
Supplementary Materials for House of Cans: Covert
Transmission of Internal Datasets via Capacity-Aware

Neuron Steganography

Xudong Pan
Fudan University

xdpan18@fudan.edu.cn

Shengyao Zhang
Fudan University

shengyaozhang21@m.fudan.edu.cn

Mi ZhangB
Fudan University

mi_zhang@fudan.edu.cn

Yifan Yan
Fudan University

yanyf20@fudan.edu.cn

Min YangB
Fudan University

m_yang@fudan.edu.cn

A Omitted Algorithmic Details

We provide the detailed algorithms for Fill, Propagate, Decode in Algorithm A.1 & A.3 respectively.

Algorithm A.1 The Fill(P , f , v) Primitive
Input: P = Pw ∪ Pb ∪ Ps (an initialized weight pool), f (a DNN model), v (an integer secret).
Output: P(·, v) (a hash map).

1: vw, vb, vs ← v mod |Pw|, v mod |Pb|, v mod |Ps| ▷ Derivation of initial random shift
on each parameter group.

2: Generate a random permutation πw (πb, πs) of integers from 0 to |Pw| (|Pb|, |Ps|) with seeds
vw(vb, vs).

3: P(·, v)← {} ▷ Initialize a hash map to store the mapping relation.
4: for each scalar parameter w in f do
5: if w belongs to a {weight, scale, bias} parameter then
6: switch (type(w)) do
7: case weight:
8: wP ← (πw ◦ Pw)[vw], vw ← (vw + 1) mod |Pw|
9: case bias:

10: wP ← (πb ◦ Pb)[vb], vb ← (vb + 1) mod |Pb|
11: case scale:
12: wP ← (πs ◦ Ps)[vs], vs ← (vs + 1) mod |Ps|
13: end switch
14: w.data← wP .data
15: P(·, v).Add(w → wP)
16: else
17: CONTINUE
18: end if
19: end for
20: return P(·, v)

B Background: Data Security Models in AI Industry

As an essential background for discussing insider attacks, we provide below a field study on typical
data security mechanisms in AI corporations. With Data Leakage Prevention Systems (DLPS)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Algorithm A.2 The t-th iteration during the joint training process on the weight pool

Input: Pt (the current weight pool), {(fk, D̃k, ℓk,Optk)}Nk=0 (the secret and open tasks). ▷ For
simplicity, the index 0 denotes the open task on the carrier model.

Output: Pt+1 (the updated weight pool)
1: for each parameter wP in Pt do
2: wP .buffer← {}
3: end for
4: parallel for k = 0, 1, . . . , N do
5: P(·, vk)← Fill(Pt, fk, vk)
6: Sample a training batch B from D̃k.
7: L̃k ← 1

|B|
∑

(x,y)∈B ℓk(fk(x;P(θk, vk)), y). ▷ Approximate the loss Lk on a randomly sampled
mini-batch.

8: L̃k.Backward()
9: ∆θk ← Optk.Step()

10: for each scalar parameter w in θk do
11: if w belongs to a {weight, scale, bias} parameter then
12: P(w, vk).buffer.Append(∆w) ▷ Propagate the update to the corresponding weight pool param-

eter.
13: end if
14: end for
15: end parallel
16: for each parameter wp in Pt do
17: wp ← wp+ Average(wp.buffer)
18: end for
19: return Pt+1.

Algorithm A.3 The Decode(C, vc) Primitive
Input: C (the carrier model), vc (the integer secret of the carrier model), Nw, Nb, Ns (the length of

Pw, Pb, Ps).
Output: P = Pw ∪ Pb ∪ Ps (the decoded weight pool).

1: Pw ← list(), Pb ← list(), Ps ← list()
2: for each scalar parameter w in C do
3: if w belongs to a {weight, scale, bias} parameter then
4: switch (type(w)) do
5: case weight:
6: Pw.Append(w.data)
7: case bias:
8: Pb.Append(w.data)
9: case scale:

10: Ps.Append(w.data)
11: end switch
12: else
13: CONTINUE
14: end if
15: end for
16: vw, vb, vs ← vc mod Nw, vc mod Nb, vc mod Ns

17: Generate a random permutation πw (πb, πs) of integers from 0 to Nw (Nb, Ns) with seeds
vw(vb, vs).

18: Pw, Pb, Ps ← Fusion(Pw, Pb, Ps) ▷ Recover the parameter by selecting the non-zero value
from each weight pool copy, if needed.

19: Right-shift each parameter group by vw, vb, vs.
20: Pw, Pb, Ps ← π−1

w ◦ Pw, π
−1
b ◦ Pb, π

−1
s ◦ Ps

21: return P = Pw ∪ Pb ∪ Ps

2

blocking data transfer to unauthorized endpoint devices (e.g., Wi-Fi, Bluetooth, USB) or to the
outside network [2], various access control policies are implemented by AI corporations to manage
their owned internal datasets. In the following, we discuss two typical modes named as the Willing-
to-Share mode and the Application-then-Authorization mode informed by the industry partners.

• For start-up corporations which focus on one killer application (e.g., object detection), they prefer
to organize the datasets in a more shareable mode. According to our field study, a majority of the
groups organize all the datasets (either from public or private sources) in their local distributed file
system, which enables fast access to specific datasets according to one’s requirement and facilitates
swift development of novel DL techniques.

• More established AI corporations prefer to implement a more conservative way of managing ML
datasets. According to Google’s common security whitepaper [1], each employer should first
apply for the authorization before accessing certain data resources, including the access to private
datasets. However, considering the ever-evolving paradigms in deep learning, employees with
ulterior motives may fabricate reasons such as the requirements of data augmentation [6] or the
purpose of multimodal learning [3] to apply for relevant and irrelevant private datasets, which
is common in social engineering [4]. Under the umbrella of DLPS, corporations may be less
precautious about the unnecessary access to certain private datasets, as DLPS ought to forbid any
attempts of transferring the private datasets away from the local network.

However, neither of the above notes can prevent an insider to access the private dataset, especially
when he/she is assigned with workloads related to the private dataset or applies to access the private
dataset for, e.g., multimodal learning (i.e., a learning paradigm which leverages multiple datasets
from different domains to enhance the model training [3]).

C Omitted Experimental Details

C.1 Detailed Architecture of Secret Models

We provided the detailed architecture of secret models on CIFAR-10, FaceScrub, and SpeechCom-
mand in Table C.1, C.2, and C.3 respectively.

Table C.1: The detailed architecture of secret generator on CIFAR-10, which is described by conven-
tion of PyTorch.

Generator

nn.ConvTranspose2d(100, 512, 4, 1, 0, bias=False)
nn.BatchNorm2d(512)
nn.ReLU()
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False)
nn.BatchNorm2d(256)
nn.ReLU()
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False)
nn.BatchNorm2d(32)
nn.ReLU()
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False)
nn.BatchNorm2d(64)
nn.ReLU()
nn.ConvTranspose2d(64, 3, 1, 1, 0, bias=False)
nn.Tanh()

C.2 Other Experimental Setups

For other common hyper-parameter settings in Algorithm A.2, we train our carrier model for 200
epochs using Stochastic Gradient Descent(SGD) with an initial learning rate of 0.1, a weight decay
of 5 × 10−4, and a momentum of 0.9. We trained our secret models using Adam optimizer with
an initial learning rate of 2× 10−4 on CIFAR-10 and SpeechCommand (1× 10−3 on FaceScrub),
and running average coefficients of 0.5, 0.999. For faster convergence, we dynamically adjust the

3

Table C.2: The detailed architecture of secret generator on FaceScrub, which is described by conven-
tion of PyTorch.

Generator

nn.ConvTranspose2d(100, 512, 7, 1, 0, bias=False)
nn.BatchNorm2d(512)
nn.ReLU()
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False)
nn.BatchNorm2d(256)
nn.ReLU()
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False)
nn.BatchNorm2d(32)
nn.ReLU()
nn.ConvTranspose2d(128, 64, 4, 4, 0, bias=False)
nn.BatchNorm2d(64)
nn.ReLU()
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False)
nn.Tanh()

Table C.3: The detailed architecture of secret generator on SpeechCommand, which is described by
convention of PyTorch.

Generator

nn.ConvTranspose1d(100, 64, 3, 1, 0, bias=False)
nn.BatchNorm1d(64)
nn.ReLU()
nn.ConvTranspose1d(64, 64, 27, 3, 0, bias=False, dilation=2)
nn.BatchNorm1d(64)
nn.ReLU()
nn.ConvTranspose1d(64, 32, 38, 3, 0, bias=False, dilation=2)
nn.BatchNorm1d(32)
nn.ReLU()
nn.ConvTranspose2d(32, 32, 52, 3, 2, bias=False, dilation=5)
nn.BatchNorm1d(32)
nn.ReLU()
nn.ConvTranspose1d(32, 1, 80, 16, 0, bias=False)
nn.Tanh()

learning using a cosine annealing schedule with the number of epochs Tmax of 200. We set the batch
size of CIFAR-10, FaceScrub, and SpeechCommand as 128, 64, and 64 respectively.

All the experiments are implemented with Torch [5], which is an open-source software framework
for numeric computation and deep learning. All our experiments are conducted on a Linux server
running Ubuntu 16.04, one AMD Ryzen Threadripper 2990WX 32-core processor and 2 NVIDIA
GTX RTX2080 GPUs.

References
[1] Google’s Approach to IT Security. https://static.googleusercontent.com/media/1.

9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.
pdf.

[2] Sultan Alneyadi, Elankayer Sithirasenan, and Vallipuram Muthukkumarasamy. A survey on data
leakage prevention systems. J. Netw. Comput. Appl., 62:137–152, 2016.

[3] Tadas Baltruaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence,
41:423–443, 2019.

[4] Katharina Krombholz, Heidelinde Hobel, Markus Huber, and Edgar R. Weippl. Advanced social
engineering attacks. J. Inf. Secur. Appl., 22:113–122, 2015.

4

https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf,
Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS, 2019.

[6] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6:1–48, 2019.

5

	Omitted Algorithmic Details
	Background: Data Security Models in AI Industry
	Omitted Experimental Details
	Detailed Architecture of Secret Models
	Other Experimental Setups

