The control of solid-state properties through molecular assembly processes of
electronically functional materials has been a decades-long pursuit in the electronics and energy
industries. Electronic polymers, known for their unique electronic properties, mechanical softness,
and low-cost production, have been studied extensively and utilized in printable electronics,
wearable and bioelectronics, and energy devices!®. Yet, the high-throughput processing of
electronic polymer solutions into thin films with desirable properties remains a major challenge in
device manufacturing. The processing of these electronic nanometer-thick films typically involves
using various formulations under rapid flows and stressors (e.g., heating), which are highly non-
equilibrium conditions that can lead to unpredictable morphological variabilities. Therefore,
achieving precise control over the morphology of electronic polymer thin films is crucial for
realizing the desired functional properties and ensuring uniformity. However, the large number of
parameters and their complex relationships in the processing of electronic polymers presents a
major challenge in quickly achieving a desired performance goal, resulting in years of dedicated
effort for designing and optimizing new electronic polymer materials that exhibit enhanced

functionalities.

The solution manufacturing of electronic polymers into functional layers involves three

main steps: solution formulation, thin film coating on a substrate, and post-processing. Despite



decades of experimentation’4, our understanding and control of thin film processing mechanisms
remains limited due to our reliance on heuristics and human scientists in establishing
comprehensive, unbiased datasets” °. Efficiently collecting these datasets is crucial for uncovering
the intricate, high-dimensional relationships between formulation, processing, and material
properties. Recent advancements in automated robotic technologies have significantly increased
productivity in medical and materials science research fields by offloading repetitive work from
human scientists'®2°. Coupling this with the advent of machine learning (ML) for data analysis
and artificial intelligence (Al) as a cognitive assistant for navigating complex parameter spaces
has inspired the development of modern autonomous laboratories, also known as self-driving
laboratories?. These laboratories complement combinatorial experiments and have achieved
significant progress in expediting the optimization and discovery of various materials, yet creating
one for solution manufacturing of electronic polymer films faces challenges?°. The inherent
complexities in polymer processing-property relationships often lead to reduced experimental
throughput and small datasets with high experimental uncertainties, which limits the effective
utilization of AI/ML for exploring the multi-dimensional space associated with the processing,
structure, and properties of polymers. Hence, existing Al-guided thin film processing studies are
predominantly restricted to a small set of experimental parameters, e.g., pre-syn®® 3! and a single
material property?® 31-3 while in practice, real-world applications necessitate the simultaneous
consideration of many experimental parameters and multiple material properties. To address these
challenges, it is essential to put emphasis on the quality and repeatability of experimental data and

leverage learning algorithms that are robust to small datasets.

In this work, we introduce an automated solution processing platform implemented within

Polybot® — a state-of-the-art self-driving laboratory. This platform enables efficient exploration of



a multi-dimensional parameter space encompassing the formulation, coating, and post-processing
of electronic polymer thin films. Using importance-guided Bayesian optimization, a tailored
learning algorithm that handles multiple objectives, Polybot strategically explored undersampled
regions of the search space and exploited available data to produce thin films with high
conductivity and low defects 28 31-%_ In addition, we implemented statistical data analysis methods
to ensure experimental repeatability, a foundation to quality datasets and accurate Al/ML
predictions. Our results demonstrated a successful autonomous experimental campaign and help
design recipes for scale-up fabrication of transparent conductive thin films that achieved an
averaged conductivity of over 4500 S/cm. Furthermore, the data revealed important factors
influencing the defects and conductivity of electronic polymers, which are supported by in-depth
characterizations of the solution-state structures and solid-state morphologies. Polybot represents
an ongoing effort to enhance our understanding of electronic polymer thin films, and its continuous

development aims to advance the field by pushing the boundaries of materials discovery.

Results

Automated solution processing of electronic films

In this study, we utilized a robot-operated experimental workflow for exploring the
conditions of solution-processed electronic polymer thin films towards desired film properties (Fig.
1a). The automated platform is equipped with liquid/substrate/vial handling stations, a solution
mixing station, blade-coating station, blade cleaning station, annealing station, as well as a range
of online characterization and analytics systems, encompassing imagining and thickness
characterization modules, along with an automated probe station connected to an electrical

characterization system (Fig. 1b). The automated platform can complete an entire experimental



loop—formulation, processing, post-processing, and conductivity = measurement—in
approximately 15 minutes per sample, enabling a throughput of around 100 samples per day with
great repeatability. The Polybot control software orchestrates the experimental workflows, data

flow, and ML-based automated data/performance analysis (Supplementary Movie 1).
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Figure 1. A closed-loop electronic thin film discovery platform in self-driving laboratory
Polybot. a) Schematic illustrating the consecutive steps in the autonomous experimental workflow.
b) Image of the modular automated platform which includes 1) solution storage rack, 2) solution
heating and mixing module, 3) capping and uncapping system, 4) pipette rack, 5) substrate rack,
6) substrate gripper, 7) imaging station, 8) blade-coating station, 9) blade cleaning station, 10)
annealing station, 11) thickness characterization station, 12) electrical characterization station. c)
Schematic of the iterative multi-objective optimization strategy based on advanced learning
algorithms enhanced by probabilistic sampling, strategically exploring undersampled areas of the
search space and exploited available data to produce thin films with superior processability and
conductivity. d) Complex assembly pathways of electronic polymers from solution to thin films.



e) The total searches space to optimize the conductivity of the PEDOT:PSS. For this seven-variable
problem, the full design space has 933,120 distinct data points.



Poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) is
chosen as an exemplary material in this study (see Methods) to showcase the autonomous
experimentation methodology and highlight our innovation. Despite PEDOT:PSS being
acknowledged as a highly conductive polymer, its conductivity and coating defects (e.g., dewetted
regions, holes) are notably sensitive to formulation and processing conditions. Our strategies for
achieving highly conductive PEDOT:PSS films are grouped into three main categories: (1)
incorporating additives to improve connectivity between PEDOT-rich domains, facilitating high
charge carrier mobility, (2) employing directional film coating methods to introduce
morphological alignment, and (3) implementing solvent post-process treatments to enhance

morphological ordering and/or remove PSS, which is insulating.

Diverging from traditional research methodologies that vary one parameter at a time while
keeping others fixed, our experiments simultaneously vary all parameters with the guidance of
probabilistic AI/ML and statistical analysis. Our framework optimizes properties of PEDOT:PSS
thin films using multi-objective Bayesian optimization enhanced by probabilistic sampling (Fig.
1c). The properties of PEDOT:PSS thin films are intricately influenced by numerous
thermodynamic and kinetic states during formulation and deposition processes, factors such as
polymer chain conformation, aggregate types in solution, structure regulation/relaxation during
coating, and subsequent structural development during post-treatments. Given the interconnected
nature of these states, individual control becomes challenging. In our autonomous experiments,
seven experimental parameters were concurrently adjusted to modulate the polymer solution-state
structures, control assembly during coating, and manage structural regulation through post-
treatment (Fig. 1d, Methods). These parameters encompassed additive types, additive ratios, blade-

coating speeds, blade-coating temperatures, post-processing solvents, prost-processing coating



speeds, and post-processing coating temperatures (Fig. le, Supplementary Tables 1&2,
Supplementary Fig. 1). This holistic approach allows us to discern the relative importance and
specific influence of these factors in the quest for optimal manufacturing conditions of thin films

with desired electronic and coating properties.

The primary objective of our experiments is to maximize the electrical conductivity of
PEDOT:PSS thin films while achieving low coating defects. To accomplish this, Polybot leverages
automated stations for formulating polymer solutions, coating the thin films, assessing their
processibility, and evaluating their electrical conductivity. The quantification of film processibility
is outlined in Fig. 2a and Supplementary section 1.1. The procedure estimates the uniformity of
thin films using color (hue) information extracted from a set of top-view images captured by a
camera (Supplementary Fig. 2). Close-up images of the substrate and thin film are extracted using
image processing and computer vision techniques including thresholding, Harris corner detection,
and perspective transformation, which corrects for minor optical aberrations and minimizes any
subtle translational and rotational variants in the placement of the samples by the robot. The
procedure for thin film electrical conductivity measurements is outlined in Fig. 2b and
Supplementary section 1.2. Eight separate current-voltage (IV) curves are measured across
different regions of the sample, using a 4-point collinear probe station connected to a Keithley
4200. The conductivity values are then calculated from resistivity extracted from the IV curves
and normalized by film thicknesses that are measured in the specific local regions where the 1V

curves are obtained (Supplementary Fig. 3&4).

One of the major challenges in automated processing of PEDOT:PSS thin films is the high

inherent uncertainty associated with their measured conductivity values, especially for films that



are non-uniform due to poor film processability or dewetting. To ensure the repeatability of our
experiments, Polybot performs at least two trials and up to four trials for every sample. A statistical
analysis approach is implemented to eliminate invalid values and to determine the appropriate
number of trials required (Fig. 2b). Specifically, the learning algorithm in Polybot only utilizes the
two most statistically significant trials of each sample, which is determined through a normality
check using the Shapiro-Wilk test®” with a significance level of 0.03 and a two-sample t-test with

a significance level of 0.005 (Supplementary section 1.3).
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Figure 2. Automated characterization of film defects and electrical conductivity. a, Top-view
of the coating and imaging station. Polybot utilizes computer vision to locate the substrate and
characterize the thin film sample. A procedure based on color changes is used for the quantification
of film coverage percentage. b, Side-view of the 4-point collinear probe station. Polybot measures




current-voltage curves across different regions of the sample and obtain repeatable conductivity
values by leveraging a statistical analysis approach.

From autonomous robotic experiments to scale-up fabrication

Guided by AI/ML, our experiments concurrently adjust all parameters, elucidating the
relative importance of experimental factors for achieving optimal manufacturing conditions of
electronic thin films. In this investigation, the boundaries and increments of the seven experimental
parameters (Supplementary Table 1) are set based on established conventions reported in relevant
PEDOT:PSS thin film literatures, as well as the limitation, sensitivity, and tunability of our
hardware modules®®. Despite the discretization of continuous variables, the exploration
encompasses a total of 933,120 possible experimental conditions involving the formulation,
coating, and post-processing of PEDOT:PSS thin films. Navigating this extensive search space
without prior data is efficiently managed by Polybot, leveraging materials property prediction
models and an importance-guided Bayesian Optimization (BO) approach to utilize existing data

and explore undersampled processing conditions (Supplementary section 2).

At the start of our autonomous experiment, 30 conditions were uniformly sampled from
the search space using the Latin Hypercube Sampling (LHS) method (Supplementary section 2.1).
These data points coarsely cover a wide region of the search space and serve as initial training data
for the prediction models: a Gaussian processes regression (GPR) model for electrical conductivity
(Supplementary section 2.2) and a Gaussian kernel density estimation (KDE) model for film
defects (Supplementary section 2.3). The GPR model predicts electrical conductivity of thin films
based on all experimental parameters whereas the KDE model estimates a percentage of the thin
film coverage area on the substrate prior to post-processing steps. This estimation is based on the

top three important experimental parameters identified by Shapley feature importance analysis of



the training data: DMSO concentration, blade-coating temperature, and blade-coating velocity
(Supplementary section 3.2, Supplementary Fig. 8, Supplementary Tables 4&5). Notably, the film
coverage was reliably predicted using the train data alone, likely due to their relatively uniform
distribution within the training data (Fig. 3a). From the GPR predicted values while considering
data scarcities, Polybot evaluates the expected improvements (EI) in electrical conductivity for all
uncharted experimental processing conditions (Supplementary section 2.4). The EIl acquisition
function balances exploration and exploitation based on a tunable trade-off hyperparameter.
Experimental conditions at the top of this El-ranked list are the most valuable candidates for
information gathering or improvements in performance. In a typical BO, the top candidate in this
list is always chosen for the next experiment. However, this can be suboptimal due to local minima
traps arise from El overly focusing on the estimated improvements.®® To alleviate this while
considering film coverage as a secondary objective, Polybot employs an importance-guided BO
where the list of EI ranked conditions are considered from top to bottom until one condition is
selected, and the probability of selecting a particular condition is proportional to the KDE predicted
film coverage and clipped to the interval [0.1, 0.9] (Fig. 1c and 3b, Supplementary section 2.5). In
this way, Polybot prioritizes improvements in a challenging objective, i.e., film conductivity, while
guided by a more achievable objective, i.e., film coverage, which is akin to the concept of
importance in probabilistic sampling. Following this iterative learning strategy, Polybot performs
the next experiment under the selected processing condition and subsequently refines the

prediction models to achieve higher thin film performance using the new data (Fig. 3c).

The progression of our autonomous experiment can be visualized through 2D projections
of the 7-dimensional experimental search space, created using the Uniform Manifold

Approximation and Projection (UMAP) method (Fig. 3d and e, Supplementary section 2.6).%° In



the UMAP plot, every experimental condition is depicted as a point, and the distance between two
points is proportional to the Euclidean distance between the processing parameter values. The
initial training data points (circles) are evenly distributed among all possible conditions (in gray).
Polybot, with the use of importance-guided BO, quickly identified regions that maximize both
electrical conductivity and film coverage and iteratively improved the sample performance within
a small number of samples (triangles). The termination of our experiment is determined based on
our initial budget and the achieved thin film performance, i.e., when the experiment exceeds two
weeks or when the measured conductivity do not show further improvements after reaching a

reasonable expected performance (Supplementary Fig. 5).

From the experimental results, three top-performing experimental processing conditions
(Supplementary Table 3) are identified using a Pareto Front analysis (Supplementary section 2.7
and Supplementary Fig. 6). One of these formulation and coating conditions is adapted for large-
scale fabrication, as well as subsequent in-depth structural characterizations to understand the
changes of PEDOT:PSS in solutions and thin films. First, we demonstrated a successful adaptation
of the identified processing conditions on an industrially relevant scale-up blade and roll-to-roll
coating process (Fig. 3g, Supplementary Movie 2, 3). Specifically, we have opted for the use of
only EG as the additive, at a concentration of 5 vol%, in combination with a relatively low coating
speed of 1 mm/s and a relatively high coating temperature of 90°C. We performed scale-up blade
coating of the formulation on a glass substrate that has similar surface chemistry as the SiOx/Si
wafer substrates used in the experiments (Fig. 3f). To further remove PSS content and improve
PEDOT packing structure, the post-treatment step involving solvent rinsing was repeated twice
more.*® As a result, the blade-coated 100 cm? film exhibited 100% coverage and achieved an

averaged conductivity exceeding 4500 S/cm, placing it among the highest performing



PEDOT:PSS films.3 4 Additionally, we successfully printed a highly conductive film onto a
laminated paper roll using a roll-to-roll printer, applying the same conditions (Fig. 3g). To
investigate the influence of DMSO on processability in the scale-up manufacturing station, we
blade-coated a film from a solution with 2 vol% DMSO, which revealed the formation of numerous
defects during the coating process (Supplementary Fig. 10, Supplementary Movie 4). This
observation validates the unfavorable impact of DMSO on processability, consistent with the
insights gained through the in-depth analysis (Fig. 4). These findings highlight the successful
translation of optimized process parameters from autonomous experiments to scale-up fabrication,

paving the way for the production of highly conductive PEDOT:PSS films on large scale.
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Figure 3. Iterative improvements in the coverage and conductivity achieved through an Al-
guided closed-loop optimization and their scaled-up fabrication. a-c, Rug plots and area-
normalized distributions of conductivity and coverage values before and after the iterative
importance-guided Bayesian optimization (BO) process. Training data refer to the initial dataset
obtained using Latin Hypercube Sampling whereas all data refer to test data proposed by the
importance-guided BO algorithm in addition to the initial training data. At each iteration, the next
experimental candidates are ranked by their expected improvement (EI) in conductivity and



sampled by a probability proportional to their predicted coverage percentage. For illustration, the
top 100 candidates in each experimental iteration are denoted by square markers with size and
opacity proportional to their normalized EI in conductivity (by the highest value per iteration) and
predicted coverage percentage, respectively. The distribution curves, colored by the averaged
property values based on the color maps in d and e, indicate that importance-guided BO
significantly improved both conductivity and coverage during the autonomous experimentation.
d-e, Evolution of the coverage and conductivity values throughout the experiment, illustrated on
2D maps obtained using UMAP dimensional reduction of the experimental search space. Grey
points represent all possible experimental conditions (933,120 vectors) being considered in this
study. Training data are denoted by circle markers and labeled with the letter 't' followed by the
experiment number (t1-t30). Test data proposed by the importance-guided BO algorithm are
denoted by triangular markers along with the iteration number (1-45). All data points are colored
by their experimentally measured conductivity and coverage values. f, Blade-coated PEDOT:PSS
films on glass with the selected condition from closed-loop optimization. Conductivity values were
measured at six different locations across this printed film. g, Roll-to-roll manufacturing of
conductive PEDOT:PSS films on a laminated paper roll.

Elucidating design principles from in-depth data analysis and structural characterizations

The data collected from our experiments can be visualized and analyzed to elucidate the
principles and optimal conditions for manufacturing low defects, highly conductive PEDOT:PSS
thin films. Parallel coordinates plot (Fig. 4a) and normalized loading plots (Fig. 4b) of the data
highlight the complex relationships and correlations across the experimental parameters and thin
film performance. In the parallel coordinates plot, each polyline, colored by film conductivity,
represents individual experimental conditions and intersects the axes at their corresponding
parameter values. In the normalized loading plots (a graphical representation of the correlation
matrices shown in Supplementary Fig. 7), the obtuse angle between two arrows represents the
inverse cosine of the Pearson correlation coefficient between the respective parameters, i.e., zero
correlation when the arrows are perpendicular, positive correlation when the angle is less than 90°,
and negative correlation when the angle is greater than 90°. These correlations provide a clear
view of the interplay between the thin film properties and experimental parameters. For example,

the DMSO concentration strongly and negatively contributes to film coverage, and the averaged



conductivity, as shown in the 3D volume density map obtained from the KDE coverage prediction

model (Fig. 4c).

SHAP (Shapley Additive exPlanations) feature importance values (Supplementary section
3) are calculated from a ML model that is trained on all data, selected from a suite of different ML
models based on their prediction accuracy (Supplementary Tables 6&7, Supplementary Fig. 9). It
is noteworthy that in an autonomous experiment driven by BO, the later data points tend to skew
towards higher values of the target property (Fig. 3c). Therefore, it is important to implement an
efficient binning strategy to partition the data points into bins containing equal quantities. During
the training and test process of the ML models, these bins are used for stratified splitting, thereby
preserving a normal distribution of the data and improving the model’s ability to generalize.
Shapley values are used to explain the best performing ML model and provide insights on the
parameter importance (Supplementary section 3.3). The summary plots of the SHAP analysis (Fig.
4d) ranked the experimental parameters, from top to bottom along the vertical axis, based on their
impact on film coverage and conductivity. Within each parameter, all contributing data points are
ordered along the horizontal axis and colored by their values. The results provide insights on the
key features contributing to low film defects and high film conductivity. For instance, DMSO
concentration is identified as the most influential parameter in achieving highly conductive thin
films with low defects. Low DMSO concentration (dark purple) leads to high coverage and
conductivity (far right on the horizontal axis) whereas high DMSO concentration (yellow) leads
to low coverage and conductivity (far left on the horizontal axis). Overall, the most influential
factor for achieving conductive thin films with low defects is the changes in the formulation of the
PEDOT:PSS solution, followed by adjustments in processing and post-processing conditions

proposed in this research. (Fig. 4e).
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Figure 4. Correlation and interpretability of experimental parameters. a, Parallel coordinates
plot showing all the experimental conditions and objectives. The lines are color-coded based on
increasing conductivity values (light green indicates the lowest and dark purple the highest
conductivity values). b, Normalized loading plots showing the correlations between the
experimental parameters and the thin film properties. ¢, Density mapping of the most important
parameters that affect the observed film coverage. d, The feature importance ranking obtained
from random forest regression algorithm and SHAP, showing the processing conditions in
descending order. Processing parameters that affect the coverage. (top) The model output in this
case is the conductivity of the thin film (bottom). Large positive yellow values increase the
conductivity. As a result, the larger the EG concentration, the coating temperature, and the coating
velocity the higher the expected conductivity of the film. e, Bar plots showing the relative influence
of condition changes across the three main experimental steps on coverage and conductivity.



It is worth emphasizing that the processability plays a vital role in practical manufacturing,
yet it is often challenging to capture accurately in literature. The utilization of autonomous
experiments offers a unique opportunity to generate unbiased, systematic and cost-effective data,
which, when combined with ML method, helps unveil intricate formulation-processing-property
relationships in high-dimensional spaces. Having a quantitative and specific understanding of each
factor’s influence on the targeted properties enables the design of effective strategies for
manufacturing highly conductive PEDOT:PSS films. These findings provide the way for

optimizing and tailoring film properties with precision.

To understand the intricate relationship between manufacturing conditions and the
enhancement of conductivity, we embarked on an in-depth exploration of both solution-state
structures and solid-state morphologies across three representative samples, specifically, one
prepared from pristine PEDOT:PSS solution, as well as two others produced under markedly
distinct conditions. Cryogenic electron microscopy (cryo-EM) was used to directly visualize the
PEDOT:PSS structures in their solution-state (Supplementary Fig. 11), unveiling the emergence
of substantial aggregates composed of well-dispersed PEDOT:PSS colloidal particles upon adding
small amounts of DMSO and/or EG additives (Fig. 5a). This phenomenon enables greater bridging
of the conductive PEDOT phase, ultimately contributing to higher conductivity. From the wide-
angle X-ray scattering (GIWAXS) characterization of these three representative samples, the two
treated PEDOT:PSS films exhibited a relatively high degree of crystallinity in the PEDOT phase
compared to the film spin-coated from pristine solution (Supplementary Fig. 12). Blade-coated
films also showed slightly morphological alignments (Fig. 5b, Supplementary Fig. 13), with the
champion film, blade-coated from 5 vol% EG additive, exhibiting an interpenetrated fibril network

and slightly enhanced vertical phase separation as indicated by a slight increase in the PSS



composition on the surface (Supplementary Fig. 14). Together, these morphological features create

efficient pathways for charge carriers in PEDOT phase along the coating direction, further

enhancing conductivity.

PEDOT:PSS PEDOT:PSS + PEDOT:PSS +
pristine solution 2 vol% DMSO+1 vol% EG 5vol% EG

Figure 5. The solution-state structures and solid-state morphologies of PEDOT:PSS. Cryo-
EM (a) images of three distinct PEDOT:PSS formulations, and AFM height (b, top) and phase (b,
bottom) images of resulting film samples. Left: Spin-coated film from pristine PEDOT:PSS
solution (control). Middle: Blade-coated PEDOT:PSS film from a solution with 2 vol% DMSO



and 1 vol% EG, coated at 3 mm/s, 60°C, and post-processed with methanol/ethanol (1:1), coated
at 3 mm/s, 70°C. Right: Blade-coated PEDOT:PSS film from a solution with 5 vol% EG, coated
at 1 mm/s, 90°C, and post-processed with methanol/ethanol (4:6), coated at 1 mm/s, 60°C. White
arrows indicate blade coating direction. Scale bars in AFM images: 100 nm.

Discussion

In summary, we demonstrated the synergy between automated laboratory, ML/statistical models,
and Al-guided exploration algorithms for the solution manufacturing of highly conductive, low
defects polymer thin films. Importance-guided Bayesian optimization was utilized to enable
efficient exploration of an intricate 7-dimensional processing space and strategically optimize two
key material properties. Our successful experimental campaign led to recipes for scale-up
manufacturing of transparent conductive thin films with an average conductivity comparable to
the state-of-the-art levels.> 3% 442 The conductivity achieved in this work may not be
groundbreaking, but the efficiency of our Al-guided robotic processing methodology in identifying
the optimal processing pathway is substantial. We envision this Al-assisted automation
methodology to not only contribute to the development of smart manufacturing platforms in the
field of electronic polymers but also to address the pressing need to enhance system productivity

and accelerate materials discovery.



Methods
Materials

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PH1000 PEDOT:PSS) was purchased
from Heraeus. All solvents, such as dimethyl sulfoxide (DMSO), ethylene glycol (EG), methanol

(MeOH), and ethanol (EtOH), were purchased from Sigma-Aldrich and were used as received.
Stock substrates in the robotic system

4” 300nm SiO2-covered Si wafers (University Wafer ID 1583) were purchased from University
Wafer, Inc., and cut into 2x2 cm piece with an automatic wafer dicer (ADT 7122). All the
substrates were cleaned by a UV-Ozone cleaner (UVO-Cleaner Model 42 from Jelight Inc.) for 30

mins before using. The substrate storage plate can hold 60 substrates a time.

Stock solutions in the robotic system

DI Water was stocked in 40 ml vial for coating blade cleaning. PEDOT:PSS pristine solution,
DMSO, and EG were stocked in 4 ml vials for Al-guided formulation. All post-processing solvents
were prepared mixed in ratios listed in Supplementary Table 2 and stocked in 4 ml vials for Al-

guided selection.

Experimental procedures

Solution preparation

Different amounts of DMSO and EG were automatically added into 1 ml PEDOT:PSS pristine
solutions according to the ML suggested formulation. The formed solution was then mixed by a

solution heating and mixing module which has a magnetic rotary mechanism that stirred the



solution inside the vial with a magnetic stirring bar at a speed of 500 revolutions per minute (rpm)
for 60 seconds. The stirred solution was then placed on the capping and uncapping clamp for

pipetting.

Film coating

The formulated PEDOT:PSS solution was dropped on the substrate and bladed-coated with a
custom-built shearing-coater to form a film. The shearing blade consisted of a rectangular piece of
silicon, functionalized on the blade surface and blade edge with a monolayer of
octadecyltrichlorosilane. The modification of this monolayer enables easy cleaning for the
shearing blade after each coating. Films were coated at recommended substrate temperatures and
coating speed at a blade height of 50 um relative to the substrate. After coating is completed,
samples were then left on the coating stage for 1 min to dry. If the coating temperature is lower
than 70 °C, 2 mins of drying time is distributed. The coating speeds and temperatures are
determined by ML. As the substrate were dried out, the samples were then transported to the hot
plate at 130°C for subsequent annealing process. The samples are left on the annealing block for
1 min while the coater blade was cleaned by DI Water. After the annealing is done, the samples

were moved back to the coater for post-processing.

Film post-processing

The PEDOT:PSS films were treated by a post-deposition solvent selected by ML using the solution
shearing method. 8 different post-processing solvents with various mixing ratios of MeOH, EtOH
and water are listed in Supplementary Table 2. The robotic system would select one solvent for

post-treatment based on the ML. Here, the solution-shearing method means wherein solvent was



dropped to the front edge of the sample film, then coating blade dragged the solvent across the
film. Films were post-processed at a selected temperature and a shearing blade speed
recommended by ML. The post-processsing shearing speeds and temperatures variables are also
determined by ML. Finally, the film will be left dried out on the coater stage for 30 seconds and

annealed and hot plate (130 °C) for 1 min.

Thickness characterization

To evaluate the conductivity of the PEDOT:PSS thin films, film thickness needs to be measured.
After the robot placed the film on the camera characterization stage with a pneumatic gripper, the
film was then characterized by a Filmetrics F40 microscope-based film thickness measurement
instrument that outputs the film thickness and goodness of fitting (GOF) data. The data is collected
at four different locations (Error! Reference source not found.) on the thin film. At each location,
the F40 would record the thickness data 10 times and choose the thickness data with the largest
GOF. After collecting data at all four locations, the data that has GOF lower than 0.9 will be
omitted and the measured film thicknesses from the remaining data would be used to calculate the
average thicknesses of the left and right sides of the film with left and right two locations. Then,
the averaged thicknesses at points on the film (left and right sides) will be used to create a linear
model of the thickness of the film through a linear spline interpolation. This model is then used to
estimate the thickness of the film at the points where resistance is measured. These estimated

thickness values are used in the calculation of resistivity and conductivity.

The film thickness of the large-scale blade-coated film on glass was measured by the step height

measurement using the Tencor P-7 stylus profiler.



Electrical characterization

The conductivity of each PEDOT:PSS film was characterized from eight four-point-probe
measurements. Automated probe-station and Keithley 4200 were used for this measurement.
Keithley Instruments Model 4200A-SCS was used for the electrical characterization
measurements on the films. The 4-point collinear probe station is moving across the regions of the
film with the sample and produces eight sets of IV measurement data at eight different measuring
locations (Error! Reference source not found.). For each IV measurement at one location on the
thin film, the conductivity was then calculated. For a sample of finite width and non-negligible

thickness, the resistivity is given by

p = 45324t () fify )

here f; and f, are correction factors, and t is the film thickness. Since the film thickness is much
less than the 4-point probe spacing, f1 is approximately equal to 1. Therefore, the resistivity is

given by:
v
p = 4.5324t (7) f2 2

where correction factor of f> = 0.925 is used for the calculation.t

Subsequently, the conductivity at location i can be calculated as i =1 / pi, where i =1, 2, ... 8.
After retrieving the 8 conductivity data points, the data will be processed through interquartile
range (IQR) outlier detection with a scale of 1.5 and average will be calculated. This average

conductivity will be used as the final value used by Al.



The conductivity of the large-scale blade-coated film on glass was measured by the Filmetrics

R50-4PP contact four-point probe system.

Data availability

The data that support the findings of this study are available within this article and its
Supplementary Information. The source data generated in this study have been deposited in the
repository “PEDOT PSS _supporting_data” (https://github.com/polybot-nexus).

Code availability
The source code to interpret and visualize the data and train the ML algorithms have been deposited
in the repository “PEDOT PSS supporting_data” (https://github.com/polybot-nexus). Within this

repository there are notebook demos of the ML analysis and data visualization.
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