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The manipulation of electronic polymers’ solid-state properties through processing is crucial 

in electronics and energy research. Yet, efficiently processing electronic polymer solutions 

into thin films with specific properties remains a formidable challenge. We introduce Polybot, 

an artificial intelligence (AI) driven automated material laboratory designed to 

autonomously explore processing pathways for achieving high-conductivity, low-defect 

electronic polymers films. Leveraging importance-guided Bayesian optimization, Polybot 

efficiently navigates a complex 7-dimensional processing space. In particular, the automated 

workflow and algorithms effectively explore the search space, mitigate biases, employ 

statistical methods to ensure data repeatability, and concurrently optimize multiple 

objectives with precision. The experimental campaign yields scale-up fabrication recipes, 
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producing transparent conductive thin films with averaged conductivity exceeding 4500 

S/cm. Feature importance analysis and morphological characterizations reveal key design 

factors. This work signifies a significant step towards transforming the manufacturing of 

electronic polymers, highlighting the potential of AI-driven automation in material science. 

Introduction 

The control of solid-state properties through molecular assembly processes of 

electronically functional materials has been a decades-long pursuit in the electronics and energy 

industries. Electronic polymers, known for their unique electronic properties, mechanical softness, 

and low-cost production, have been studied extensively and utilized in printable electronics, 

wearable and bioelectronics, and energy devices1-6. Yet, the high-throughput processing of 

electronic polymer solutions into thin films with desirable properties remains a major challenge in 

device manufacturing. The processing of these electronic nanometer-thick films typically involves 

using various formulations under rapid flows and stressors (e.g., heating), which are highly non-

equilibrium conditions that can lead to unpredictable morphological variabilities. Therefore, 

achieving precise control over the morphology of electronic polymer thin films is crucial for 

realizing the desired functional properties and ensuring uniformity. However, the large number of 

parameters and their complex relationships in the processing of electronic polymers presents a 

major challenge in quickly achieving a desired performance goal, resulting in years of dedicated 

effort for designing and optimizing new electronic polymer materials that exhibit enhanced 

functionalities. 

The solution manufacturing of electronic polymers into functional layers involves three 

main steps: solution formulation, thin film coating on a substrate, and post-processing. Despite 



decades of experimentation7-14, our understanding and control of thin film processing mechanisms 

remains limited due to our reliance on heuristics and human scientists in establishing 

comprehensive, unbiased datasets7, 15. Efficiently collecting these datasets is crucial for uncovering 

the intricate, high-dimensional relationships between formulation, processing, and material 

properties. Recent advancements in automated robotic technologies have significantly increased 

productivity in medical and materials science research fields by offloading repetitive work from 

human scientists16-20. Coupling this with the advent of machine learning (ML) for data analysis 

and artificial intelligence (AI) as a cognitive assistant for navigating complex parameter spaces 

has inspired the development of modern autonomous laboratories, also known as self-driving 

laboratories21. These laboratories complement combinatorial experiments and have achieved 

significant progress in expediting the optimization and discovery of various materials, yet creating 

one for solution manufacturing of electronic polymer films faces challenges22-30. The inherent 

complexities in polymer processing-property relationships often lead to reduced experimental 

throughput and small datasets with high experimental uncertainties, which limits the effective 

utilization of AI/ML for exploring the multi-dimensional space associated with the processing, 

structure, and properties of polymers.  Hence, existing AI-guided thin film processing studies are 

predominantly restricted to a small set of experimental parameters, e.g., pre-syn28, 31 and a single 

material property28, 31-34, while in practice, real-world applications necessitate the simultaneous 

consideration of many experimental parameters and multiple material properties. To address these 

challenges, it is essential to put emphasis on the quality and repeatability of experimental data and 

leverage learning algorithms that are robust to small datasets. 

In this work, we introduce an automated solution processing platform implemented within 

Polybot35 – a state-of-the-art self-driving laboratory. This platform enables efficient exploration of 



a multi-dimensional parameter space encompassing the formulation, coating, and post-processing 

of electronic polymer thin films. Using importance-guided Bayesian optimization, a tailored 

learning algorithm that handles multiple objectives, Polybot strategically explored undersampled 

regions of the search space and exploited available data to produce thin films with high 

conductivity and low defects 28, 31-34. In addition, we implemented statistical data analysis methods 

to ensure experimental repeatability, a foundation to quality datasets and accurate AI/ML 

predictions. Our results demonstrated a successful autonomous experimental campaign and help 

design recipes for scale-up fabrication of transparent conductive thin films that achieved an 

averaged conductivity of over 4500 S/cm. Furthermore, the data revealed important factors 

influencing the defects and conductivity of electronic polymers, which are supported by in-depth 

characterizations of the solution-state structures and solid-state morphologies. Polybot represents 

an ongoing effort to enhance our understanding of electronic polymer thin films, and its continuous 

development aims to advance the field by pushing the boundaries of materials discovery. 

Results 

Automated solution processing of electronic films 

In this study, we utilized a robot-operated experimental workflow for exploring the 

conditions of solution-processed electronic polymer thin films towards desired film properties (Fig. 

1a). The automated platform is equipped with liquid/substrate/vial handling stations, a solution 

mixing station, blade-coating station, blade cleaning station, annealing station, as well as a range 

of online characterization and analytics systems, encompassing imagining and thickness 

characterization modules, along with an automated probe station connected to an electrical 

characterization system (Fig. 1b). The automated platform can complete an entire experimental 



loop—formulation, processing, post-processing, and conductivity measurement—in 

approximately 15 minutes per sample, enabling a throughput of around 100 samples per day with 

great repeatability. The Polybot control software orchestrates the experimental workflows, data 

flow, and ML-based automated data/performance analysis (Supplementary Movie 1).  

 

Figure 1.  A closed-loop electronic thin film discovery platform in self-driving laboratory 

Polybot. a) Schematic illustrating the consecutive steps in the autonomous experimental workflow. 

b) Image of the modular automated platform which includes 1) solution storage rack, 2) solution 

heating and mixing module, 3) capping and uncapping system, 4) pipette rack, 5) substrate rack, 

6) substrate gripper, 7) imaging station, 8) blade-coating station, 9) blade cleaning station, 10) 

annealing station, 11) thickness characterization station, 12) electrical characterization station. c) 

Schematic of the iterative multi-objective optimization strategy based on advanced learning 

algorithms enhanced by probabilistic sampling, strategically exploring undersampled areas of the 

search space and exploited available data to produce thin films with superior processability and 

conductivity. d) Complex assembly pathways of electronic polymers from solution to thin films. 



e) The total searches space to optimize the conductivity of the PEDOT:PSS. For this seven-variable 

problem, the full design space has 933,120 distinct data points.  



Poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) is 

chosen as an exemplary material in this study (see Methods) to showcase the autonomous 

experimentation methodology and highlight our innovation. Despite PEDOT:PSS being 

acknowledged as a highly conductive polymer, its conductivity and coating defects (e.g., dewetted 

regions, holes) are notably sensitive to formulation and processing conditions.36 Our strategies for 

achieving highly conductive PEDOT:PSS films are grouped into three main categories: (1) 

incorporating additives to improve connectivity between PEDOT-rich domains, facilitating high 

charge carrier mobility, (2) employing directional film coating methods to introduce 

morphological alignment, and (3) implementing solvent post-process treatments to enhance 

morphological ordering and/or remove PSS, which is insulating.  

Diverging from traditional research methodologies that vary one parameter at a time while 

keeping others fixed, our experiments simultaneously vary all parameters with the guidance of 

probabilistic AI/ML and statistical analysis. Our framework optimizes properties of PEDOT:PSS 

thin films using multi-objective Bayesian optimization enhanced by probabilistic sampling (Fig. 

1c). The properties of PEDOT:PSS thin films are intricately influenced by numerous 

thermodynamic and kinetic states during formulation and deposition processes, factors such as 

polymer chain conformation, aggregate types in solution, structure regulation/relaxation during 

coating, and subsequent structural development during post-treatments. Given the interconnected 

nature of these states, individual control becomes challenging. In our autonomous experiments, 

seven experimental parameters were concurrently adjusted to modulate the polymer solution-state 

structures, control assembly during coating, and manage structural regulation through post-

treatment (Fig. 1d, Methods). These parameters encompassed additive types, additive ratios, blade-

coating speeds, blade-coating temperatures, post-processing solvents, prost-processing coating 



speeds, and post-processing coating temperatures (Fig. 1e, Supplementary Tables 1&2, 

Supplementary Fig. 1). This holistic approach allows us to discern the relative importance and 

specific influence of these factors in the quest for optimal manufacturing conditions of thin films 

with desired electronic and coating properties. 

The primary objective of our experiments is to maximize the electrical conductivity of 

PEDOT:PSS thin films while achieving low coating defects. To accomplish this, Polybot leverages 

automated stations for formulating polymer solutions, coating the thin films, assessing their 

processibility, and evaluating their electrical conductivity. The quantification of film processibility 

is outlined in Fig. 2a and Supplementary section 1.1. The procedure estimates the uniformity of 

thin films using color (hue) information extracted from a set of top-view images captured by a 

camera (Supplementary Fig. 2). Close-up images of the substrate and thin film are extracted using 

image processing and computer vision techniques including thresholding, Harris corner detection, 

and perspective transformation, which corrects for minor optical aberrations and minimizes any 

subtle translational and rotational variants in the placement of the samples by the robot. The 

procedure for thin film electrical conductivity measurements is outlined in Fig. 2b and 

Supplementary section 1.2. Eight separate current-voltage (IV) curves are measured across 

different regions of the sample, using a 4-point collinear probe station connected to a Keithley 

4200. The conductivity values are then calculated from resistivity extracted from the IV curves 

and normalized by film thicknesses that are measured in the specific local regions where the IV 

curves are obtained (Supplementary Fig. 3&4).  

One of the major challenges in automated processing of PEDOT:PSS thin films is the high 

inherent uncertainty associated with their measured conductivity values, especially for films that 



are non-uniform due to poor film processability or dewetting. To ensure the repeatability of our 

experiments, Polybot performs at least two trials and up to four trials for every sample. A statistical 

analysis approach is implemented to eliminate invalid values and to determine the appropriate 

number of trials required (Fig. 2b). Specifically, the learning algorithm in Polybot only utilizes the 

two most statistically significant trials of each sample, which is determined through a normality 

check using the Shapiro-Wilk test37 with a significance level of 0.03 and a two-sample t-test with 

a significance level of 0.005 (Supplementary section 1.3).   

 

Figure 2. Automated characterization of film defects and electrical conductivity. a, Top-view 

of the coating and imaging station. Polybot utilizes computer vision to locate the substrate and 

characterize the thin film sample. A procedure based on color changes is used for the quantification 

of film coverage percentage. b, Side-view of the 4-point collinear probe station. Polybot measures 



current-voltage curves across different regions of the sample and obtain repeatable conductivity 

values by leveraging a statistical analysis approach. 

From autonomous robotic experiments to scale-up fabrication 

Guided by AI/ML, our experiments concurrently adjust all parameters, elucidating the 

relative importance of experimental factors for achieving optimal manufacturing conditions of 

electronic thin films. In this investigation, the boundaries and increments of the seven experimental 

parameters (Supplementary Table 1) are set based on established conventions reported in relevant 

PEDOT:PSS thin film literatures, as well as the limitation, sensitivity, and tunability of our 

hardware modules36. Despite the discretization of continuous variables, the exploration 

encompasses a total of 933,120 possible experimental conditions involving the formulation, 

coating, and post-processing of PEDOT:PSS thin films. Navigating this extensive search space 

without prior data is efficiently managed by Polybot, leveraging materials property prediction 

models and an importance-guided Bayesian Optimization (BO) approach to utilize existing data 

and explore undersampled processing conditions (Supplementary section 2). 

At the start of our autonomous experiment, 30 conditions were uniformly sampled from 

the search space using the Latin Hypercube Sampling (LHS) method (Supplementary section 2.1). 

These data points coarsely cover a wide region of the search space and serve as initial training data 

for the prediction models: a Gaussian processes regression (GPR) model for electrical conductivity 

(Supplementary section 2.2) and a Gaussian kernel density estimation (KDE) model for film 

defects (Supplementary section 2.3). The GPR model predicts electrical conductivity of thin films 

based on all experimental parameters whereas the KDE model estimates a percentage of the thin 

film coverage area on the substrate prior to post-processing steps. This estimation is based on the 

top three important experimental parameters identified by Shapley feature importance analysis of 



the training data: DMSO concentration, blade-coating temperature, and blade-coating velocity 

(Supplementary section 3.2, Supplementary Fig. 8, Supplementary Tables 4&5). Notably, the film 

coverage was reliably predicted using the train data alone, likely due to their relatively uniform 

distribution within the training data (Fig. 3a). From the GPR predicted values while considering 

data scarcities, Polybot evaluates the expected improvements (EI) in electrical conductivity for all 

uncharted experimental processing conditions (Supplementary section 2.4). The EI acquisition 

function balances exploration and exploitation based on a tunable trade-off hyperparameter. 

Experimental conditions at the top of this EI-ranked list are the most valuable candidates for 

information gathering or improvements in performance. In a typical BO, the top candidate in this 

list is always chosen for the next experiment. However, this can be suboptimal due to local minima 

traps arise from EI overly focusing on the estimated improvements.38 To alleviate this while 

considering film coverage as a secondary objective, Polybot employs an importance-guided BO 

where the list of EI ranked conditions are considered from top to bottom until one condition is 

selected, and the probability of selecting a particular condition is proportional to the KDE predicted 

film coverage and clipped to the interval [0.1, 0.9] (Fig. 1c and 3b, Supplementary section 2.5). In 

this way, Polybot prioritizes improvements in a challenging objective, i.e., film conductivity, while 

guided by a more achievable objective, i.e., film coverage, which is akin to the concept of 

importance in probabilistic sampling. Following this iterative learning strategy, Polybot performs 

the next experiment under the selected processing condition and subsequently refines the 

prediction models to achieve higher thin film performance using the new data (Fig. 3c).  

The progression of our autonomous experiment can be visualized through 2D projections 

of the 7-dimensional experimental search space, created using the Uniform Manifold 

Approximation and Projection (UMAP) method (Fig. 3d and e, Supplementary section 2.6).39 In 



the UMAP plot, every experimental condition is depicted as a point, and the distance between two 

points is proportional to the Euclidean distance between the processing parameter values. The 

initial training data points (circles) are evenly distributed among all possible conditions (in gray). 

Polybot, with the use of importance-guided BO, quickly identified regions that maximize both 

electrical conductivity and film coverage and iteratively improved the sample performance within 

a small number of samples (triangles). The termination of our experiment is determined based on 

our initial budget and the achieved thin film performance, i.e., when the experiment exceeds two 

weeks or when the measured conductivity do not show further improvements after reaching a 

reasonable expected performance (Supplementary Fig. 5). 

From the experimental results, three top-performing experimental processing conditions 

(Supplementary Table 3) are identified using a Pareto Front analysis (Supplementary section 2.7 

and Supplementary Fig. 6). One of these formulation and coating conditions is adapted for large-

scale fabrication, as well as subsequent in-depth structural characterizations to understand the 

changes of PEDOT:PSS in solutions and thin films. First, we demonstrated a successful adaptation 

of the identified processing conditions on an industrially relevant scale-up blade and roll-to-roll 

coating process (Fig. 3g, Supplementary Movie 2, 3). Specifically, we have opted for the use of 

only EG as the additive, at a concentration of 5 vol%, in combination with a relatively low coating 

speed of 1 mm/s and a relatively high coating temperature of 90℃. We performed scale-up blade 

coating of the formulation on a glass substrate that has similar surface chemistry as the SiOx/Si 

wafer substrates used in the experiments (Fig. 3f). To further remove PSS content and improve 

PEDOT packing structure, the post-treatment step involving solvent rinsing was repeated twice 

more.40 As a result, the blade-coated 100 cm2 film exhibited 100% coverage and achieved an 

averaged conductivity exceeding 4500 S/cm, placing it among the highest performing 



PEDOT:PSS films.36, 41 Additionally, we successfully printed a highly conductive film onto a 

laminated paper roll using a roll-to-roll printer, applying the same conditions (Fig. 3g). To 

investigate the influence of DMSO on processability in the scale-up manufacturing station, we 

blade-coated a film from a solution with 2 vol% DMSO, which revealed the formation of numerous 

defects during the coating process (Supplementary Fig. 10, Supplementary Movie 4). This 

observation validates the unfavorable impact of DMSO on processability, consistent with the 

insights gained through the in-depth analysis (Fig. 4). These findings highlight the successful 

translation of optimized process parameters from autonomous experiments to scale-up fabrication, 

paving the way for the production of highly conductive PEDOT:PSS films on large scale.  



 

Figure 3.  Iterative improvements in the coverage and conductivity achieved through an AI-

guided closed-loop optimization and their scaled-up fabrication. a-c, Rug plots and area-

normalized distributions of conductivity and coverage values before and after the iterative 

importance-guided Bayesian optimization (BO) process. Training data refer to the initial dataset 

obtained using Latin Hypercube Sampling whereas all data refer to test data proposed by the 

importance-guided BO algorithm in addition to the initial training data. At each iteration, the next 

experimental candidates are ranked by their expected improvement (EI) in conductivity and 



sampled by a probability proportional to their predicted coverage percentage. For illustration, the 

top 100 candidates in each experimental iteration are denoted by square markers with size and 

opacity proportional to their normalized EI in conductivity (by the highest value per iteration) and 

predicted coverage percentage, respectively. The distribution curves, colored by the averaged 

property values based on the color maps in d and e, indicate that importance-guided BO 

significantly improved both conductivity and coverage during the autonomous experimentation. 

d-e, Evolution of the coverage and conductivity values throughout the experiment, illustrated on 

2D maps obtained using UMAP dimensional reduction of the experimental search space. Grey 

points represent all possible experimental conditions (933,120 vectors) being considered in this 

study. Training data are denoted by circle markers and labeled with the letter 't' followed by the 

experiment number (t1-t30). Test data proposed by the importance-guided BO algorithm are 

denoted by triangular markers along with the iteration number (1-45). All data points are colored 

by their experimentally measured conductivity and coverage values. f, Blade-coated PEDOT:PSS 

films on glass with the selected condition from closed-loop optimization. Conductivity values were 

measured at six different locations across this printed film. g, Roll-to-roll manufacturing of 

conductive PEDOT:PSS films on a laminated paper roll. 

Elucidating design principles from in-depth data analysis and structural characterizations 

The data collected from our experiments can be visualized and analyzed to elucidate the 

principles and optimal conditions for manufacturing low defects, highly conductive PEDOT:PSS 

thin films. Parallel coordinates plot (Fig. 4a) and normalized loading plots (Fig. 4b) of the data 

highlight the complex relationships and correlations across the experimental parameters and thin 

film performance. In the parallel coordinates plot, each polyline, colored by film conductivity, 

represents individual experimental conditions and intersects the axes at their corresponding 

parameter values. In the normalized loading plots (a graphical representation of the correlation 

matrices shown in Supplementary Fig. 7), the obtuse angle between two arrows represents the 

inverse cosine of the Pearson correlation coefficient between the respective parameters, i.e., zero 

correlation when the arrows are perpendicular, positive correlation when the angle is less than 90°, 

and negative correlation when the angle is greater than 90°.  These correlations provide a clear 

view of the interplay between the thin film properties and experimental parameters. For example, 

the DMSO concentration strongly and negatively contributes to film coverage, and the averaged 



conductivity, as shown in the 3D volume density map obtained from the KDE coverage prediction 

model (Fig. 4c).  

SHAP (Shapley Additive exPlanations) feature importance values (Supplementary section 

3) are calculated from a ML model that is trained on all data, selected from a suite of different ML 

models based on their prediction accuracy (Supplementary Tables 6&7, Supplementary Fig. 9). It 

is noteworthy that in an autonomous experiment driven by BO, the later data points tend to skew 

towards higher values of the target property (Fig. 3c). Therefore, it is important to implement an 

efficient binning strategy to partition the data points into bins containing equal quantities. During 

the training and test process of the ML models, these bins are used for stratified splitting, thereby 

preserving a normal distribution of the data and improving the model’s ability to generalize. 

Shapley values are used to explain the best performing ML model and provide insights on the 

parameter importance (Supplementary section 3.3). The summary plots of the SHAP analysis (Fig. 

4d) ranked the experimental parameters, from top to bottom along the vertical axis, based on their 

impact on film coverage and conductivity. Within each parameter, all contributing data points are 

ordered along the horizontal axis and colored by their values. The results provide insights on the 

key features contributing to low film defects and high film conductivity. For instance, DMSO 

concentration is identified as the most influential parameter in achieving highly conductive thin 

films with low defects. Low DMSO concentration (dark purple) leads to high coverage and 

conductivity (far right on the horizontal axis) whereas high DMSO concentration (yellow) leads 

to low coverage and conductivity (far left on the horizontal axis). Overall, the most influential 

factor for achieving conductive thin films with low defects is the changes in the formulation of the 

PEDOT:PSS solution, followed by adjustments in processing and post-processing conditions 

proposed in this research. (Fig. 4e).  



 

Figure 4.  Correlation and interpretability of experimental parameters. a, Parallel coordinates 

plot showing all the experimental conditions and objectives. The lines are color-coded based on 

increasing conductivity values (light green indicates the lowest and dark purple the highest 

conductivity values). b, Normalized loading plots showing the correlations between the 

experimental parameters and the thin film properties. c, Density mapping of the most important 

parameters that affect the observed film coverage. d, The feature importance ranking obtained 

from random forest regression algorithm and SHAP, showing the processing conditions in 

descending order. Processing parameters that affect the coverage. (top) The model output in this 

case is the conductivity of the thin film (bottom). Large positive yellow values increase the 

conductivity. As a result, the larger the EG concentration, the coating temperature, and the coating 

velocity the higher the expected conductivity of the film. e, Bar plots showing the relative influence 

of condition changes across the three main experimental steps on coverage and conductivity. 

 



It is worth emphasizing that the processability plays a vital role in practical manufacturing, 

yet it is often challenging to capture accurately in literature. The utilization of autonomous 

experiments offers a unique opportunity to generate unbiased, systematic and cost-effective data, 

which, when combined with ML method, helps unveil intricate formulation-processing-property 

relationships in high-dimensional spaces. Having a quantitative and specific understanding of each 

factor’s influence on the targeted properties enables the design of effective strategies for 

manufacturing highly conductive PEDOT:PSS films. These findings provide the way for 

optimizing and tailoring film properties with precision. 

To understand the intricate relationship between manufacturing conditions and the 

enhancement of conductivity, we embarked on an in-depth exploration of both solution-state 

structures and solid-state morphologies across three representative samples, specifically, one 

prepared from pristine PEDOT:PSS solution, as well as two others produced under markedly 

distinct conditions. Cryogenic electron microscopy (cryo-EM) was used to directly visualize the 

PEDOT:PSS structures in their solution-state (Supplementary Fig. 11), unveiling the emergence 

of substantial aggregates composed of well-dispersed PEDOT:PSS colloidal particles upon adding 

small amounts of DMSO and/or EG additives (Fig. 5a). This phenomenon enables greater bridging 

of the conductive PEDOT phase, ultimately contributing to higher conductivity. From the wide-

angle X-ray scattering (GIWAXS) characterization of these three representative samples, the two 

treated PEDOT:PSS films exhibited a relatively high degree of crystallinity in the PEDOT phase 

compared to the film spin-coated from pristine solution (Supplementary Fig. 12). Blade-coated 

films also showed slightly morphological alignments (Fig. 5b, Supplementary Fig. 13), with the 

champion film, blade-coated from 5 vol% EG additive, exhibiting an interpenetrated fibril network 

and slightly enhanced vertical phase separation as indicated by a slight increase in the PSS 



composition on the surface (Supplementary Fig. 14). Together, these morphological features create 

efficient pathways for charge carriers in PEDOT phase along the coating direction, further 

enhancing conductivity.  

 

 

Figure 5. The solution-state structures and solid-state morphologies of PEDOT:PSS. Cryo-

EM (a) images of three distinct PEDOT:PSS formulations, and AFM height (b, top) and phase (b, 

bottom) images of resulting film samples. Left: Spin-coated film from pristine PEDOT:PSS 

solution (control). Middle: Blade-coated PEDOT:PSS film from a solution with 2 vol% DMSO 



and 1 vol% EG, coated at 3 mm/s, 60℃, and post-processed with methanol/ethanol (1:1), coated 

at 3 mm/s, 70℃. Right: Blade-coated PEDOT:PSS film from a solution with 5 vol% EG, coated 

at 1 mm/s, 90℃, and post-processed with methanol/ethanol (4:6), coated at 1 mm/s, 60℃. White 

arrows indicate blade coating direction. Scale bars in AFM images: 100 nm. 

 

Discussion 

In summary, we demonstrated the synergy between automated laboratory, ML/statistical models, 

and AI-guided exploration algorithms for the solution manufacturing of highly conductive, low 

defects polymer thin films.  Importance-guided Bayesian optimization was utilized to enable 

efficient exploration of an intricate 7-dimensional processing space and strategically optimize two 

key material properties. Our successful experimental campaign led to recipes for scale-up 

manufacturing of transparent conductive thin films with an average conductivity comparable to 

the state-of-the-art levels.2, 36, 41-42 The conductivity achieved in this work may not be 

groundbreaking, but the efficiency of our AI-guided robotic processing methodology in identifying 

the optimal processing pathway is substantial. We envision this AI-assisted automation 

methodology to not only contribute to the development of smart manufacturing platforms in the 

field of electronic polymers but also to address the pressing need to enhance system productivity 

and accelerate materials discovery. 

 

 

 

 



Methods 

Materials  

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PH1000 PEDOT:PSS) was purchased 

from Heraeus. All solvents, such as dimethyl sulfoxide (DMSO), ethylene glycol (EG), methanol 

(MeOH), and ethanol (EtOH), were purchased from Sigma-Aldrich and were used as received.  

Stock substrates in the robotic system 

4” 300nm SiO2-covered Si wafers (University Wafer ID 1583) were purchased from University 

Wafer, Inc., and cut into 2x2 cm piece with an automatic wafer dicer (ADT 7122). All the 

substrates were cleaned by a UV-Ozone cleaner (UVO-Cleaner Model 42 from Jelight Inc.) for 30 

mins before using. The substrate storage plate can hold 60 substrates a time. 

Stock solutions in the robotic system 

DI Water was stocked in 40 ml vial for coating blade cleaning. PEDOT:PSS pristine solution, 

DMSO, and EG were stocked in 4 ml vials for AI-guided formulation. All post-processing solvents 

were prepared mixed in ratios listed in Supplementary Table 2 and stocked in 4 ml vials for AI-

guided selection. 

Experimental procedures  

Solution preparation 

Different amounts of DMSO and EG were automatically added into 1 ml PEDOT:PSS pristine 

solutions according to the ML suggested formulation. The formed solution was then mixed by a 

solution heating and mixing module which has a magnetic rotary mechanism that stirred the 



solution inside the vial with a magnetic stirring bar at a speed of 500 revolutions per minute (rpm) 

for 60 seconds. The stirred solution was then placed on the capping and uncapping clamp for 

pipetting. 

Film coating 

The formulated PEDOT:PSS solution was dropped on the substrate and bladed-coated with a 

custom-built shearing-coater to form a film. The shearing blade consisted of a rectangular piece of 

silicon, functionalized on the blade surface and blade edge with a monolayer of 

octadecyltrichlorosilane.  The modification of this monolayer enables easy cleaning for the 

shearing blade after each coating.  Films were coated at recommended substrate temperatures and 

coating speed at a blade height of 50 𝜇m relative to the substrate. After coating is completed, 

samples were then left on the coating stage for 1 min to dry. If the coating temperature is lower 

than 70 °C, 2 mins of drying time is distributed. The coating speeds and temperatures are 

determined by ML. As the substrate were dried out, the samples were then transported to the hot 

plate at 130°C for subsequent annealing process. The samples are left on the annealing block for 

1 min while the coater blade was cleaned by DI Water. After the annealing is done, the samples 

were moved back to the coater for post-processing.  

Film post-processing 

The PEDOT:PSS films were treated by a post-deposition solvent selected by ML using the solution 

shearing method. 8 different post-processing solvents with various mixing ratios of MeOH, EtOH 

and water are listed in Supplementary Table 2. The robotic system would select one solvent for 

post-treatment based on the ML. Here, the solution-shearing method means wherein solvent was 



dropped to the front edge of the sample film, then coating blade dragged the solvent across the 

film. Films were post-processed at a selected temperature and a shearing blade speed 

recommended by ML. The post-processsing shearing speeds and temperatures variables are also 

determined by ML. Finally, the film will be left dried out on the coater stage for 30 seconds and 

annealed and hot plate (130 °C) for 1 min. 

Thickness characterization 

To evaluate the conductivity of the PEDOT:PSS thin films, film thickness needs to be measured. 

After the robot placed the film on the camera characterization stage with a pneumatic gripper, the 

film was then characterized by a Filmetrics F40 microscope-based film thickness measurement 

instrument that outputs the film thickness and goodness of fitting (GOF) data. The data is collected 

at four different locations (Error! Reference source not found.) on the thin film. At each location, 

the F40 would record the thickness data 10 times and choose the thickness data with the largest 

GOF. After collecting data at all four locations, the data that has GOF lower than 0.9 will be 

omitted and the measured film thicknesses from the remaining data would be used to calculate the 

average thicknesses of the left and right sides of the film with left and right two locations. Then, 

the averaged thicknesses at points on the film (left and right sides) will be used to create a linear 

model of the thickness of the film through a linear spline interpolation. This model is then used to 

estimate the thickness of the film at the points where resistance is measured. These estimated 

thickness values are used in the calculation of resistivity and conductivity. 

The film thickness of the large-scale blade-coated film on glass was measured by the step height 

measurement using the Tencor P-7 stylus profiler.  



Electrical characterization 

The conductivity of each PEDOT:PSS film was characterized from eight four-point-probe 

measurements. Automated probe-station and Keithley 4200 were used for this measurement. 

Keithley Instruments Model 4200A-SCS was used for the electrical characterization 

measurements on the films. The 4-point collinear probe station is moving across the regions of the 

film with the sample and produces eight sets of IV measurement data at eight different measuring 

locations (Error! Reference source not found.). For each IV measurement at one location on the 

thin film, the conductivity was then calculated. For a sample of finite width and non-negligible 

thickness, the resistivity is given by 

𝜌 = 4.5324𝑡 (
𝑉

𝐼
) 𝑓1𝑓2  (1) 

here f1 and f2 are correction factors, and t is the film thickness. Since the film thickness is much 

less than the 4-point probe spacing, f1 is approximately equal to 1. Therefore, the resistivity is 

given by:  

𝜌 ≈ 4.5324𝑡 (
𝑉

𝐼
) 𝑓2  (2) 

where correction factor of f2 = 0.925 is used for the calculation.1  

Subsequently, the conductivity at location i can be calculated as σi = 1 / ρi, where i = 1, 2, … 8. 

After retrieving the 8 conductivity data points, the data will be processed through interquartile 

range (IQR) outlier detection with a scale of 1.5 and average will be calculated. This average 

conductivity will be used as the final value used by AI.  



The conductivity of the large-scale blade-coated film on glass was measured by the Filmetrics 

R50-4PP contact four-point probe system. 

Data availability 

The data that support the findings of this study are available within this article and its 

Supplementary Information. The source data generated in this study have been deposited in the 

repository “PEDOT_PSS_supporting_data” (https://github.com/polybot-nexus). 

 

Code availability  

The source code to interpret and visualize the data and train the ML algorithms have been deposited 

in the repository “PEDOT_PSS_supporting_data” (https://github.com/polybot-nexus). Within this 

repository there are notebook demos of the ML analysis and data visualization.   
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