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ABSTRACT

Graph Neural Networks (GNNs) traditionally employ a message-passing mech-
anism that resembles diffusion over undirected graphs, which often leads to ho-
mogenization of node features and reduced discriminative power in tasks such as
node classification. Our key insight for addressing this limitation is to assign fuzzy
edge directions—that can vary continuously from node i pointing to node j to vice
versa—to the edges of a graph so that features can preferentially flow in one di-
rection between nodes to enable long-range information transmission across the
graph. We also introduce a novel complex-valued Laplacian for directed graphs
with fuzzy edges where the real and imaginary parts represent information flow in
opposite directions. Using this Laplacian, we propose a general framework, called
Continuous Edge Direction (CoED) GNN, for learning on graphs with fuzzy edges
and prove its expressivity limits using a generalization of the Weisfeiler-Leman
(WL) graph isomorphism test for directed graphs with fuzzy edges. Our architec-
ture aggregates neighbor features scaled by the learned edge directions and pro-
cesses the aggregated messages from in-neighbors and out-neighbors separately
alongside the self-features of the nodes. Since continuous edge directions are
differentiable, they can be learned jointly with the GNN weights via gradient-
based optimization. CoED GNN is particularly well-suited for graph ensemble
data where the graph structure remains fixed but multiple realizations of node fea-
tures are available, such as in gene regulatory networks, web connectivity graphs,
and power grids. We demonstrate through extensive experiments on both synthetic
and real graph ensemble datasets that learning continuous edge directions signif-
icantly improves performance both for undirected and directed graphs compared
with existing methods. Our code is available on GitHub.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning from data that is
structured as graphs, with applications ranging from social network analysis to molecular chemistry
(Kipf & Welling, 2017; Zhou et al., 2020; Gilmer et al., 2017). GNNs typically employ a message
passing mechanism where nodes aggregate and then transform feature information from their neigh-
bors at each layer, enabling them to learn node representations that capture both local and global
graph structures. When the graph is undirected, the aggregation of node features mimics a diffu-
sion process. Each node’s representation becomes the averaged features of its immediate neighbors,
leading to a homogenization of information across the graph. As depth increases, this diffusion of
information culminates in a uniform state where node representations converge towards a constant
value across all nodes, which severely limits the discriminative power of GNNs, especially in tasks
such as node classification (Rusch et al., 2023a; Oono & Suzuki, 2020; Cai & Wang, 2020; Li et al.,
2018a; Keriven, 2022; Chen et al., 2020a; Wu et al., 2023; 2024).
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Figure 1: (a) When edges are undi-
rected, information diffuses across the
graph and long-range transmission of
information between nodes 1 and 2 is
not possible. (b) Once the optimal edge
directions are learned, information can
flow directly from node 1 to node 2.

Our key insight for improving the performance of GNNs
is to alter the nature of information transmission between
nodes from diffusion to flow. To do so, we add direc-
tions to the edges of a graph so that features can be prop-
agated from node vi to its neighbor node vj without recip-
rocal propagation of information from node vj to node vi.
Unlike diffusion, where information uniformly spreads
across available paths, flow is directional and preserves
the propagation of information across longer distances
within a graph, as illustrated in Figure 1. In general,
the optimal information propagation could require edges
whose directions fall anywhere in the continuum of node
vi pointing to node vj to vice versa.

To capture such continuous edge directions, we propose a
concept of ‘fuzzy edges,’ where the direction of an edge
between any two nodes vi and vj is not a discrete but a
continuous value. An edge’s orientation can range con-
tinuously—from exclusively pointing from node vi to node vj , through a fully bidirectional state, to
exclusively pointing from node vj to node vi. Therefore, ‘fuzzy’ direction essentially controls the
relative amount of information flow from node vi to node vj and the reciprocal flow from node vj
to node vi. To effectively model this directional flexibility, we introduce a complex-valued graph
Laplacian called a fuzzy Laplacian. In this framework, the real part of the ij-th entry in the fuzzy
Laplacian matrix quantifies the degree of information transmission from node vj to node vi, while
the imaginary part measures the flow from node vi to node vj .

Next, we introduce the Continuous Edge Direction (CoED) GNN architecture. At each layer, a
node’s neighbors’ features are scaled by the directions of their connecting edges and aggregated.
This aggregation is performed separately for incoming and outgoing edges, following Rossi et al.
(2024), resulting in distinct features for incoming and outgoing messages. This is implemented by
applying the fuzzy Laplacian to the node features, where the real and imaginary parts correspond to
the features aggregated from incoming neighbors and outgoing neighbors, respectively. These ag-
gregated features are then affine transformed using learnable weights and combined with the node’s
own transformed features. A nonlinear activation function is applied to obtain the updated node
features. This process is repeated for each layer. The continuous edge directions have the added
benefit that they are differentiable. During training, both the edge directions and weight matrices are
learned simultaneously using gradient-based optimization to improve the learning objective.

Importantly, our approach is fundamentally different from methods such as Graph Attentions Net-
work (GAT) (Veličković et al., 2018) or graph transformers (Dwivedi & Bresson, 2021; Rampášek
et al., 2022) that learn attention coefficients to assign weights to each edge of the graph based on the
features (and potentially the positional encoding) of the nodes connected by that edge. While the
attention mechanism can capture asymmetric relationships by computing direction-specific atten-
tion weights based on node features, they do not learn edge directions as independent parameters.
Instead, the attention coefficients from node vi to node vj are functions of the features of vi and
vj , and will change if node features change. In contrast, our approach introduces continuous edge
directions as learnable parameters that are optimized end-to-end, independent of the node features.

Learning edge directions can make CoED susceptible to overfitting, especially when the same graph
is used for both training and testing, as in standard node classification tasks. In such cases, edge
directions may be optimized for the training nodes at the expense of effective information flow to the
test nodes that are withheld during training. In contrast, CoED is very effective on graph ensemble
data, where the graph structure remains fixed but multiple realizations of node features and targets
(such as node labels) are available. This allows optimization of information flow across all edges
simultaneously without masking parts of the graph for training and testing. Instead, training and
testing splits are based on different feature realizations rather than on subsets of the graph. Graph
ensemble data are increasingly common across various domains. For example, in biology, gene-
regulatory networks are constant directed graphs where nodes represent genes and edges represent
gene-gene interactions, while node features like gene expression levels vary across different cells.
Similarly, in web connectivity, the network of websites remains relatively static, but traffic patterns
change over time, providing different node feature sets on the same underlying graph. In power
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grids, the network of electrical components is fixed, while the steady-state operating points of these
components vary under different conditions, yielding multiple observations on the same graph. In
all these cases, a fixed graph is paired with numerous feature variations. By applying CoED GNN
to these scenarios, we demonstrate that learning edge directions significantly improves performance
for both directed and undirected graphs. The main contributions of this paper are the following:

• We introduce a principled complex-valued graph Laplacian for graphs where edge direc-
tions can vary continuously and prove that it is more expressive than existing forms of
Laplacians for directed graphs, such as the magnetic Laplacian.

• We propose an architecture called Continuous Edge Direction (CoED) GNN, which is a
general framework for learning on directed graphs with fuzzy edges. We prove that CoED
GNN is as expressive as a weak form of the Weisfeiler-Leman (WL) graph isomorphism
test for directed graphs with fuzzy edges.

• Using extensive experiments, we show that learning edge directions significantly improves
performance by applying CoED GNN to both synthetic and real graph ensemble data.

2 PRELIMINARIES

A graph is defined as a pair G = (V, E), where V = {v1, v2, . . . , vN} is a set of N nodes, and
E ⊆ V × V is a set of edges connecting pairs of nodes. Each node vi is associated with a feature
vector fi ∈ RD, where D is the dimensionality of the feature space, and collectively these feature
vectors form the node feature matrix F ∈ RN×D. Additionally, each node is assigned a prediction
target, such as a class label for classification tasks or a continuous value for regression tasks.

The connectivity of a graph is encoded in an adjacency matrix A ∈ {0, 1}N×N . If there is an
undirected edge between vi and vj , then both Aij = 1 and Aji = 1. For a directed edge, one of
Aij or Aji is 1 while the other is 0, specifying the direction of information flow. A directed edge,
Aij = 1 and Aji = 0, indicates that vj sends information to vi. Hence, we refer to vj as the in-
neighbor of vi and conversely to vi as the out-neighbor of vj . If both Aij = 0 and Aji = 0, there is
no edge between vi and vj . Accordingly, in a directed graph, we define two distinct degree matrices:
the in-degree matrix Din = diag(A1) and the out-degree matrix Dout = diag(A⊤1).

GNNs iteratively processes node features F via message-passing mechanism that leverages the struc-
tural information of the graph G. This process involves two main steps at each layer l:

1. Message Aggregation: For each node vi, an aggregated message m
(l)
i,N (i) is computed from the

features of its neighbors:

m
(l)
i,N (i) = AGGREGATE

(
{{(f (l−1)i , f

(l−1)
j ) | j ∈ N (i)}}

)

Here, N (i) denotes the set of nodes vj that are connected to node vi by an edge.

2. Feature Update: The feature vector of node vi is then updated using the aggregated message:

f
(l)
i = UPDATE

(
f
(l−1)
i ,m

(l)
i,N (i)

)

AGGREGATE and UPDATE are functions with learnable parameters, and their specific implemen-
tations define different GNN architectures (Gilmer et al., 2017).

3 FORMULATION OF GNN ON DIRECTED GRAPHS WITH FUZZY EDGES

3.1 CONTINUOUS EDGE DIRECTIONS AS PHASE ANGLES

To describe a continuously varying edge direction between node vi and node vj , we assign an angle
θij ∈ [0, π/2] to the edge connecting vi to vj . During aggregation of features from neighbors,
features propagated from vj to vi are scaled by a factor of cos θij . Conversely, the features that vj
receives from vi are scaled by sin θij . For example, when θij = 0, we have a directed edge where
vj sends messages to vi but does not receive any messages from vi. When θij = π/4, the edge is
undirected and the same scaling is applied to the messages sent and received by vi to and from vj ,
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i.e., cosπ/4 = sinπ/4 = 1/
√
2. To ensure consistency, we require that the message received by

vi from vj should be equivalent to the message sent by vj to vi. It follows that θji = π/2 − θij .
We define the phase matrix Θ ∈ [0, π/2]N×N to describe the directions of all the edges in a graph.
(Θ)ij is only defined if there is an edge connecting nodes vi and vj .

3.2 FUZZY GRAPH LAPLACIAN

To keep our message-passing GNN as expressive as possible, we define a Laplacian matrix that,
during the aggregation step, propagates information along directed edges but keeps the aggregated
features from in-neighbors and out-neighbors for each node distinct by assigning them to the real and
imaginary parts of a complex number, respectively. For a given Θ, we construct the corresponding
fuzzy graph Laplacian LF as follows. The diagonal entries (LF )ii are zero as we cannot define edge
directions for self-loops, and off-diagonal entries are either zero or a phase value,

(LF )ij =

{
0 if Aij = Aji = 0

exp(iθij) otherwise
(1)

Since θij and θji are related by θji = π/2− θij , it follows that LF = iL†F , where † is the conjugate
transpose. Re[LF ] thus encodes all i← j edges scaled by cos θij and Im[LF ] all i→ j edges scaled
by sin θij . In Appendix D, we show the fuzzy graph Laplacian admits orthogonal eigenvectors
with eigenvalues of the form a + ia with a ∈ R. Therefore, the eigenvectors of our Laplacian
provide positional encodings that are informed by the directions of the edges in addition to their
connectivities. We provide the visualizations of the eigenvectors in Appendix C. A key implication
of our Laplacian for GNN architectures is stated in the following theorem.

Theorem 1. A message-passing GNN whose aggregation step is performed using the fuzzy graph
Laplacian is as expressive as the weak form of the Weisfeiler-Leman (WL) graph isomorphism test
for directed graphs with fuzzy edges.

We prove this theorem in Appendix E. The most commonly used Laplacian for directed graphs is
the magnetic Laplacian (Shubin, 1994; Furutani et al., 2020; Zhang et al., 2021; He et al., 2022a),
which is also complex-valued. For directed graphs with fuzzy edges, the magnetic Laplacian is
not as expressive as the Laplacian proposed above. We provide a proof in Appendix F. Briefly,
the real and imaginary parts of the aggregated features produced by the magnetic Laplacian are
both linear combinations of in- and out- neighbor messages. In principle, GNNs should be able to
disentangle these linear combinations to recover the in- and out- neighbor messages. However, the
linear combinations depend on the local neighborhood of each node which is distinct from one node
to another, whereas GNN parameters are shared across all nodes. Therefore, in general, a GNN
using the magnetic Laplacian loses the ability to disentangle the in- and out- neighbor messages
at each node and thus has lower expressivity. Our Laplacian does not suffer from this limitation
since by construction the real and imaginary values uniquely correspond to the in- and out- neighbor
aggregated messages, respectively.

3.3 MODEL ARCHITECTURE: CONTINUOUS EDGE DIRECTION (COED) GNN

To ensure maximum expressivity, a message-passing mechanism on a directed graph should, for each
node, separately aggregate the features of the in-neighbors and the out-neighbors, and independently
process the two types of aggregated features and the self-features to obtain an updated feature for
each node. To this end, we define in- and out- edge weight matrices as A← = Re[LF ] and A→ =
Im[LF ], respectively. We compute the in- and out- degree matrices as D← = diag (A←1) and
D→ = diag (A→1), respectively. Following Rossi et al. (2024), but extending it to graphs with
continuous edge directions, we define in- and out- fuzzy propagation matrices as

P← = D−1/2← A←D−1/2→ and P→ = D−1/2→ A→D−1/2← (2)

Using these matrices, we compute in- and out- messages at layer l as

m(l)
← = P←F(l−1) and m(l)

→ = P→F(l−1) (3)

which defines the AGGREGATE function.
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f(X2;w,Θ) = Ŷ2
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Figure 2: Schematic of training with a graph ensemble data. The input graph is undirected (left box).
The graph ensemble data contains multiple realizations of node features and corresponding target
values, either at the node, edge, or graph level. The phase angle formulation allows continuous edge
directions to be optimized alongside the GNN parameters in an end-to-end manner (middle box).
The learned edge directions (right box) enable long range information transmission across the graph.

Since self-loops are omitted from LF , we include current node features along with the two direc-
tional messages in UPDATE function and update node features as,

F(l) = σ
(
F(l−1)W

(l)
self +m(l)

←W(l)
← +m(l)

→W(l)
→ +B(l)

)
(4)

where σ is an activation function, and W
(l)
self/←/→ and B(l) are self/in/out weight matrices and a

bias matrix, respectively.

The features at the final layer are then transformed using a linear layer to obtain the output for a
specific learning task. We use end-to-end gradient-based optimization to iteratively update both
the phase matrix Θ and the GNN parameters W

(l)
self/←/→ and B(l) at each layer, as illustrated in

Figure 2. We allow for the option to learn a different set of edge directions at each layer, Θ(l), just
as we have distinct GNN parameters at each layer. We provide a runtime analysis of CoED against
other GNNs in Appendix G.

4 RELATED WORK

The issue of feature homogenization in GNNs, known as the oversmoothing problem, has been
a significant concern. Early studies identified the low-pass filtering effect of GNNs (Defferrard
et al., 2016; Wu et al., 2019), linking it to oversmoothing and loss of discriminative power (Li
et al., 2018a; Oono & Suzuki, 2020). Proposed solutions include regularization techniques like edge
dropout (Rong et al., 2020), feature masking (Hasanzadeh et al., 2020), layer normalization (Zhao
& Akoglu, 2020), incorporating signed edges (Derr et al., 2018), adding residual connections (Chen
et al., 2020b), gradient gating (Rusch et al., 2023b), and constraining the Dirichlet energy (Zhou
et al., 2021). Dynamical systems approaches have also been explored, modifying message passing
via nonlinear heat equations (Eliasof et al., 2021), coupled oscillators (Rusch et al., 2022), and
interacting particle systems (Wang et al., 2022; Di Giovanni et al., 2023). Other methods involve
learning additional geometric structures, such as cellular sheaves (Bodnar et al., 2022).

Extending GNNs to directed graphs has been addressed through various methods. GatedGNN (Li
et al., 2016) processed messages from out-neighbors in directed graphs. Some works constructed
symmetric matrices from directed adjacency matrices and their transposes to build standard Lapla-
cians (Tong et al., 2020b; Kipf & Welling, 2017), while others (Ma et al., 2019; Tong et al., 2020a)
developed Laplacians based on random walks and PageRank (Duhan et al., 2009). MagNet (Zhang
et al., 2021) utilized the magnetic Laplacian to represent directed messages—a technique that has
also been used to adapt transformers to directed graphs (Geisler et al., 2023) and to visualize them
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(Fanuel et al., 2018). FLODE (Maskey et al., 2023) employed asymmetrically normalized adja-
cency matrices within a neural ODE framework. DirGNN (Rossi et al., 2024) separately processed
the messages from in-neighbors and out-neighbors using asymmetrically normalized adjacency ma-
trices, improving node classification on heterophilic graphs. A similar strategy was used in Koke
& Cremers (2024), replacing the adjacency matrices with filters representing Faber polynomials.
Recent graph PDE-based models (Eliasof et al., 2024; Zhao et al., 2023) introduced an advection
term to model directional feature propagation alongside diffusion, assigning edge weights based
on computed velocities between nodes, akin to attention coefficients in GAT. Finally, our approach
is conceptually related to He et al. (2022b) where imbalance of incoming and outgoing messages
across subsets of nodes is used to learn node embeddings for clustering.

GNNs have been increasingly applied in domains relevant to our work. In single-cell biology, GNNs
have been used to predict perturbation responses in gene expression data (Roohani et al., 2023;
Molho et al., 2024), with datasets compiled in scPerturb (Peidli et al., 2024). In web traffic anal-
ysis, a form of spatiotemporal data on graphs, GNNs often model temporal signals using recurrent
neural networks on graphs (Li et al., 2018b; Chen et al., 2018; Sahili & Awad, 2023), with datasets
and benchmarks provided by PyTorch Geometric Temporal library (Rozemberczki et al., 2021). In
power grids, GNNs have been applied to predict voltage values (Ringsquandl et al., 2021) and solve
optimal power flow problems (Donon et al., 2020; Böttcher et al., 2023; Piloto et al., 2024), with
datasets compiled by Lovett et al. (2024).

5 EXPERIMENTS

5.1 NODE CLASSIFICATION WITHOUT EDGE DIRECTION LEARNING

While node classification is not the primary focus of our paper, we benchmarked our method on
eleven standard datasets—including both undirected and directed graphs covering a wide range of
sizes and homophily levels—to highlight the advantage of our Laplacian over alternative forms
of Laplacians for directed graphs as well as the benefit of processing self, in-neighbor, and out-
neighbor features separately. Importantly, we do not learn edge directions in this case, and hence the
phase value is either 0 or π/2 for directed graphs and π/4 for undirected graphs. For comparison,
we include the classical models: GCN (Kipf & Welling, 2017), SAGE (Hamilton et al., 2017),
GAT (Veličković et al., 2018); heterophily-specific model, GGCN (Yan et al., 2021); directionality-
aware models: MagNet (Zhang et al., 2021), FLODE (Maskey et al., 2023), DirGNN (Rossi et al.,
2024); and a model that learns geometric structure of graph, Sheaf (Bodnar et al., 2022). We also
include a model based on a Laplacian for directed graphs constructed from the transition matrix
of the graph by Chung (2005), and Cooperative GNNs (Finkelshtein et al., 2023), which classify
a node as broadcasting, listening, both, or neither based on its own and its neighbors’ features.
Finally, we also include MLP to highlight the effect of solely processing the nodes’ self-features
without aggregating features across the graph. Further details of the datasets and hyperparameters
are provided in Appendix A.1

As shown in Table 1, CoED demonstrates competitive performance across all eleven datasets, rank-
ing within the top three in terms of test accuracy for most. While all models exhibit compara-
ble results on Cora and Citeseer—which are undirected and homophilic—their performances differ
significantly on the directed, heterophilic graphs. The classical models developed for undirected
graphs particularly struggle on these datasets, with the exception of SAGE. This is because pro-
cessing only the node’s own features yields good performance, as evidenced by the MLP’s results.
In contrast, for the Squirrel and Chameleon datasets, processing directed messages along only one
direction is crucial for good performance. Only FLODE, DirGNN, and CoED exhibit strong results
on these datasets when configured accordingly. Specifically, for CoED, we introduce the α hyper-
parameter as in Rossi et al. (2024) to weigh the directional messages post aggregation, replacing
m(l)
←W(l)

← +m(l)
→W(l)

→ in Equation 4 with αm(l)
←W(l)

← + (1 − α)m(l)
→W(l)

→ . In addition, we make
the transformation of self-features optional.

Importantly, our results highlight the advantage of the fuzzy Laplacian over the magnetic Laplacian
and the Chung Laplacian. In particular, the magnetic Laplacian does not process the aggregated
messages from out-neighbors and in-neighbors separately. Instead, it combines them into both the
real and imaginary components of the aggregated feature vector, thus losing the opportunity to pro-
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Roman-Empire SNAP-Patents Texas Wisconsin Arxiv-Year Squirrel Chameleon Citeseer Computers Photo Cora
Hom. level 0.05 0.07 0.11 0.21 0.22 0.22 0.23 0.74 0.78 0.81 0.81
Undirected ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

MLP 64.94±0.62 31.34±0.05 80.81±4.75 85.29±3.31 36.70±0.21 37.53±1.74 39.05±3.74 74.02±1.90 83.56±0.26 90.75±0.31 75.69±2.00
GCN 73.69±0.74 51.02±0.06 55.14±5.16 51.76±3.06 46.02±0.26 39.47±1.47 40.89±4.12 76.50±1.36 89.65±0.52 92.70±0.20 86.98±1.27
SAGE 85.74±0.67 48.43±0.21 82.43±6.14 81.18±5.56 52.94±0.14 36.09±1.99 37.77±4.14 76.04±1.30 91.20±0.29 94.59±0.14 86.90±1.04
GAT 80.87±0.30 45.92±0.22 52.16±6.63 49.41±4.09 46.05±0.51 35.62±2.06 39.21±3.08 76.55±1.23 90.78±0.13 93.87±0.11 86.33±0.48
GGCN 74.46±0.54 OOM 84.86±4.55 86.86±3.29 OOM 37.46±1.57 38.71±3.04 77.14±1.45 91.81±0.20 94.50±0.11 87.95±1.05
FLODE 74.97±0.53 OOM 77.57±5.28 80.20±3.56 OOM 38.63±1.68 42.85±3.89 78.07 ±1.62 90.88±0.23 95.93±0.20 86.44±1.17
Sheaf 77.94±0.53 OOM 85.95±5.51 89.41±4.74 48.77±0.20 39.03±1.73 41.98±3.42 77.14±1.85 90.56±0.13 95.01± 0.17 87.30±1.15

MagNet 88.07±0.27 OOM 83.3±6.1 85.7±3.2 60.29±0.27 42.7±1.5 44.5±1.1 75.26±1.63 90.30±0.27 94.54±0.19 82.63±1.80
Chung 87.35±0.53 64.77±0.23 80.54±4.65 81.79±5.42 53.01±0.45 42.46±1.77 43.47±3.64 76.08±1.11 92.57±0.16 95.47±0.14 86.03±1.63
DirGNN 91.23± 0.32 73.95±0.05 83.78 ± 2.70 85.88±2.11 64.08±0.26 44.19±2.42 46.08± 2.67 76.63±1.51 92.97±0.26 96.13±0.12 86.27± 1.45
Co-GNN 91.57±0.32 48.31±0.15 83.51±5.19 86.47±3.77 49.82±0.24 39.85±1.15 41.92±4.03 76.49±1.40 92.76±0.22 95.95±0.14 87.44± 0.85

CoED 92.17±0.29 74.67±0.02 84.59±4.53 87.84±3.70 64.59±0.20 45.50±1.62 47.27±3.62 77.14±1.57 92.88±0.15 95.83±0.12 87.02±1.01

Table 1: Comparison of baseline models and CoED (without edge direction learning) for node
classification task across different types of graphs. Top three models are colored by First, Second,
Third. The reported numbers are the mean and standard deviation of test accuracies across different
splits. The first two rows report the homophily ratios of the graphs and whether they are directed or
undirected. OOM indicates out-of-memory error.

cess the two separately. Moreover, during the Laplacian convolution, the directed messages further
mix with self-features encoded in the real component. This results in poor performance by MagNet
on directed graphs. The real-world directed graphs are often not strongly connected and thus the
corresponding transition matrices’ top left singular vectors are not as informative as in the undi-
rected cases. Since the Chung Laplacian is constructed from this singular vector, it shows relatively
poor performance on such datasets as Roman-Empire or Wisconsin compared to the other directed
models and instead delivers better results on datasets with undirected graphs. Sheaf also suffers
on the datasets with directed graphs despite expanding the feature dimensions via an object called
a stalk, because the sheaf Laplacian is constrained to be symmetric, thereby losing the ability to
process directed messages. Taken together, our benchmarking demonstrates that CoED’s ability to
effectively process self-features and separately aggregate in-neighbor and out-neighbor messages
using our fuzzy Laplacian enables it to achieve competitive performance across diverse datasets.

5.2 NODE REGRESSION ON GRAPH ENSEMBLE DATASET

Our key contribution is the joint learning of continuous edge directions alongside GNN parameters.
This approach is particularly effective on graph ensemble data, where the graph structure remains
fixed but multiple realizations of node features and targets exist. By learning edge directions for all
edges without a need to mask parts of the graph, our method optimizes information flow across the
entire graph. Learning edge directions for the node classification task above, where a subset of nodes
are masked for testing, would optimize the edges connected to the training node at the expense of
those connected to the test nodes, diminishing overall performance. However, in the graph ensemble
setting, learning continuous edge directions substantially improves performance, as we empirically
demonstrate below on both synthetic and real-world datasets.

5.2.1 SYNTHETIC DATASETS

Directed flow on triangular lattice. We begin by applying CoED GNN to a node regression
problem constructed on a graph with continuous edge directions, where the target node features are
obtained by directionally message-passing the input node features over long distances across the
graph. To generate such a graph with continuous edge directions exhibiting long-range order, we
created a two-dimensional triangular lattice, assigning each node a position in the 2d plane. We
then defined a potential energy function V on this plane, consisting of one peak and one valley
(Figure 3(a)). The gradient of V yields a vector field with long-range order, which we used to
assign continuous edge directions to the edges of the triangular lattice (Figure 3(b)). Using this
graph, we performed the message passing step of Equation 4 iteratively 10 times—using random
matrices W→, W←, and Wself that were shared across all 10 iterations, starting from the initial
node features to obtain the target node values. We repeated this procedure 500 times for different
random initial node features and generated an ensemble of input node features and corresponding
target node values. During training, we provided all models with the undirected version of the
triangular lattice graph (i.e., all θij = π/4 for CoED). The goal of the learning task is to predict
the target node values from the input node features. Additionally, CoED GNN is expected to learn
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Figure 3: Synthetic datasets. (a-b) Triangular lattice graph with edge directions derived from the
gradient of a 2d potential function V (shown in a), creating long-range flows across the graph. (c-d)
Gene regulatory network (GRN) represented as a directed graph where nodes are genes and edges
denote interactions. Steady-state gene expression levels are obtained from GRN dynamics, with
perturbations simulated by setting the expression levels of specific genes to zero.

the underlying ground truth continuous edge directions of the graph as part of its training. Further
details on data generation are provided in Appendix A.2.1.

Gene Regulatory Network (GRN) dynamics. Gene Regulatory Networks (GRNs) are directed
graphs where nodes represent genes and edges represent interactions between pairs of genes (Fig-
ure 3(c)). In these networks, when two genes interact, one either activates or suppresses the other.
We used Hill functions with randomly chosen parameters to define the dynamics of these gene-
gene interactions. We constructed a directed GRN graph with 200 nodes and randomly assigned
interactions between them. Starting from random initial expression levels, we solved the system of
nonlinear ordinary differential equations representing the GRN dynamics to obtain the steady-state
expression levels of all genes. Next, we modeled gene perturbations by setting the expression levels
of either one or two genes (the perturbed set of genes) to zero and recomputing the steady-state
expression levels for all genes using the same GRN dynamics (Figure 3(d)). We performed this
procedure for all single-gene perturbations and a subset of double-gene perturbations, resulting in
1,200 different realizations. Our learning task is to predict the steady-state expression levels of all
genes following perturbation (target node values) given the initial steady-state expression levels with
the perturbed genes set to zero (input node features). We provided baseline models with the original
graph and CoED with the undirected version of the graph. Further details of the data generation are
provided in Appendix A.2.2.

Results. Table 2 shows the test performances of CoED alongside several baseline models: classical
models, GCN and GAT; a transformer-based model with positional encoding, GraphGPS (Rampášek
et al., 2022); a directionality-aware model, MagNet and the model based on the Chung Laplacian; a
higher-order model, DRew (Gutteridge et al., 2023); and a combination of directionality-aware and
higher-order model, FLODE. Details of the training setup, hyperparameter search procedure, and
selected hyperparameters are provided in Appendix A.2.2.

To identify which aspects of GNNs are particularly effective for learning on graph ensemble datasets,
we analyze the baseline models’ results in detail. On the undirected lattice graph, MagNet provides
only a slight improvement over GCN, which is expected since MagNet reduces to ChebNet (Def-
ferrard et al., 2016) on undirected graphs, and GCN is a first-order truncation of ChebNet. How-
ever, in the directed GRN experiments, MagNet shows substantial improvement over GCN. We
also observe that higher-order GNNs like DRew and FLODE perform competitively on the undi-
rected lattice graph. Notably, FLODE’s instantaneous enhancement of connectivity via fractional
powers of the graph Laplacian outperforms DRew’s more gradual incorporation of higher-hop mes-
sages. However, both methods struggle on the directed GRN graph. The model based on the Chung
Laplacian demonstrates strong performance on the lattice graph but offers only a modest improve-
ment over GCN on the directed GRN. On both synthetic graphs, attention-based models—GAT and
GraphGPS—deliver strong performance, coming in just behind CoED. GraphGPS, in particular,
seems to benefit from its final global attention step, similar to how FLODE benefits from densifying
the graph. We also notice that increasing the dimension of Laplacian positional encoding does not
further enhance GraphGPS’s performance. Interestingly, models that learn edge weights via atten-
tion mechanisms outperform MagNet on the directed GRN graph. This is likely because MagNet’s

8



Published as a conference paper at ICLR 2025

unitary evolution of complex-valued features does not resemble the actual feature propagation (i.e.,
the GRN dynamics), in addition to the shortcomings highlighted in the previous section. CoED out-
performs the attention-based models in both datasets as it optimizes the edge directions directly as a
part of the learning objective independent of the node features. The shortcomings of GAT compared
to CoED on graph ensemble data are discussed further in Appendix H.

We then investigated whether CoED can recover the ground truth continuous edge directions of
the triangular lattice graph, given that the feature propagation steps during data generation closely
resemble the message-passing operation of CoED. As shown in Figure 4, CoED correctly learns
the true directions. Lastly, since both synthetic datasets are generated by propagating input features
over multiple hops, we investigated how performance scales with model depth by training CoED
and the second-best model with up to 10 layers. Figure 5 demonstrates that CoED continues to
improve as depth increases, while the performance of the other models plateau at a shallower depth.

Lattice GRN
GCN 77.56 ±0.47 69.38 ±0.62
GAT 9.41 ±0.05 12.07 ±1.50
GraphGPS 3.47 ±0.14 25.16 ±1.56
MagNet 75.06 ±0.03 43.42 ±4.34
Chung 8.03 ±0.03 62.95±0.78
DRew 28.55 ±0.02 69.92 ±0.15
FLODE 7.54±0.05 70.31 ±0.03

CoED 1.36 ±0.06 5.02 ±0.45

Table 2: Comparison of different models on the
synthetic datasets. Values are test losses reported
with a common factor of 10−3 in both columns.

Figure 4: Learned theta vs. true theta for CoED
applied to directed flow on triangular lattice syn-
thetic dataset.

(a) Test loss vs. depth on triangular lattice dataset (b) Test loss vs. depth on GRN dataset

Figure 5: Model performance as a function of depth.

5.2.2 REAL DATASETS

Single-cell Perturb-seq. Perturb-seq (Dixit et al., 2016) is a well-established experimental tech-
nique in single-cell biology that inspired the synthetic GRN experiment described earlier. In Perturb-
seq experiments, one or more genes in a cell are knocked out resulting in zero expression—as in our
synthetic GRN dataset. The resulting changes in the expression levels of all other genes are then
measured to elucidate gene-gene interactions. For our study, we used the Replogle-gwps dataset
(Replogle et al., 2022; Peidli et al., 2024), which includes 9,867 distinct single-gene perturbations,
along with control measurements from cells without any perturbation to establish baseline gene ex-
pression levels. The learning task is again predicting the expression levels of all genes following
perturbation given the initial steady-state with the expression levels of the perturbed genes set to
zero. Since there is no ground truth gene regulatory network (GRN) available for this dataset, we
constructed an undirected k-nearest neighbors graph to connect genes with highly correlated ex-
pression levels. All models are trained using this heuristic graph. Details of the data processing
procedure are provided in Appendix A.3.1.

Wikipedia web traffic. We also modeled the traffic flow between Wikipedia articles using the
WikiMath dataset, which is classified as a “static graph with temporal signals” in the PyTorch Ge-
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ometric Temporal library (Rozemberczki et al., 2021). In this dataset, each node corresponds to a
Wikipedia article on a popular mathematics topic, and each directed edge represents a link from one
article to another. The node features are the daily visit counts of all articles over a period of 731
consecutive days. The learning task is node regression: predict the next day’s visit counts across all
articles given today’s visit counts. We trained the baseline models using the ground truth directed
graph, while CoED was trained starting from the undirected version of the graph. Additional details
are provided in Appendix A.3.2.

Power grid. We applied CoED to the optimal power flow (OPF) problem using the OPF-
Data (Lovett et al., 2024) from the PyTorch Geometric library. In this dataset, a power grid is
represented as a directed graph with nodes corresponding to buses (connection points for generators
and loads) and edges representing transformers and AC lines. Input features are the operating values
of all components under specific load conditions, and the targets are the corresponding AC-OPF so-
lution values at the generator nodes. To compare different models, we used a consistent architecture
across components but substituted different model layers for message passing. For CoED, they were
again converted to undirected edges. Additional details are provided in Appendix A.3.3.

Perturb-seq Web traffic Power grid
GCN 4.13±0.08 7.07±0.03 28.56±6.08
MagNet 4.11±0.01 6.94±0.02 18.05±2.77
GAT 3.85±0.03 6.00±0.03 13.57±1.73
DirGCN 5.46±0.26 6.72±0.04 6.15±0.84
DirGAT 3.98±0.07 6.55±0.04 3.28±0.17

CoED 3.56±0.03 5.76±0.05 2.91±0.11

Table 3: Comparison of different methods
on real graph ensemble datasets. Values are
test losses reported with common factors of
101, 10−1, 10−3 for Perturb-seq, web traffic,
and power grid columns, respectively.

Results. Table 3 reports the test performances
of all baseline models and CoED on the three
datasets. The baselines include GAT, MagNet,
DirGCN, and DirGAT. We focus on these models
because attention-based approaches showed com-
petitive performance on the synthetic datasets, and
MagNet, which accounts for edge directions, per-
formed well on the directed GRN dataset. Details
of the training setup, hyperparameter search proce-
dure, and selected hyperparameters are provided in
Appendix A.3.

We observe that CoED achieves the best perfor-
mance across all three datasets. On the Perturb-seq
dataset with an undirected graph, MagNet performs
similarly to GCN while DirGCN struggles. We at-
tribute DirGCN’s poor performance to clashing learnable parameters: it uses two distinct weight
matrices, W← and W→, applied to identical in- and out-neighbor aggregated messages in the case
of undirected graphs. For a propagation path of L hops, this results in 2L feature transformations,
comprised of different combinations of the two weight matrices, which together reduce the model’s
ability to efficiently learn the optimal weight matrices. In contrast, DirGAT’s attention mechanisms
break the symmetry of the undirected edges, leading to improved performance. CoED naturally ad-
dresses this issue by learning the edge directions, which are visualized in Appendix I.1. On the web
traffic and power grid datasets, which have directed graphs, we observe a similar trend. MagNet
outperforms GCN due to its ability to process directed messages. However, GAT delivers better
performance than MagNet, likely because its attention mechanism effectively captures important
features. Since directed graphs create distinct feature propagation paths, DirGCN achieves sub-
stantial performance gains. DirGAT further improves upon DirGCN by leveraging additional edge
weight learning through an attention mechanism. CoED surpasses all these models, demonstrating
the effectiveness of learning continuous edge directions.

6 CONCLUSION

We have introduced the Continuous Edge Direction (CoED) GNN, which assigns fuzzy, continuous
directions to the edges of a graph and employs a novel complex-valued Laplacian to transform in-
formation propagation on graphs from diffusion to directional flow. Our theoretical analysis shows
that CoED GNN is more expressive than existing Laplacian-based methods and matches the expres-
siveness of an extended Weisfeiler-Leman (WL) test for directed graphs with fuzzy edges. Through
extensive experiments on both synthetic and real-world graph ensemble datasets—including gene
regulatory networks, web traffic, and power grids—we demonstrated that learning continuous edge
directions significantly improves performance over existing GNN models.
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A EXPERIMENTAL DETAILS

A.1 NODE CLASSIFICATION

In Table 1, MLP, GCN, SAGE, GAT, GGCN, and Sheaf’s results on Texas, Wisconsin, Citeseer,
and Cora are taken from Bodnar et al. (2022); MLP, GCN, MagNet, and DirGNN’s results on
Roman-Empire, SNAP-Patents, and Arxiv-Year from Rossi et al. (2024); SAGE and GAT’s re-
sults on Roman-Empire, and GCN, SAGE, and GAT’s results on the filtered versions of Squirrel and
Chameleon from Platonov et al. (2023); GCN, SAGE, GAT, and GGCN’s results on AM-Computers
and AM-Photo, and GGCN’s result on Roman-Empire from Deng et al. (2024), SAGE and GAT’s
results on SNAP-Patents from Dwivedi et al. (2023); MagNet’s result on Texas and Wisconsin from
the original paper (Zhang et al., 2021) and the filtered versions of Squirrel and Chameleon from (Sun
et al., 2024); Flode’s results on Roman-Empire, Citeseer, and Cora from the original paper (Maskey
et al., 2023); Co-GNN’s results on Roman-Empire and Cora from the original paper (Finkelshtein
et al., 2023); GAT’s result on Arxiv-Year from Lim et al. (2021). We trained CoED and baseline
models to fill the remaining entries in the table. We describe the training procedures below. Texas,
Wisconsin, Citeseer, and Cora datasets were downloaded using PyTorch Geometric library (Fey
& Lenssen, 2019) with split=‘geom-gcn’ argument to use the 10 fixed 48%/32%/20% train-
ing/validation/test splits provided by (Pei et al., 2020). We downloaded AM-Computers and AM-
Photo datasets from the same library but used the 60%/20%/20%-split file provided in the repository
of Deng et al. (2024). Since the original Squirrel and Chameleon datasets (Pei et al., 2020) have re-
dundant nodes, we used the filtered versions with directed graphs provided in the repository of
Platonov et al. (2023). For Roman-Empire, SNAP-Patents, and Arxiv-Year datasets, we used the
dataloading pipeline provided in the repository of Rossi et al. (2024). All referenced results used the
same splits as in our experiments.

Training. We evaluated the validation accuracy at each epoch, incrementing a counter if the value
did not improve and resetting it to 0 when a new best validation accuracy was achieved. Train-
ing was early-stopped when the counter reached a patience of 200. Unless otherwise mentioned,
we used the default hyperparameter settings of the respective models. We used the ReLU ac-
tivation function and the ADAM optimizer in all experiments. Across all models, we searched
over the following hyperparmeters: hidden dimension ∈ [16, 256], learning rate ∈ [5e-4, 2e-2],
weight decay ∈ [0, 1e-2], dropout rate ∈ [0, 0.7], and the number of layers ∈ [2, 5]. We addi-
tionally searched over model-specific hyperparameters: the weight between in-/out-neighbor ag-
gregated messages α ∈ {0, 0.5, 1}, jumping knowledge (jk) ∈ {None, ‘cat’, ‘max’}, and layer-
wise feature normalization (norm) ∈ {True,False} for DirGNN, Chung, and CoED; self-feature
transform ∈ {True,False}, self-loop value ∈ {0, 1} for Chung and CoED; convolution type
∈ {‘GCN’, ‘SAGE’, ‘GAT’} for DirGNN; the order of Chebyshev polynomial K ∈ {1, 2}, the
global directionality q ∈ [0, 0.25], and self-loop value ∈ {0, 1} for MagNet; the initial temperature
for Gumbel-softmax τ0 ∈ {0, 0.1}, the number of environment network layers ∈ [1, 4], the hid-
den dimension of environment network ∈ [16, 128], the number of action network layers ∈ {1, 2},
the hidden dimension of action network {4, 8}, layer norm ∈ {True,False}, skip connection
∈ {True,False}, model type in ∈ {‘Sum GNN’, ‘Mean GNN’, ‘GCN’}; and the number of lay-
ers ∈ [1, 3], the number of both encoder and decoder layers ∈ {1, 2}, and self-loop value ∈ {0, 1}
for FLODE. For FLODE, the number of layers refers to the number of forward Euler steps, and we
solved the heat equation with a minus sign, which was the default setup for node classification tasks.
If the self-loop value is 1, the self-feature is combined with neighbors’ features in the AGGREGATE
function. For CoED and Chung model on Roman-Empire, SNAP-Patents, and Arxiv-Year datasets,
we only searched over the type of jumping knowledge ∈ {‘cat’, ‘max’}, setting all other hyperpa-
rameters as reported in Rossi et al. (2024). For Sheaf, we searched over stalk dimension ∈ [3, 8],
hidden dimension ∈ [8, 64], the number of layers ∈ [2, 8], sheaf weight decay from the same weight
decay range, the number of decoder layer ∈ {1, 2}, and using both low-pass and high-pass filters
∈ {True,False}. We report in Table 1 the mean accuracy and standard deviation over the 10
test splits using the best hyperparameters presented below. All experiments were performed on two
NVIDIA RTX 6000 Ada Generation GPUs with 48GB of memory and one NVIDIA A100 Tensor
Core GPU with 80GB, and it took roughly three weeks of training to produce the results. We re-
port OOM when a model with the minimum hyperparameter configuration fails to process data on a
48GB GPU.
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# layers # hidden lr wd dropout self-loop α norm jk self-feature

Roman-Empire 5 256 1e-2 0 0.2 0 0.5 False max True
SNAP-Patents 5 32 1e-2 0 0 0 0.5 True cat True
Texas 2 64 2e-2 5e-4 0.5 0 0.5 False None True
Wisconsin 2 128 2e-2 1e-3 0.5 0 0.5 False None True
Arxiv-Year 6 256 5e-3 0 0 0 0.5 False max False
Squirrel 3 64 1e-2 5e-3 0 0 0.5 False cat False
Chameleon 2 64 1e-2 2e-3 0 0 0.5 False cat False
Citeseer 2 256 2e-3 0 0.7 0 0.5 False None True
AM-Computers 2 512 5e-3 0 0.7 1 0 False None False
AM-Photo 3 128 1e-3 0 0.7 1 0.5 False None True
Cora 2 128 5e-4 1e-4 0.5 1 0 False None False

Table A.1: Selected hyperparameters CoED.

# env/act layers # env/act hidden τ0 conv type lr wd dropout layer norm skip

SNAP-Patents 2 / 1 32 / 4 0 GCN 1e-2 0 0 True False
Texas 3 / 1 64 / 4 0.1 GCN 2e-2 1e-3 0.5 False True
Wisconsin 4 / 2 64 / 4 0.1 GCN 2e-2 5e-4 0.5 False True
Arxiv-Year 3 / 1 128 / 8 0.1 GCN 1e-3 0 0 True True
Squirrel 2 / 1 64 / 4 0.1 Mean GCN 5e-3 0 0 False False
Chameleon 2 / 1 64 / 4 0.1 Mean GCN 5e-3 0 0 False False
Citeseer 4 / 1 64 / 4 0 GCN 1e-2 0 0.7 True True
AM-Computers 4 / 2 64 / 4 0 GCN 5e-3 0 0 True False
AM-Photo 3 / 2 64 / 8 0 GCN 5e-3 0 0.5 True True

Table A.2: Selected Hyperparameters for Co-GNN.

# layers # hidden conv type lr wd dropout α norm jk

Texas 2 256 DirSAGE 2e-2 5e-4 0.5 0.5 False None
Wisconsin 3 256 DirSAGE 1e-2 1e-4 0.5 0.5 False None
Squirrel 4 64 DirGCN 1e-2 5e-3 0 0.5 False cat
Chameleon 2 64 DirGCN 1e-2 2e-3 0 0.5 False cat
Citeseer 2 128 DirSAGE 5e-3 1e-3 0.5 0.5 False None
AM-Computers 3 256 DirSAGE 1e-3 0 0.5 0.5 True None
AM-Photo 4 128 DirSAGE 1e-3 0 0.5 0.5 True None
Cora 2 64 DirGCN 5e-3 5e-4 0.5 0 False None

Table A.3: Selected hyperparameters for DirGNN.

# layers # hidden lr wd dropout α norm jk self-feature

Roman-Empire 5 256 1e-2 0 0.2 0.5 False cat True
SNAP-Patents 5 32 1e-2 0 0 0.5 True cat True
Texas 3 64 1e-2 1e-3 0 0.5 True None True
Wisconsin 2 32 1e-2 1e-4 0.5 0.5 False None True
Arxiv-Year 6 256 5e-3 0 0 0.5 False cat False
Squirrel 2 32 5e-3 5e-3 0 0.5 False cat False
Chameleon 2 128 2e-2 1e-3 0 0.5 False cat False
Citeseer 2 64 1e-3 1e-4 0.5 0 False None True
AM-Computers 3 256 1e-3 0 0 0 True None True
AM-Photo 4 256 5e-3 1e-4 0 0 True None True
Cora 2 32 5e-4 0 0.5 0 False None True

Table A.4: Selected hyperparameters for Chung.
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# layers # hidden lr wd dropout K q

Citeseer 3 256 1e-3 0 0.5 2 0
AM-Computers 5 256 1e-3 1e-4 0.5 2 0
AM-Photo 5 256 2e-3 0 0.7 3 0
Cora 1 32 1e-2 0 0.5 2 0

Table A.5: Selected hyperparameters for MagNet.

# layers # hidden type # stalk lr wd sheaf wd dropout high/low-pass filter # encoder layers

Roman-Empire 6 16 Diagonal 3 2e-3 1e-2 0 0.7 False/True 2
Arxiv-Year 8 16 Diagonal 4 1e-2 0 0 0 True/False 1
Squirrel 2 8 Orthogonal 6 1e-3 0 0 0 Ture/False 1
Chameleon 2 16 Diagonal 6 1e-2 0 0 0 True/False 1
AM-Computers 4 32 General 6 1e-2 0 0 0 True/False 1
AM-Photo 4 16 Diagonal 8 1e-2 0 0 0 True/False 1

Table A.6: Selected hyperparameters for Sheaf.

# layers # hidden # encoder/decoder layers lr wd dropout self-loop

Texas 1 128 1 / 1 1e-2 0 0 0
Wisconsin 1 128 1 / 1 5e-3 0 0.5 0
Squirrel 1 16 1 / 1 2e-2 1e-2 0.5 1
Chameleon 1 256 1 / 1 1e-2 5e-3 0.5 1
AM-Computers 1 32 1 / 2 5e-3 0 0 1
AM-Photo 1 64 2 / 1 5e-3 5e-3 0.5 1

Table A.7: Selected hyperparameters for FLODE.

# layers # hidden lr wd dropout

MLP (Squirrel) 3 64 1e-3 1e-4 0.5
MLP (Chameleon) 4 128 1e-2 0 0.7
MLP (AM-Computers) 2 256 5e-3 1e-4 0
MLP (AM-Photo) 2 256 5e-3 1e-4 0
SAGE (Arxiv-Year) 4 128 1e-3 1e-4 0
GGCN (Squirrel) 2 32 5e-3 1e-4 0.7
GGCN (Chameleon) 4 64 1e-2 5e-3 0.7

Table A.8: Selected hyperparameters for MLP, SAGE, and GGCN.

A.2 GRAPH ENSEMBLE EXPERIMENT WITH SYNTHETIC DATASETS

A.2.1 DATA GENERATION AND TRAINING SETUP FOR THE DIRECTED FLOW TRIANGULAR
LATTICE GRAPH

Data generation. To obtain the triangular lattice graph described in the main text, we first designed
a potential function V on [−2, 2]2 plane with a peak (source) and a valley (sink). We used quadratic
potentials, located at µ1 = (−1, 1) and µ2 = (1,−1) with stiffness matrices,

K1 = K2 =

(
1 0
0 1

)

With magnitudes a1 = 1 and a2 = −1, the potential function V (x) is parameterized as,

V (x) = a1(x− µ1)
⊤K1(x− µ1) + a2(x− µ2)

⊤K2(x− µ2)

We then generated a triangular lattice on the 2d plane and considered this lattice as a graph Glattice,
where the vertices of the lattice serve as the nodes of the graph, and the edges of the lattice form the
edges of the graph. In this way, each node vi ∈ Vlattice has an associated spatial position xi on the 2d
plane. We computed ∆Vij = V (xj)− V (xi) for all (vi, vj) ∈ Elattice. All ∆Vij values were shifted
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and scaled to the range [0, π/2] to obtain the θij , which is an approximate version of the gradient
direction of the potential. In the resulting lattice graph, an edge points towards the node with the
lower potential energy.

We then assigned to each node a 10-dimensional random feature vector sampled independently
from the standard multivariate normal distribution, and normalized them to have a unit-norm, and
repeated the process 500 times to generate an ensemble of node features. To generate corresponding
target values, we propagated features using Equation 4 with message-passing matrices P→ and P←
computed from Θ of the lattice graph as described in Equation 2 and the entries of the 10×10 weight
matrices W→, W←, and Wself sampled independently from the standard normal distribution and
shared across all 10 iterations. Instead of applying an activation function, we normalized the features
mself +m→ +m← to have unit norm. We used the features after 10 iterations of message passing
as the target values. We divided these 500 instances of feature-target pairs using 60%/20%/20%
random training/validation/test split.

Training. We used a batch size of 16 for training with random shuffling at each epoch and a full
batch for both validation and testing. We evaluated the validation MSE at each epoch, increment-
ing a counter if the value did not improve and resetting it to 0 when a new best validation MSE
was achieved. Training was early-stopped when the counter reached a patience of 20. We used
neither dropout nor weight decay, as we aim to learn an exact mapping from node features to tar-
get values for regression, as opposed to a noise-robust node embedding for classification. We used
the ReLU activation function in all models, except for ELU in GAT, and used ADAM optimizer
for all experiments. Across all models, we searched over the following hyperparmeters: the num-
ber of layers ∈ [2, 4], hidden dimension ∈ [16, 64], learning rate ∈ [1e-3, 1e-2]. We additionally
grid-searched over model-specific hyperparameters: the number of attention heads ∈ {1, 4, 8} and
skip connection (sc) ∈ {True,False} for GAT; attention type ∈ {‘multihead’, ‘performer’}, at-
tention heads ∈ {1, 4, 8}, encoding type ∈ {‘eigenvector’, ‘electrostatic’}, the dimension of eigen-
vector encoding ∈ [2, 5, 10, 20] and self-loop value ∈ {0, 1} for GraphGPS; the order of Cheby-
shev polynomial K ∈ {1, 2} and self-loop value ∈ {0, 1} for MagNet; α ∈ {0, 0.5, 0.1} for
Chung; multi-hop aggregation mechanism ∈ {‘sum’, ‘weight’} for DRew; the number of both en-
coder and decoder MLP layers ∈ {1, 2, 3}, and self-loop value ∈ {0, 1} for FLODE; self-feature
transform ∈ {True,False}, learning rate for Θ ∈ [1e-3, 1e-2], and layer-wise (lw) Θ learning
∈ {True,False} for CoED. For GraphGPS, we used GINE as a convolution layer and provided 1
as an edge attribute. Computing structural encoding via random walk resulted in an all-zero vector
since the degree of node is 3 across all nodes except at the boundary in our lattice graph. We thus
opted to use the electrostatic function encoding provided in the original paper as an alternative to
structural encoding. For MagNet, we optimized q along with the model parameters during training.
We supplied the undirected version of the lattice graph by setting all θij values to π/4 and used
self-feature transform with self-loop value set to 0. We did not use layer-wise feature normalization.
Table 2 reports the mean accuracy and standard deviation on the test data from the top 5 out of 7
training runs with different initializations using the best hyperparameters shown below. All exper-
iments were performed on two NVIDIA RTX 6000 Ada Generation GPUs with 48GB of memory
and it took about 3 days of training time to generate the results.

Model # layers # hidden lr self-loop sc # attn. heads attn. type enc. type K α aggr. # enc. layers # dec. layer self-feature lr Θ lw Θ

GCN 2 16 1e-3 - - - - - - - - - - - - -
GAT 4 32 1e-3 - True 4 - - - - - - - - - -
GraphGPS 4 64 1e-3 0 - 4 multihead eigenvector (dim=5) - - - - - - - -
MagNet 4 64 1e-3 1 - - - - 2 - - - - - -
Chung 4 64 1e-3 0 - - - - - 0.5 - - - - - -
DRew 3 64 5e-3 - - - - - - - weight - - - - -
FLODE 4 64 1e-2 0 - - - - - - - 1 3 - - -
CoED 4 64 1e-3 - - - - - - - - - - True 1e-3 False

Table A.9: Hyperparameters selected for node regression on the synthetic lattice graph.

A.2.2 DATA GENERATION AND TRAINING SETUP FOR THE GRN DYNAMICS EXPERIMENT

Data generation. We prepared a directed adjacency matrix A for a graph with 200 nodes by sam-
pling each entry of the matrix independently from a Bernoulli distribution with success probability
0.03. We interpreted an edge Aij as indicating that the gene represented by the node vj is regulating
the gene represented by the node vi. We then randomly chose half of the edges as activating edges
and the other half as suppressing edges. The scalar feature value of each node is the expression level
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of a gene, measured as concentration ci. In order to simulate the gene regulatory network dynamics
where genes are either up- or down- regulating connected genes, we sampled the magnitudes of
activation γact

ij and suppression γsup
ij from a uniform distribution with the support [0.5, 1.5]. We ad-

ditionally sampled half-saturation constants Kij , which control how quickly ci changes in response
to cj , from a uniform distribution with support [0.25, 0.75]. Lastly, we sampled the initial concen-
trations independently from a uniform distribution with support [0.1, 10] for each gene, and ran the
GRN dynamics as described by,

dci
dt

=
∑

j∈N (i)

(
γact
ij F

act(cj ,Kij) + γsup
ij F sup(cj ,Kij)

)
− ci (5)

for 250 time steps with dt = 0.05 to reach a steady state for c. The summation in the above
equation is over all genes that either activate or repress gene i. F act(cj ,Kij) = c2j/(K

2
ij + c2j ) and

F sup(cj ,Kij) = K2
ij/(K

2
ij+c2j ), which are the Hill functions defining up- and down- regulations of

gene i by gene j, respectively. From this steady state, we mimicked the gene knockout experiment
in biology by setting the concentration values of a chosen set of genes to zero and running the GRN
dynamics for additional 100 time steps, by which time genes reached new steady-state values. We
performed a single-gene knockout for all 200 genes and a double-gene knockout for 1000 randomly
selected pairs of genes. We defined node features as the original steady state with the values of
knockout genes set to zero and the corresponding target values as the new steady-state values reached
from this state. This procedure generates an ensemble of 1200 feature-target pairs for each node
for the synthetic GRN graph. We used all 200 single gene knockout results as training data, and
randomly selected 200 and 800 double gene knockout results for validation and testing, respectively.

Training. For each knockout result, we used all nodes for regression except those corresponding
to the knocked out genes. We used a batch size of 8 for training with random shuffling at each
epoch, and a full batch for both validation and testing. We evaluated the validation loss at every
epoch, and implemented the same counting scheme as in the directed flow experiment to early-stop
the training with a patience of 50. We searched over the number of layers ∈ [2, 5], hidden dimension
∈ {16, 32}, and learning rate ∈ [5e-4, 5e-3], and otherwise conducted the same hyperparameter
search as described in the lattice experiment, using the same training setup. Table 2 reports the mean
accuracy and standard deviation on the test data from the top 5 out of 7 training runs with different
initializations using the best hyperparameters shown below. All experiments were performed on
two NVIDIA RTX 6000 Ada Generation GPUs with 48GB of memory and it took about 3 days of
training time to generate the results.

Model # layers # hidden lr self-loop sc # attn. heads attn. type enc. type K α aggr. # enc. layers # dec. layer self-feature lr Θ lw Θ

GCN 3 32 5e-4 - - - - - - - - - - - - -
GAT 5 32 2e-3 - True 8 - - - - - - - - - -
GraphGPS 5 32 5e-3 0 - 4 multihead eigenvector (dim=10) - - - - - - - -
MagNet 5 32 5e-3 1 - - - - 2 - - - - - - -
Chung 5 32 1e-3 - - - - - - 0.5 - - - True
DRew 3 32 5e-4 - - - - - - - weight - - - - -
FLODE 5 32 5e-3 1 - - - - - - - 1 1 - - -
CoED 5 32 1e-3 - - - - - - - - - - True 1e-2 True

Table A.10: Hyperparameters selected for node regression on the synthetic GRN graph.

A.3 GRAPH ENSEMBLE EXPERIMENT WITH REAL DATASETS

A.3.1 PREPROCESSING, DATA GENERATION, AND TRAINING SETUP FOR SINGLE-CELL
PERTURBATION EXPERIMENTS

Preprocessing. We downloaded Replogle-gwps dataset from scPerturb database (Peidli et al.,
2024) and followed the standard single-cell preprocessing routine using Scanpy software (Wolf
et al., 2018), selecting for the top 2000 most variable genes. This involved running the
following four functions: filter cells function with min counts=20000 argument,
normalize per cell function, filter genes function with min cells=50 argument,
highly variable genes function with n top genes=2000, flavor=‘seurat v3’,
and layer=‘counts’ arguments. Afterwards, we discarded genes that were not part of the top
2000 most variable genes. These 2000 genes define nodes. We did not log transform the expres-
sion values and used the normalized expression values obtained from these preprocessing steps for
all downstream tasks. Out of 9867 genes that were perturbed in the original dataset, 958 of them
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were among the top 2000 most variable genes. Note that perturbed genes should have near zero
expression values since the type of perturbation in the original experiment was gene knockout via a
technique called CRISPRi. Therefore, we disregarded perturbed genes if the perturbations did not
result in more than 50% of cells with zero expression values for each respective gene. This prepro-
cessing step identifies 824 effective gene perturbations. Note that there are multiple measurements
per perturbation.

Data generation for node regression. In perturbation experiments, the expression values are mea-
sured ‘post-perturbation’ (equivalent to ci +∆ci in Figure 3(d) of the main text). Consequently, we
do not have access to their ‘pre-interaction’ expression levels (equivalent to ci with a perturbed
gene’s value set to 0). To pair each post-perturbation expression values to its putative pre-interaction
state, we randomly sampled a control measurement and set the expression value of the perturbed
gene to 0. These pairs of pre-interaction and post-perturbation expressions define the ensemble of
features and targets. Since the number of measurements vary per perturbation, we standardized
the dataset diversity by downsampling the feature target pairs to 2 per perturbation. We split each
dataset based on perturbations, grouping all cells subject to the same perturbation together. We per-
formed 60/10/30 training/validation/test splits and computed k-nearest neighbors gene-gene graph
with k = 3 using the training split. We checked that this graph roughly corresponds to creating an
edge between genes whose Pearson correlation coefficient is higher than 0.5. We also confirmed
that this graph represents a single connected component.

Training. As in the GRN example, we used all nodes (i.e., genes) for regression except for those
corresponding to a knocked-out gene. We used a batch size of 16 for training with random shuffling
at each epoch, and a full batch for both validation and testing. We evaluated the validation loss at
every epoch, and implemented the same counting scheme as in the synthetic dataset experiments to
early-stop the training with a patience of 30. Since the models’ performances generally improved as
their depths and hidden dimensions increased, we used 4 layers and a hidden dimension of 32 across
all models to streamline the comparison. We searched over learning rate ∈ {1e-3, 5e-3, 1e-2} for all
models, the order of Chebyshev polynomial K ∈ {1, 2} for MagNet; the number of attention heads
∈ {1, 4, 8} for both GAT and DirGAT; additionally, skip connection (sc) ∈ {True,False} for
GAT; self-feature transform ∈ {True,False}, learning rate for Θ ∈ {5e-4, 1e-3, 5e-3, 1e-2} and
layer-wise Θ learning ∈ {True,False} for CoED. We learned q in MagNet. Table 3 reports the
mean accuracy and standard deviation on the test data from the top 5 out of 7 training runs with dif-
ferent initializations using the best hyperparameters shown below. All experiments were performed
on two NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory and approximately one day
of training time was spent for generating the results.

Model lr K sc # attn. heads self-feature lr Θ lw Θ

GCN 5e-3 - - - - -
MagNet 1e-3 2 - - - -
GAT 1e-3 - True 4 - - -
DirGCN 5e-3 - - - - -
DirGAT 1e-3 - 1 - - -
CoED 1e-3 - - False 5e-4 False

Table A.11: Hyperparameters selected for node regression on the Perturb-seq data.

A.3.2 TRAINING SETUP FOR WEB TRAFFIC EXPERIMENTS

We downloaded WikiMath dataset from PyTorch Geometric Temporal library (Rozemberczki et al.,
2021) with the default time lag value of 8. We followed the same temporal split from the paper
where 90% of the snapshots were used for training and 10% of the forecasting horizons were used
for testing.

Training. The input features and target values are shaped as N × 8 and N × 1, respectively.
Since we consider a pair of the two consecutive snapshots as input and the corresponding target,
we disregarded the first 7 snapshots (i.e., feature dimensions) and used only the node values (i.e.,
visit counts of Wikipedia articles) of the last snapshot for prediction for testing. For training, we
utilized all 8 snapshots, generating 8 predictions. MSE loss for the predictions from the first 7
snapshots were each evaluated with the next 7 snapshots as target values. This procedure is similar
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to the ‘incremental training mode’ used to train time-series based models (Rozemberczki et al.,
2021; Eliasof et al., 2024; Guan et al., 2022). We used a full batch for both training and testing.
We evaluated test loss at each step, and implemented the same counting scheme used above to
early-stop training with a patience value of 50. We used 2 layers with a hidden dimension of 16
across all models. We searched over learning rate ∈ {1e-3, 5e-3, 1e-2, 2e-2} for all models and also
over the same model-specific hyperparameters discussed in the Perturb-seq experiments except the
number of attention heads, which was limited to 2 due to memory constraints. We learned q for
MagNet. Table 3 reports the mean accuracy and standard deviation on the test data from the top 5
out of 7 training runs with different initializations using the best hyperparameters shown below. All
experiments were performed on two NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory
and approximately 16 hours of training time was spent for generating the results.

Model lr K sc # attn. heads self-feature lr Θ lw Θ

GCN 1e-2 - - - - -
MagNet 5e-3 1 - - - -
GAT 1e-2 - True 2 - - -
DirGCN 2e-2 - - - - -
DirGAT 5e-2 - 1 - - -
CoED 5e-3 - - True 1e-2 False

Table A.12: Hyperparameters selected for node regression on the WikiMath data.

A.3.3 TRAINING SETUP FOR POWER GRID EXPERIMENTS

We downloaded a power grid graph with 2000 nodes from PyTorch Geometric library, compiled via
OPFData (Lovett et al., 2024). We selected the ‘fulltop’ topology option to obtain the information
of the entire graph, opposed to ‘N-1’ perturbation option which masks parts of the graphs. We
randomly sampled 300 graphs and split them into 200 training set, 50 validation set, and 50 test
set. Power grids are heterogeneous graphs. Refer to Figure 1 of Piloto et al. (2024) for detailed
overview of the different components. Importantly, generators, loads, and shunts (‘subnodes’) are
all connected to buses (‘nodes’) via edges, and buses are connected to one another via two types
of edges, transformers and AC lines. Thus, the load profile across the graph informs the generator
subnodes via the bus-to-bus edges. We describe the architectural design choices that we made to
accomplish this task while facilitating effective model comparison.

Model. The primary goal is to ensure information flow into those buses connected to generators.
We thus substituted different model layers to process messages over the two types of bus-to-bus
edges while keeping the rest of the architecture unchanged. The processing steps are:

1. Transform node/subnode features and edge features using an MLP.

2. For each bus node, integrate the features of its subnodes into its own features via Graph-
Conv (i.e., W1xi +W2

∑
j∈N (i) eji · xj ).

3. Incorporate edge features into node features using GINE.

4. Iterate message-passing among bus nodes

5. Decode the features of bus nodes into generator operating point values.

We varied the message-passing mechanism in step 4 by applying the different Aggregate and Update
functions of each of the models that we analyzed.

Training. Following the example training routine outlined in Lovett et al. (2024), we trained mod-
els to predict generator active and reactive power outputs and evaluated MSE loss against those
values in the AC-OPF solutions. We did not incorporate AC-OPF constraints, as the focus of the
experiments was to compare the message-passing capabilities of CoED with other models. We refer
to Böttcher et al. (2023); Piloto et al. (2024) for predicting AC-OPF solutions that satisfy constraints.
We used a batch size of 16 during training with random shuffling applied at each epoch. We evalu-
ated the validation loss at every epoch and early-stopped the training with the same counting scheme
with a patience of 50. We iterated the step 4 above 3 times (i.e., 3 layers) and used 32 hidden di-
mension. We searched over learning rate ∈ {5e-4, 1e-3, 2e-3, 5e-3}, and otherwise the same set of
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hyperparameters considered in the Perturb-seq experiments. We learned q for MagNet. Table 3 re-
ports the mean accuracy and standard deviation on the test data from the top 5 out of 7 training runs
with different initializations using the best hyperparameters shown below. All training were per-
formed on two NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory and approximately
one day of training time was spent for generating the results.

Model lr K sc # attn. heads self-feature lr Θ lw Θ

GCN 5e-3 - - - - -
MagNet 1e-3 2 - - - -
GAT 2e-3 - False 4 - - -
DirGCN 1e-3 - - - - -
DirGAT 1e-3 - 8 - - -
CoED 5e-4 - - False 5e-3 True

Table A.13: Hyperparameters selected for node regression on the AC-OPF data.

B TIME AND SPACE COMPLEXITY

Let V and E denote the numbers of nodes and edges, and let H denote hidden dimension, which we
assume stays constant for two consecutive layers. At minimum, the message-passing mechanism
outlined in 2 results in the time complexity that scales as O(EH + V H2), where the first term
corresponds to aggregating features with dimension H and the second term stems from the matrix-
matrix multiplication of node features and a weight matrix. The space complexity is O(E + H2)
due to the edges and the weight matrix.

With the sparse form of the phase matrix Θ, CoED incurs an additional O(E) term both in the time
complexity from computing fuzzy propagation matrices P←/→ and in the space complexity due to
storing Θ. Unless layer-wise Θ learning is employed, this computation happens once and thus only
adds minimal overhead. The layer-wise Θ learning adds an O(EL) term to the total time and space
complexities over L layers. For comparison, however, we note that computing S-head attentions
incurs anO(EH) term (or evenO(EHS) term if feature dimension is not divided by S) in the time
complexity and an O(ES) term in the space complexity per layer.

C POSITIONAL ENCODING USING THE FUZZY LAPLACIAN

Graph Laplacians can be used to assign a positional encoding to each node of a graph based on
the connectivity patterns of the nodes of the graph. Using the fuzzy Laplacian, we can extend
positional encoding to include variations in directions of the edges surrounding a node in addition
to the connectivity pattern of the graph. To demonstrate the utility of the eigenvectors of the fuzzy
Laplacian for positional encoding, we visualize the eigenvectors of the Laplacian computed from the
triangular lattice graph (which has a trivial connectivity pattern as shown above by the random walk
structural encoding being trivially zero) supplemented with two different sets of edge directions.
In the first case, we obtained edge directions from the gradient of source-sink potential function
described in A.2.1. These edge directions are visualized in Figure 3(b) of the main text. In the
second case, we obtained the edge directions for the same triangular lattice graph, from the following
solenoidal vector field,

F (x) =
(
sin(πx) cos(πy),− cos(πx) sin(πy)

)

which does not have sources or sinks but instead features a cyclic flow. To assign edge directions
using the solenoidal vector field, we computed θij as the angle between the unit vector pointing
from vi to vj and the vector evaluated at the midpoint of an edge, i.e., F

(
(x2 − x1)/2

)
. All θij

were scaled to range from 0 to π/2. As shown in Figure C.1(a-e), the real part of the eigenvector
distinguishes the peak and valley from the region in between, whereas the phase of the eigenvector
distinguish the peak from the valley. Similarly in Figure C.1(f-j), the real part of the eigenvector
highlights the regions adjacent to the cyclic flows. The magnitude of the eigenvector picks out the
centers of the four solenoids in the middle. Taken together, the eigenvectors of the fuzzy Laplacian
contain positional information based on the directions of the edges as demonstrated here for the
same graph but with different edge directions.
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(b) Real part for source-sink 
      graph

(c) Imaginary part for source-sink 
      graph

(d) Phase for source-sink graph (e) Magnitude for source-sink 
     graph

(g) Real part for solenoidal 
      vector field

(h) Imaginary part for solenoidal 
      vector field

(i) Phase for solenoidal vector 
     field

(j) Magnitude for solenoidal 
     vector field

(a) Gradient vector field

(f) Solenoidal vector field

Figure C.1: Visualization of the eigenvector, corresponding to the eigenvalue with largest magnitude,
of the fuzzy Laplacian of the triangular lattice whose edge directions are taken from the source-sink
potential function described in the main text (top row) and the solenoidal vector field described in
this section (bottom row). The original vector fields are shown in the left-most figures. The real and
imaginary components, as well as the magnitude and phase, of the eigenvector encode positional
information at each node about the direction of the edges surrounding that node.

D MATHEMATICAL PROPERTIES OF THE FUZZY LAPLACIAN

We propose a new graph Laplacian matrix for directed graphs which generalizes to the case of
directed graphs with fuzzy edges, where an edge connecting two nodes A and B can take on any
intermediate value between the two extremes of pointing from A to B and pointing from B to A. We
will show that our Laplacian exhibits two useful properties: 1. The eigenvectors of our Laplacian
matrix are orthogonal and therefore can be used as the positional encodings of the nodes of the
graph. 2. For any node of the graph, our Laplacian aggregates information from neighbors that send
information to the node separately from the neighbors that receive information from the node and
is therefore as expressive as a weak form of the Weisfeiler-Leman (WL) graph isomorphism test for
directed graphs with fuzzy edges that we define below.

D.1 DIRECTED GRAPHS WITH FUZZY EDGES

We define a directed graph with fuzzy edges as follows. Our definition builds on the standard
definition of a graph.

A graph G is an ordered pair G := (V, E) comprising a set V of vertices or nodes together with a set
E of edges. Each edge is a 2-element subset of V .

• V: A finite, non-empty set of vertices

V = {v1, v2, . . . , vn}

• E : A set of edges, each linking two vertices in V
E = {(vi, vj) | vi, vj ∈ V}

To incorporate fuzzy directions to the edges, we define a new attribute for each edge.

• µ: A function defining the direction of each edge

µ : (vi, vj)→ [0, 1]

such that for each edge (vi, vj) ∈ E, µ(vi, vj) = x implies µ(vj , vi) =
√
1− x2.

24



Published as a conference paper at ICLR 2025

In this model, each edge is associated with a scalar x that represents its direction. The value x is
a real number in the interval [0, 1]. If for an edge (vi, vj), µ(vi, vj) = x, then it must hold that
µ(vj , vi) =

√
1− x2, capturing the edge in both directions.

For example, if µ(vi, vj) = 1 then the edge is an arc (directed edge) connecting node vi to node vj .
If µ(vi, vj) = 0 then the edge is an arc connecting node vj to node vi. If µ(vi, vj) = 1/

√
2 then the

edge is a bidirectional edge connecting node vi to node vj and node vj to node vi.

For a scalar-directed edge graph G = (V, E , µ), the adjacency matrix A is a square matrix of dimen-
sion |V| × |V|. The entry Aij of the matrix is defined as follows:

Aij =

{
µ(vi, vj), if (vi, vj) ∈ E

0, otherwise

In this setting, µ(vi, vj) captures the direction of the edge from vi to vj . It follows that if an edge is

present between nodes vi and vj then Aji =
√
1−A2

ij .

Therefore, the adjacency matrix captures not only the presence of edges but also their direction
according to the function µ.

D.2 FUZZY LAPLACIAN MATRIX

For a scalar-directed edge graph G = (V, E , µ) with adjacency matrix A, we define its Fuzzy Lapla-
cian matrix LF as follows:

The diagonal entries of LF are zero:
(LF )ii = 0

The off-diagonal elements are

(LF )ij =

{
0 if Aij = Aji = 0

eiθij otherwise
(6)

where θij is selected such that:
cos(θij) = Aij

In other words, the real part of eiθij is equal to the corresponding adjacency matrix entry Aij . We
require that 0 ≤ θij ≤ π/2. It follows that θji = π/2− θij .

The Fuzzy Laplacian LF satisfies the property:

LF = iL∗F

To confirm this, note that e−iθij = cos(−θij) + i sin(−θij) = cos(θij) − i sin(θij). Therefore,
(LF )ji = sin(θij) + i cos(θij) = ie−iθij , and thus LF = iL∗F .

The fuzzy Laplacian takes the following form,

LF =




0 · · · · · ·
...

. . . eiθij

... ie−iθij
. . .


 (7)

Here, eiθij and ie−iθij are sample off-diagonal elements corresponding to the edge (vi, vj) in the
graph.

D.3 PROPERTIES OF FUZZY LAPLACIAN MATRIX LF

In this section, we will show that the Fuzzy Laplacian matrix LF has eigenvalues of the form a+ia,
where a ∈ R, and orthogonal eigenvectors.
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D.3.1 EIGENVALUES OF THE FORM a+ ia

LF has eigenvalues of the form a+ ia with a ∈ R.

Proof:

Let λ be an eigenvalue of LF , and let w be the corresponding eigenvector. Then:

LFw = λw ⇒ w∗L∗F = λ∗w∗ ⇒ w∗L∗Fw = λ∗w∗w

⇒ −iw∗LFw = λ∗w∗w ⇒ −iλw∗w = λ∗w∗w ⇒ −iλ = λ∗

where we used L∗F = −iLF to go to the second line. The last identity holds only when λ = a+ ia
where a is a real number.

D.3.2 ORTHOGONAL EIGENVECTORS

To prove that LF has orthogonal eigenvectors, we need to show that if w and v are eigenvectors
corresponding to distinct eigenvalues λ1 and λ2 respectively, then w and v are orthogonal.

Proof:

Let LFw = λ1w and LFv = λ2v.

v∗LFw = λ1v
∗w ⇒ iv∗L∗Fw = λ1v

∗w ⇒ iλ∗2v
∗w = λ1v

∗w ⇒ λ2v
∗w = λ1v

∗w

where we used λ = iλ∗ derived above for the last step. Therefore, λ2v
∗w = λ1v

∗w. Since
λ1 ̸= λ2, it must be that v∗w = 0, i.e., w and v are orthogonal.

Because the eigenvectors of the Fuzzy Laplacian matrix LF are orthogonal, they can be used as the
positional encoding of the nodes of the graph.

E EXPRESSIVITY OF NEURAL NETWORKS USING THE FUZZY LAPLACIAN

E.1 GRAPH ISOMORPHISM FOR DIRECTED GRAPHS WITH FUZZY EDGES

First, we extend the standard definition of graph isomorphism to the case of directed graphs with
fuzzy edges following a similar approach as in Piperno et al. (2018).

We only consider graph with a finite number of nodes. Therefore, the set of all edge weights form a
countable set with finite cardinality.

Two directed fuzzy graphs G = (VG , EG , µG) and H = (VH, EH, µH) are said to be isomorphic if
there exists a bijection f : VG → VH such that, for every pair of vertices u, v in VG , the following
conditions hold:

1. (u, v) is an edge in EG if and only if (f(u), f(v)) is an edge in EH for all vertices u and v in VG .

2. For every edge (u, v) in EG that maps to edge (f(u), f(v)) in EH, the corresponding weights
satisfy:

µG(u, v) = µH(f(u), f(v))

E.2 WEISFEILER-LEMAN TEST FOR ISOMORPHISM OF DIRECTED GRAPHS WITH FUZZY
EDGES

Next, we extend the Weisfeiler-Leman (WL) graph isomorphism test to determine whether two
directed graphs with fuzzy edges are isomorphic or not according to the extended definition of
graph isomorphism stated above.

WL test is a vertex refinement algorithm that assigns starting features to each node of the graph.
The algorithm then aggregates all the features of each node’s neighbors and hashes the aggregated
labels alongside the node’s own label into a unique new label. At each iteration of the algorithm, the
list of labels is compared across the two graphs. If the labels are different, the two graphs are not
isomorphic. If the labels are no longer updated at each iteration, the two graphs can potentially be
isomorphic.

26



Published as a conference paper at ICLR 2025

The Weisfeiler-Lehman (WL) graph isomorphism test treats all edges emanating from a node equiv-
alently, as long as they connect to neighbors with the same label. Neighbors are distinguished solely
by their labels, not by the attributes of the edges that connect them. When extending the WL test to
directed graphs with fuzzy edges, we must account for the fact that fuzzy edges disrupt this uniform
treatment of edges. We introduce the following two extensions of the WL test to handle directed
graphs with fuzzy edges.

• Strong form: A node can distinguish its neighbors not only by their labels but also by
the weights of the edges connecting them. This allows the node to differentiate between
neighbors of the same label based on edge attributes.

• Weak form: A node cannot differentiate between neighbors of the same label based on
edge weights. Instead, the only weight-related information a node can use is the sum of the
edge weights connecting it to all neighbors with a given label.

These extensions adapt the WL test to account for the additional complexity introduced by fuzzy
edges in directed graphs. Importantly, for all the proofs that follow, we will assume that the graph
has a finite number of nodes.

The strong form of WL test for fuzzy directed graphs:

Given a directed graph with fuzzy edges G = (V, E , µ), the strong form of the WL test calculates a
node coloring C(t) : V → {1, 2, . . . , k}, a surjective function that maps each vertex to a color. At
the first iteration, C(0) = 0. At all subsequent iterations,

C(t)(i) = Relabel(C(t−1)(i), {{(µij , C
(t−1)
j ) : j ∈ N(i)}}), (8)

where (µij , C
(t−1)
j ) is tuple comprised of the weight of the edge from node i to node j and C

(t−1)
j ,

the color of node j in the previous iteration. To simplify notation, we will write µij to denote the
weight of the edge connecting nodes i and j instead of µ(vi, vj) from now on. N(i) denotes the
set of all neighbors of node i. Function Relabel is an injective function that assigns a unique new
color to each node based on the node’s color in the previous iteration and the tuples formed from its
neighbors colors and the value of the edges connecting the node to those neighbors.

From the definition above, it follows that a graph neural network Γ : G → Rd that aggregates and
updates the node features as follows

h
(k)
i = ϕ(h

(k−1)
i , f({{(µij , h

(k−1)
j ) : j ∈ N(i)}})), (9)

will map two graphs G1 and G2 to different vectors in Rd if the above strong form of the graph
coloring test deems that the two graphs are not isomorphic. In the above equation, hk

v is the hidden
representation (or feature) of node i at the kth layer. ϕ and f are injective functions with f acting
on multisets of tuples of the edge weights and hidden representation of the neighbors of node i.

The proof of above statement is a trivial extension of the proof of Theorem 3 in (Xu et al., 2019).
Briefly, the multiset of the features of the neighbors of node i can be converted from a multiset of
tuples of the form {{(µij , h

(k−1)
j ) : j ∈ N(i)}} to a multiset of augmented features of the neighbors

{{h̃(k−1)
j : j ∈ N(i)}} where h̃

(k−1)
j = (µij , h

(k−1)
j ). Because µij form a set of finite cardinality,

the augmented feature space h̃(k−1)
j is still a countable set and the same proof as in (Xu et al., 2019)

can be applied.

The weak form of WL test for fuzzy directed graphs:

We introduce a weaker form of the WL test for directed graphs with fuzzy edges where a given node
cannot distinguish between its neighboring nodes that have the same color based on the weights of
the edges that they share. Rather, the node aggregates the weights of all outgoing and incoming
edges of its neighbors of a given color.

The weak form of the algorithm is as follows. At the first iteration, C(0) = 0. At all subsequent
iterations,
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Figure E.1: Examples of two neighborhoods of a node i are shown on the left and right. The strong
form of the WL test for directed graphs with fuzzy edges can distinguish these two neighborhoods.
The weak form of the WL test, however, cannot do so because the sum of the weights of the edges
connecting node i to green-colored neighbors is 0.9 in both cases.

C(t)(i) = Relabel
(
C(t−1)(i),

{
( ∑

j∈N(i)

δ(C
(t−1)
j − c)µij ,

∑

j∈N(i)

δ(C
(t−1)
j − c)µji, c

)
: c ∈ C

(t−1)
N(i) }

)
, (10)

The term
∑

j∈N(i) δ(C
(t−1)
j − c)µij is summing over the edge weights µij of all neighbors of i that

have color c. The tuple now also contains a similar that sums over the edge weights pointing from
node j to node i, µji for all neighbors of the same color. As stated above, the edge weights are

related, namely, µji =
√
1− µ2

ij . The color of the node i at the previous iteration alongside the set
of tuples containing the sum of incoming edge weights from neighbors of a given color, the sum of
outgoing edge weights to the neighbors of a given color, and the color of those neighbors are inputs
to the injective function Relabel, which assigns a unique color to node i for the next iteration.

Theorem. Let Γ : G → Rd be a graph neural network that updates node features as follows,

h
(k)
i = MLP (k)


h

(k−1)
i ,ℜ


 ∑

j∈N(i)

(LF )ijh
(k−1)
j


 ,ℑ


 ∑

j∈N(i)

(LF )ijh
(k−1)
j




 , (11)

where MLP (k) is a multi-layer perceptron. The last two terms of the MLP input are the real and
imaginary parts of the aggregated features of the neighbors of node i,

∑
j∈N(i)(LF )ijh

(k−1)
j . With

sufficient number of layers, the parameters of Γ can be learned such that it is as expressive as the
weak form of the WL test, in that Γ maps two graphs G1 and G2 that the weak form of WL test
decides to be non-isomorphic to different embeddings in Rd.

Proof. First, we claim that there exists a GNN of the form:

h
(k)
i = ϕ


f(h

(k−1)
i ),

∑

j∈N(i)

µijf(h
(k−1)
j ),

∑

j∈N(i)

µjif(h
(k−1)
j )


 , (12)

that is as expressive as the weak form of the WL test. We will prove this by induction.

Note that F (i) =
∑

j∈N(i) µijf(h
(k−1)
j ) and G(i) =

∑
j∈N(i) µjif(h

(k−1)
j ) are only injective up

to the sum of the incoming and outgoing weights for a given type of neighbor (see Figure E.1 for an
example). This is because the weak form of the WL test only accounts for the sum of the weights of
outgoing and incoming edges to neighboring nodes of a given color. This is different from previous
work that dealt with undirected graphs (Xu et al., 2019) or graphs with directed but unweighted
edges (Rossi et al., 2024).

Let’s denote with X the multiset of the colors of all neighbors of node i after a given number of
iterations of the color refinement algorithm. Equivalently, we can consider the multiset of all the
features of the neighboring nodes of i after a given number of iteration of the GNN algorithm.
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Because our graphs have a finite number of nodes, X is bounded. For graphs without directed
edges or weighted edges, it can be shown (see Lemma 5 of (Xu et al., 2019)) that there always
exists an injective function f such that F (x) =

∑
x∈X f(x) is injective for all multisets X , i.e. if

F (X) = F (Y ) for two multisets X and Y then X = Y . This result can be easily extended to
regular directed graphs without weighted edges by considering the neighbors with incoming edges
separately from the neighbors with outgoing edges (Rossi et al., 2024). For such graphs, a function f
exists such that the tuple (

∑
x∈X→ f(x),

∑
x∈X← f(x)) is only the same for two nodes if they have

identical neighborhoods. X→ and X← denotes the multiset of features of the neighboring nodes
that are connected to i using an outgoing edge and incoming edge respectively.

Let’s proceed with our proof by induction. At the first iteration, k = 0, all the nodes have the same
color corresponding to the same trivial feature (e.g. scalar 0). Functions F (i) and G(i) then simply
sum the weights of the outgoing and incoming edges of node i respectively and use their values to
assign updated feature h

(1)
i . This is identical to the procedure that the weak WL algorithm is using

to assign new colors to the nodes at its first iteration. Therefore, nodes that would be assigned a
given color under the WL color refinement algorithm at its first iteration will also be assigned the
same updated feature vector h(1)

i .

Assume that our claim hold for iteration k − 1. This mean that all the nodes that the weak WL
color refinement assigns to different colors are also assigned different features h(k−1)

i by the GNN.
Following the weak WL test, at iteration k, we need to sum the incoming and outgoing edges across
all the neighbors with the same h

(k−1)
j . An example of an f that allows this is one-hot encoding of

all features. There always exists a number N ∈ N such that the features h(k−1)
i across all nodes i of

the graph can be one-hot encoded in an N dimensional vector. It follows,

∑

j∈N(i)

µijf(h
(k−1)
j ) =


 ∑

j∈N(i)

δ(h
(k−1)
j − h)µij



h∈H(k−1)

N(i)

, (13)

where H
(k−1)
N(i) is the set of all the features h(k−1)

j of nodes j that are neighbors of node i. A similar
expression can be written for the sum over the incoming weights µji. Thus, at iteration k the GNN
will assign distinct features to all nodes that are also assigned a distinct color at iteration k of the
weak WL color refinement algorithm.

To complete the proof, we note that because µji =
√
1− µ2

ij , we can reparameterize the edge

weights as µij = cos(θij) and µji = sin(θij) with 0 ≤ θij ≤ π/2. Eq. 12 can be rewritten as:

h
(k)
i = ϕ


f(h

(k−1)
i ),ℜ


 ∑

j∈N(i)

(LF )ijf(h
(k−1)
j )


 ,ℑ


 ∑

j∈N(i)

(LF )ijf(h
(k−1)
j )




 , (14)

Finally, we use universal approximation theorem of multilayer perceptrons (Hornik et al., 1989) to
model both the ϕ computation at layer k and the f computation for the next layer, k + 1. Namely
MLP (k) denotes f (k+1) ◦ ϕ(k). Taken together, the GNN in Eq. 11 is as expressive as the weak
form of the WL color refinement algorithm for directed graphs with fuzzy edges.

F MAGNETIC LAPLACIAN IS NOT AS EXPRESSIVE AS THE FUZZY
LAPLACIAN.

F.1 MAGNETIC LAPLACIAN

A commonly used Laplacian for directed graphs is the Magnetic Laplacian. To construct the Mag-
netic Laplacian, we start with the asymmetric adjacency matrix of the graph and symmetrize it.
Note that we are using the conventional definition of adjacency matrix in this section and not the
fuzzy definition used above. The adjacency matrix A for a directed graph is a binary matrix, where
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Aij = 1 represents the presence of a directed edge from vertex vi to vertex vj and Aij = 0 represents
the absence of such an edge.

The symmetrized adjacency matrix S is defined as:

Sij =
1

2
(Aij +Aji).

To capture the direction of the edges, a phase matrix is defined as,

Θ
(q)
ij = 2πq(Aij −Aji). (15)

The Hermitian adjacency matrix is defined as the element-wise product of the above two matrices,

H(q) = S ⊙ exp(iΘ(q)).

H(q) has some useful properties in capturing the directionality of the edges of the graph. For ex-
ample, for q = 1/4, if there is an edge connecting j to k but no edge connecting k to j then
H

(q)
jk = i/2 and H

(q)
kj = −i/2. Although this encoding of edge direction is useful, the fact that both

incoming and outgoing edges are purely imaginary (only different up to a sign) means that in gen-
eral it is impossible to distinguish features aggregated from neighbors that are connected to a node
through outgoing edges from those connected through incoming edges. The fuzzy Laplacian LF ,
however, trivially distinguishes features from outgoing neighbors from those of incoming neighbors
by keeping one set real and the other imaginary. We will expand on the implication of this for the
expressivity of graph neural networks constructed using these two approaches below.

F.2 LIMITATIONS OF THE MAGNETIC LAPLACIAN

Conventionally, a magnetic Laplacian is defined by subtracting H(q) from the degree matrix, LM =
D −H(q). If such a Laplacian matrix is used to aggregate information of the nodes of the graph,
the features of a node itself are combined with the features of its neighboring nodes. For directed
graphs, there are two categories of neighboring nodes, those connected to a node i with outgoing
edges from i (Aij = 1 and Aji = 0) and those connected to node i with incoming edges (Aji = 1
and Aij = 0). Of course, it is possible for a neighboring node to be both an outgoing and incoming
neighbor, in which case Aji = Aij = 1.

Features from these two categories of neighbors, alongside the feature of the node itself, form three
distinct categories that in general must be kept distinct for maximum expressivity (Rossi et al.,
2024). Using a complex Laplacian for aggregating the features across the nodes allows a simple
mechanism for distinguishing two categories (corresponding to the real and imaginary parts of the
resulting complex features) but not all three. To get around this limitation, we keep the self-feature
of every node distinct from the aggregated features of its neighbors and concatenate it with the
aggregated feature prior to applying the multi-layer perceptron to update the features from one layer
to the next. Therefore, to maximize the expressivity of the magnetic Laplacian, we set the diagonal
terms of the Laplacian matrix to zero, and define the magnetic Laplacian simply as LM = H(q).

Lemma. For simple directed graphs without fuzzy edges, using the magnetic Laplacian LM in the
graph neural network of Eq. 11 in the place of the fuzzy Laplacian LF ,

h
(k)
i = MLP (k)


h

(k−1)
i ,ℜ


 ∑

j∈N(i)

(LM )ijh
(k−1)
j


 ,ℑ


 ∑

j∈N(i)

(LM )ijh
(k−1)
j




 , (16)

does not decrease the expressivity of the graph neural network in that both networks are as expres-
sive as the weak form of the WL graph isomorphism test.

Lemma. To prove this statement, we will show that the MLP can learn a linear combination of its
input that would it make it equivalent to the graph neural network defined in Eq. 11. This is because
when q = 1/8, the real and imaginary parts of the aggregated features of the neighboring nodes are
linear combinations of the features of the outgoing and incoming neighbors.

The fuzzy Laplacian LF directly separates the features of outgoing and incoming neighbors in
the real and imaginary components of the aggregated features respectively. Define F→(i) =
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ℜ
[∑

j∈N(i)(LF )ijh
(k−1)
j

]
and F←(i) = ℑ

[∑
j∈N(i)(LF )ijh

(k−1)
j

]
as the features aggregated

from the outgoing and incoming neighbors respectively. With q = 1/8, we have,

ℜ


∑

j

(LM )ijh
(k−1)
j


 =

1

2
√
2
(F→(i) + F←(i))

ℑ


∑

j

(LM )ijh
(k−1)
j


 =

1

2
√
2
(F→(i)− F←(i))

The MLP layer then in the graph neural network of Eq.16 simply needs to learn a linear combination
of its second and third concatenated inputs to become equivalent to the graph neural network of
Eq.11. Therefore, the two graph neural networks are equally as expressive.

Next, we extend the definition of the magnetic Laplacian to directed graphs with fuzzy edges, defined
above, which have weighted edges that indicate intermediate values of directionality between the two
extremes of the edge pointing form node i to node j and the edge pointing from node j to node i.
We implemented these intermediate values in the fuzzy Laplacian by assigning a weight µij to each

edge. Although not necessary in general, we further assumed that µji =
√
1− µ2

ij . This constraint

allowed us to think of each edge weight as an angle θij = arccos(µij) which we then used to define
the fuzzy Laplacian matrix (Eq.7).

To extend the magnetic Laplacian to directed graphs with fuzzy edges, we can assign a different
value for q (Eq. 15) to each edge. To keep the notation comparable to that of the fuzzy Laplacian, we
instead assign a separate angle θij to each edge and define the magnetic Laplacian as, (LM )ij = eiθij

for j > i if there is an edge between the nodes i and j, Sij ̸= 0. To ensure that magnetic Laplacian
remains Hermitian, L∗M = LM , we require that (LM )ji = e−iθij , which defines the θij values for
j < i. It follows that θji = −θij .

LM =




0 · · · · · ·
...

. . . eiθij

... e−iθij
. . .




It remains to be shown how we can assign the θij values from the µij in a self-consistent way.

Theorem. For directed graphs with fuzzy edges, the graph neural network constructed using the
magnetic Laplacian LM , Eq. 16, is not as expressive as the weak form of the WL graph isomorphism
test, and therefore not as expressive as the graph neural network defined using the fuzzy Laplacian
LF , Eq. 11.

Proof. The Fuzzy Laplacian matrix conveniently captures the outgoing and incoming weights of the
edges from one node to another, (LF )ij = cos(θij) + i sin(θij). Namely, ℜ(LF )ij = cos(θij) is
the outgoing weight µij of node i to node j and ℑ(LF )ij = sin(θij) is in the incoming weight from
node j to node i, µji. Importantly, the outgoing weight from node i to node j, µij , is the same as the
incoming weight from node i to node j. Similarly, the incoming weight from node j to node i, µji

is the same as the outgoing weight from node j to node i. These relationships are directly captured
in the fuzzy Laplacian because (LF )ji = sin(θij) + i cos(θij).

Let’s consider how we can construct the magnetic Laplacian LM from µij . The weight of the edge

from i to j is µij . The weight from j to i is µij =
√

1− µ2
ij .

From our definition above, (LM )ij = cos(θij) + i sin(θij) and (LM )ji = cos(θij)− i sin(θij). To
relate θij to µij we note that the ratio of outgoing and incoming weights for node i is µij/µji and
for node j is µji/µij . Because these two quantities are reciprocals of each other, we can define

ln
µij

µji
= tan(2θij).

We chose the tan function on the right hand side because tan(−2θij) = − tan(2θij). Moreover,
the log-ratio on the left hand side of above equation can take on any value from−∞ to∞. The right
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Figure F.1: The functions used to map the edge weights µij to the θij values of the magnetic Lapla-
cian. cos(θij) is plotted on the left. sin(θij) is plotted in the middle. sin(θij) versus cos(θij) is
plotted on the right.

hand side can take on a similar range of values if we allow−π/4 ≤ θij ≤ π/4. The specific form of
this function does not matter as long it is an odd function that spans the specified domain and range.

Assume that each node of the graph has a trivial scalar feature equal to 1 (the first iteration of the
WL test). The magnetic Laplacian applied to this graph to aggregate the features of the neighbors
of node i gives,
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j

(LM )ij
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j
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2
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ln µij√
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ij
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j
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1

2
arctan


ln µij√

1− µ2
ij






The above functions for a single value of µij are plotted in Figure F.1. Importantly, these functions
are not an injective function of all possible neighborhoods of node i. Consider the case of a node i
that has 5 neighbors with µij values that result in cos(θij) = 0.8 and sin(θij) = 0.6, and another
set of 5 neighbors with µij values that result in cos(θij) = 0.8 and sin(θij) = −0.6. It follows

that ℜ
[∑

j(LM )ij

]
= 8 and ℑ

[∑
j(LM )ij

]
= 0. The same values would have been obtained if

node i had a neighborhood comprised of 8 neighbors with µij values such that cos(θij) = 1 and
sin(θij) = 0. Therefore, the magnetic Laplacian cannot distinguish distinct neighborhoods and is
not as expressive as the weak form of the WL test.

In practice, the more important limitation of the magnetic Laplacian is that it aggregates neigh-
borhood information that results in linear combinations of the outgoing and incoming features to a
node. In contrast, the fuzzy Laplacian by construct always keeps these contributions separate in the
real and imaginary parts of the aggregated feature vector. In many applications, we would like to
access the self-feature of the node and the incoming and outgoing aggregated features of its neigh-
bors separately. The fuzzy Laplacian is thus a better choice. It could be argued that the MLP of a
graph neural network can learn to disentangle the linear combinations of the outgoing and incoming
features aggregated by the magnetic Laplacian. In general, however, this is not possible by the types
of the graph neural networks that we considered here. This is because the parameters are MLP are
the same for all the nodes of the graph. The linear combinations, however, depend on the specific
weights µij connecting node i to its neighboring nodes j. Therefore, in general, the MLP will
not be able to learn to disentangle the linear combinations of the incoming and outgoing features
aggregated by the magnetic Laplacian.

G RUNTIME ANALYSIS

We conducted the runtime analysis to evaluate the computational efficiency of CoED in comparison
to other representative baseline models. All models were configured with three layers and 64 hidden
dimensions. We measured the forward and backward pass times on three graphs of increasing size.

32



Published as a conference paper at ICLR 2025

Table G.1 reports the runtime of the models on datasets used for the node classification task, where
edge directions are not learned. In this case, CoED’s computational overhead stems from computing
the in- and out-propagation matrices, P←/→, once at the initial layer. Consequently, its runtime is
comparable to DirGCN, which employs a similar architecture.

Table G.2 presents the runtime for the batches of triangular lattice graph ensemble data. When in-
cluding backpropagation for phase angles, CoED’s backward pass time is approximately twice that
of DirGCN. If unique edge directions are learned at each layer, CoED computes different propa-
gation matrices at every layer. While this increases the forward pass time, the backward pass time
remains unchanged since the backpropagation contributions from intermediate layers are subleading
compared to the backpropagation to the initial layer.

Dataset GCN GAT MagNet DirGCN CoED

Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward

CORA 4.8 8.3 25.3 62.9 89.3 120.6 14.3 17.6 14.1 21.9
Roman-Empire 16.9 37.2 218.9 646.1 300.1 331.5 30.0 48.7 34.5 66.1
Arxiv-Year 450.4 985.0 3379.2 10354.7 5058.2 7792.1 458.8 838.9 690.4 1231.4

Table G.1: Runtime of the forward and backward passes in ther node classification task. Times
are reported in milliseconds. We set the number of layers to 3 and the hidden dimensions to 64
for all models. Note that we do not compute gradients with respect to phase angles Θ in this case.
Cora, Roman-Empire, and Arxiv-Year respectively have 2708, 22662, and 169343 nodes and 10556,
44363, and 1166243 edges.

Batch Size GCN GAT MagNet GraphGPS DirGCN DirGAT CoED CoED (layerwise)

Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward Forward Backward

4 2.5 5.0 15.4 35.2 14.4 22.5 14.1 31.3 4.4 6.1 26.1 59.7 5.9 11.0 6.8 12.4
32 11.0 24.6 123.3 362.8 81.1 128.7 103.6 285.5 20.9 24.1 226.4 754.8 20.4 50.0 44.5 52.8
256 105.0 254.4 1352.1 4644.2 964.2 1426.6 1101.0 3140.0 266.8 234.2 2261.2 9423.2 174.9 533.8 545.8 542.9

Table G.2: Runtime of the forward and backward passes in the node regression task with graph
ensemble dataset. Times are reported in milliseconds. All models have 3 layers with 64 hidden
dimensions. The backward pass of CoED now involves gradients with respect to the phase angles.
At 4, 32, and 256 batch sizes, there are 1796, 14368, and 114944 nodes and 5048, 40384, and
323072 edges, respectively.

H CONTRASTING COED GNN WITH GRAPH ATTENTION NETWORK (GAT)

Graph Attention Network (GAT) (Veličković et al., 2018), similar to CoED GNN, effectively learns
edge weights prior to aggregating the features across neighboring nodes. Importantly, the learned
edge weights are not necessarily symmetric. In the classic formulations of GAT, the attention
weight from node i to j (αij) depends on the concatenation of their feature vectors (ui||uj) and
the shared learnable parameter a: eij = LeakyReLU(aT [ui||uj ]). Similarly, the attention weight
from j to i (αji) is computed as: eji = LeakyReLU(aT [uj ||ui]). Since ui||uj ̸= uj ||ui, the
raw attention scores eij and eji will generally differ. Even if a symmetric function is used to com-
pute the attention weight, the attention coefficients αij are computed using a softmax function:
αij =

exp(eij)∑
k∈N(i) exp(eik)

. This normalization is performed separately for the neighbors of i and j, so
even if eij were equal to eji, the normalization step would generally make αij ̸= αji. Therefore, it
might appear that GATs can learn arbitrary asymmetric edge weights, much like CoED’s continuous
edge directions.

The key difference between CoED GNN and attention-based models is that CoED GNN does not
rely on node features to learn continuous edge directions. Instead, the continuous edge directions are
learned directly as part of optimizing for the given learning task. Consider the toy problem illustrated
in Figure H.1. In this example, nodes in a linear-chain graph are assigned random input features that
are independently and identically distributed. The output feature for each node is generated by
shifting the input features along the chain in the clockwise direction by one hop. A training dataset
consists of multiple realizations of the graph, each with different input and output node features, for
a node regression task. GAT fails to correctly propagate the features across the graph in this setup
because the node features are entirely uninformative. Consequently, it cannot learn meaningful edge
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Figure H.1: A toy problem of learning to shift node features by one node in the clockwise direction
for a circularized linear chain of nodes. In this hypothetical regression problem, the input are the
original node features and the output are the node features shifted by one. The node features ui are
independently and identically distributed and therefore completely uninformative for determining
the direction in which node features should be sent. The training data is an ensemble of the same
linear-chain graph with different realizations of the node features. Any method that relies on node
features to propagate the features (such as GAT) will fail at this task. CoED GNN, however, can
learn the optimal edge directions for this task (shown on the right).

weights from the node features to perform the regression task. In contrast, CoED GNN successfully
learns the optimal edge directions required to accomplish this task. The failure of GAT on directed
graphs with random features has also been empirically demonstrated in the stochastic block model
experiments in Zhang et al. (2021).

In many tasks, it is necessary to learn distinct edge directions in different parts of a graph, even when
the node features are identical. The GAT framework cannot achieve this because it relies solely on
node features to compute edge weights. In contrast, CoED directly learns continuous edge direc-
tions by optimizing them specifically for the task. To illustrate this, we compare GAT and CoED
on a synthetic triangular lattice node regression task, as described in the main text, using node fea-
tures derived from CIFAR images (Figure H.2). In this scenario, many nodes share nearly identical
features, such as those representing blue sky pixels in an image. GAT fails to learn the correct edge
directions under these conditions, while CoED successfully identifies the optimal directions for the
task (Figure H.3).

Tables 2 and 3 in the main text empirically demonstrate that CoED GNN outperforms GAT on
both synthetic and real-world datasets. The superior performance of CoED GNN may stem from
the consistency of edge directions: the outgoing message from node i to node j must match the
incoming message from node j to node i. This consistency can be enforced in GAT by requiring
that αij = 1 − αji. To test this hypothesis, we constructed a modified GAT model enforcing this
requirement and applied it to the synthetic node regression task of directed flow on a triangular
lattice graph, as described in the main text. To clarify the comparison, instead of using random
features, we assigned CIFAR image pixel values as features for each node. Edge weights between
nodes i and j were determined using the GAT formulation: αij = LeakyReLU(aT [ui∥uj ]), where
a is a learnable parameter. Importantly, we enforced the constraint αji = 1 − αij . As shown in
Figure H.3, this modified GAT model, even with self-consistent edge weights, fails to learn the node
regression task, much like the conventional GAT formulation. In contrast, CoED GNN successfully
learns optimal edge directions and accurately predicts the output values.

Finally, we provide empirical evidence that CoED GNN can mitigate oversmoothing and facilitate
long-range information transmission across graphs. In undirected graphs, information diffuses rather
than flows because when node i passes a message to node j, node j simultaneously passes a mes-
sage back to node i. This bidirectional exchange causes the diversity of node features to diminish
rapidly as they converge to the averaged features across all nodes. Learning optimal edge directions
addresses this issue by enabling directed information flow, preventing uniform diffusion (see Figure
1).

To demonstrate this empirically, we applied CoED GNN to the synthetic triangular lattice graph
problem, where node features are derived from CIFAR image pixels as described earlier. Figure
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Original Image Lattice Node Features

Original Image Lattice Node Features Original Image Lattice Node Features

Original Image Lattice Node Features

Figure H.2: Examples of triangular lattice graphs with node features derived from CIFAR image
pixel values. The CIFAR image is shown on the left, and the corresponding lattice-mapped node
features is depicted on the right. In practice, the feature of each node is a 3 dimensional vector of
RGB values. As described in the main text, output node features are generated by propagating these
input features through the directed triangular lattice for 10 hops. The node regression task involves
predicting these output node features from the input node features.

(b) CoED vs. the baseline models(a) Comparison of baseline models with learnable 
      edge attributes

Figure H.3: Left: Mean Squared Error (MSE) loss as a function of model depth for GAT, the self-
consistent GAT formulation (SC-GAT), and Cooperative GNN (Co-GNN) applied to the node re-
gression task on a triangular lattice graph with node features derived from CIFAR images. Right:
Same as left, but including results from CoED GNN. CoED GNN is the only model that demon-
strates consistent performance improvement with increasing depth.
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(a) Triangular lattice (undirected) (b) Synthetic GRN (directed)

Figure H.4: Dirichlet energy of node features computed after applying the graph Laplacian over
multiple iterations (number of convolutions shown on the x-axis) for both the original graph Lapla-
cian and the Laplacian constructed using the learned edge directions from CoED. Results for the
triangular lattice graph with CIFAR-derived node features are shown on the left, and results for
synthetic GRN data are shown on the right. The slower decay of Dirichlet energy when using the
Laplacian with learned edge directions indicates that CoED mitigates the oversmoothing problem.

(a) Edge direction before training (b) Edge directions after training

Figure I.1: Visualization of the Perturb-seq data graph before and after applying CoED to learn edge
directions. Initially, all edges are undirected. CoED assigns continuous edge directions, revealing a
complex and structured pattern. For clarity, a subset of genes is visualized, with the i-j element of
the matrix representing the phase angle assigned to each edge using our fuzzy Laplacian formulation.

H.3 compares the performance of CoED GNN and a baseline GAT model as a function of model
depth. CoED GNN’s performance improves with increasing depth, whereas GAT’s performance
saturates, showing that CoED GNN’s learned edge directions alleviate the oversmoothing problem.
This trend was also observed in Figure 4 with the random features. To further illustrate this, we
computed the Dirichlet energy of node features by applying the graph Laplacian multiple times
to simulate information flow over increasing numbers of hops. As shown in Figure H.4, when
the original graph Laplacian is used, the Dirichlet energy decreases rapidly, indicating that node
features are converging to the same value. In contrast, using the Laplacian of the directed graph with
learned edge directions results in a slower decrease in Dirichlet energy, showing that oversmoothing
is mitigated by directed information flow.

I VISUALIZATION OF THE LEARNED EDGE DIRECTIONS

To illustrate the edge directions learned by CoED, we visualized the phase angles of edges in a real-
world single-cell Perturb-seq dataset (see main text for details). As shown in Figure I.1, the initial
edge directions are undirected, with all phases set to π/4. After training, CoED uncovers a complex
structure of continuous edge directions, capturing the gene-gene interactions that connect the nodes
(genes) in the graph.
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