Appendix

A Training dataset

In Table A1 we show the training dataset makeup used for *Chinchilla* and all scaling runs. Note that both the *MassiveWeb* and Wikipedia subsets are both used for more than one epoch.

	Disk Size	Documents	Sampling proportion	Epochs in 1.4T tokens
MassiveWeb	1.9 TB	604M	45% (48%)	1.24
Books	2.1 TB	4M	30% (27%)	0.75
C4	0.75 TB	361M	10% (10%)	0.77
News	2.7 TB	1.1B	10% (10%)	0.21
GitHub	3.1 TB	142M	4% (3%)	0.13
Wikipedia	0.001 TB	6M	1% (2%)	3.40

Table A1: *MassiveText* data makeup. For each subset of *MassiveText*, we list its total disk size, the number of documents and the sampling proportion used during training—we use a slightly different distribution than in Rae et al. [38] (shown in parenthesis). In the rightmost column show the number of epochs that are used in 1.4 trillion tokens.

B Optimal cosine cycle length

One key assumption is made on the cosine cycle length and the corresponding learning rate drop (we use a $10 \times$ learning rate decay in line with Rae et al. [38]).⁵ We find that setting the cosine cycle length too much longer than the target number of training steps results in sub-optimally trained models, as shown in Figure A1. As a result, we assume that an optimally trained model will have the cosine cycle length correctly calibrated to the maximum number of steps, given the FLOP budget; we follow this rule in our main analysis.

C Consistency of scaling results across datasets

We show scaling results from an IsoFLOP (Approach 2) analysis after training on two different datasets: C4 [?] and GitHub code (we show results with data from Rae et al. [38]), results are shown in Table A2. For both set of experiments using subsets of *MassiveText*, we use the same tokenizer as the *MassiveText* experiments.

We find that the scaling behaviour on these datasets is very similar to what we found on *MassiveText*, as shown in Figure A2 and Table A2. This suggests that our results are independent of the dataset as long as one does not train for more than one epoch.

Nonetheless, data quality may vary widely, especially as the number of training tokens increases. Further work understanding this relationship better, and potentially the repeated use of high-quality data is required.

D Details on the scaling analyses

D.1 Approach 1: Fixing model sizes and varying training sequences

We use a maximum learning rate of 2×10^{-4} for the smallest models and 1.25×10^{-4} for the largest models. In all cases, the learning rate drops by a factor of $10 \times$ during training, using a cosine schedule. We make the assumption that the cosine cycle length should be approximately matched to the number of training steps. We find that when the cosine cycle overshoots the number of training

⁵We find the difference between decaying by $10 \times$ and decaying to 0.0 (over the same number of steps) to be small, though decaying by a factor of $10 \times$ to be slightly more performant. Decaying by less (5×) is clearly worse.

Figure A1: **Grid over cosine cycle length.** We show 6 curves with the cosine cycle length set to 1, 1.1, 1.25, 1.5, 2, and $5 \times$ longer than the target number of training steps. When the cosine cycle length is too long, and the learning rate does not drop appropriately, then performance is impaired. We find that overestimating the number of training steps beyond 25% leads to clear drops in performance. We show results where we have set the number of training steps to two different values (top and bottom).

Figure A2: C4 and GitHub IsoFLOP curves. Using the C4 dataset [?] and a GitHub dataset [38], we generate 4 IsoFLOP profiles and show the parameter and token count scaling, as in Figure 3. Scaling coefficients are shown in Table A2.

steps by more than 25%, performance is noticeably degraded—see Figure A1.⁶ We use Gaussian smoothing with a window length of 10 steps to smooth the training curve.

We trained 5 different 1.1 billion parameter models on random subsets of the data to look at the variance in final performance. We found that the average loss achieved was 2.488 with a standard deviation amongst the 5 runs of 0.00257. Given how small the differences are, we are confident than any given run is very indicative of a model of that size.

⁶This further emphasises the point of not only determining model size, but also training length before training begins.

Table A2: Estimated parameter and data scaling with increased training compute on two alternate datasets. The listed values are the exponents, a and b, on the relationship $N_{opt} \propto C^a$ and $D_{opt} \propto C^b$. Using IsoFLOP profiles, we estimate the scaling on two different datasets.

Approach	Coef. a where $N_{opt} \propto C^a$	Coef. b where $D_{opt} \propto C^b$
C4	0.50	0.50
GitHub	0.53	0.47
Kaplan et al. [23]	0.73	0.27

D.2 Approach 3: Parametric fitting of the loss

In this section, we first show how Equation (2) can be derived. We repeat the equation below for clarity,

$$\hat{L}(N,D) \triangleq E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}},\tag{4}$$

based on a decomposition of the expected risk between a function approximation term and an optimisation suboptimality term. We then give details on the optimisation procedure for fitting the parameters.

Loss decomposition. Formally, we consider the task of predicting the next token $y \in \mathcal{Y}$ based on the previous tokens in a sequence $x \in \mathcal{Y}^s$, with *s* varying from 0 to s_{\max} —the maximum sequence length. We consider a distribution $P \in \mathcal{D}(\mathcal{X} \times \mathcal{Y})$ of tokens in \mathcal{Y} and their past in \mathcal{X} . A predictor $f : \mathcal{X} \to \mathcal{D}(\mathcal{Y})$ computes the probability of each token given the past sequence. The Bayes classifier, f^* , minimizes the cross-entropy of f(x) with the observed tokens *y*, with expectation taken on the whole data distribution. We let *L* be the expected risk

$$L(f) \triangleq \mathbb{E}[\log f(x)_y], \quad \text{and set} \quad f^* \triangleq \underset{f \in \mathcal{F}(\mathcal{X}, \mathcal{D}(\mathcal{Y}))}{\operatorname{argmin}} L(f).$$
 (5)

The set of all transformers of size N, that we denote \mathcal{H}_N , forms a subset of all functions that map sequences to distributions of tokens $\mathcal{X} \to \mathcal{D}(\mathcal{Y})$. Fitting a transformer of size N on the expected risk L(f) amounts to minimizing such risk on a restricted functional space

$$f_N \triangleq \underset{f \in \mathcal{H}_N}{\operatorname{argmin}} L(f). \tag{6}$$

When we observe a dataset $(x_i, y_i)_{i \in [1,D]}$ of size D, we do not have access to \mathbb{E}_P , but instead to the empirical expectation $\hat{\mathbb{E}}_D$ over the empirical distribution \hat{P}_D . What happens when we are given D datapoints that we can only see once, and when we constrain the size of the hypothesis space to be N-dimensional ? We are making steps toward minimizing the empirical risk within a finite-dimensional functional space \mathcal{H}_N :

$$\hat{L}_D(f) \triangleq \hat{\mathbb{E}}_D[\log f(x)_y], \quad \text{setting} \quad \hat{f}_{N,D} \triangleq \underset{f \in \mathcal{H}_N}{\operatorname{argmin}} \hat{L}_D(f).$$
 (7)

We are never able to obtain $f_{N,D}$ as we typically perform a single epoch over the dataset of size D. Instead, be obtain $\overline{f}_{N,D}$, which is the result of applying a certain number of gradient steps based on the D datapoints—the number of steps to perform depends on the gradient batch size, for which we use well-tested heuristics.

Using the Bayes-classifier f^* , the expected-risk minimizer f_N and the "single-epoch empirical-risk minimizer" $\bar{f}_{N,D}$, we can finally decompose the loss L(N, D) into

$$L(N,D) \triangleq L(\bar{f}_{N,D}) = L(f^{\star}) + (L(f_N) - L(f^{\star})) + (L(\bar{f}_{N,D}) - L(f_N)).$$
(8)

The loss comprises three terms: the Bayes risk, i.e. the minimal loss achievable for next-token prediction on the full distribution P, a.k.a the "entropy of natural text."; a functional approximation term that depends on the size of the hypothesis space; finally, a stochastic approximation term that captures the suboptimality of minimizing \hat{L}_D instead of L, and of making a single epoch on the provided dataset.

Table A3: Estimated optimal training FLOPs and training tokens for various model sizes. For various model sizes, we show the projections from Approach 1 of how many FLOPs and training tokens would be needed to train compute-optimal models. The estimates for Approach 2 & 3 are similar (shown in Section D.3)

Parameters	FLOPs	FLOPs (in Gopher unit)	Tokens
400 Million	1.92e+19	1/29,968	8.0 Billion
1 Billion	1.21e+20	1/4,761	20.2 Billion
10 Billion	1.23e+22	1/46	205.1 Billion
67 Billion	5.76e+23	1	1.5 Trillion
175 Billion	3.85e+24	6.7	3.7 Trillion
280 Billion	9.90e+24	17.2	5.9 Trillion
520 Billion	3.43e+25	59.5	11.0 Trillion
1 Trillion	1.27e+26	221.3	21.2 Trillion
10 Trillion	1.30e+28	22515.9	216.2 Trillion

Expected forms of the loss terms. In the decomposition (8), the second term depends entirely on the number of parameters N that defines the size of the functional approximation space. On the set of two-layer neural networks, it is expected to be proportional to $\frac{1}{N^{1/2}}$ [47]. Finally, given that it corresponds to early stopping in stochastic first order methods, the third term should scale as the convergence rate of these methods, which is lower-bounded by $\frac{1}{D^{1/2}}$ [42] (and may attain the bound). This convergence rate is expected to be dimension free [see e.g. 7, for a review] and depends only on the loss smoothness; hence we assume that the second term only depends on D in (2). Empirically, we find after fitting (2) that

$$L(N,D) = E + \frac{A}{N^{0.34}} + \frac{B}{D^{0.28}},$$
(9)

with E = 1.69, A = 406.4, B = 410.7. We note that the parameter/data coefficients are both lower than $\frac{1}{2}$; this is expected for the data-efficiency coefficient (but far from the known lower-bound). Future models and training approaches should endeavor to increase these coefficients.

Fitting the decomposition to data. We effectively minimize the following problem

$$\min_{a,b,e,\alpha,\beta} \sum_{\operatorname{Run} i} \operatorname{Huber}_{\delta} \Big(\operatorname{LSE} \big(a - \alpha \log N_i, b - \beta \log D_i, e \big) - \log L_i \Big), \tag{10}$$

where LSE is the log-sum-exp operator. We then set $A, B, E = \exp(a), \exp(b), \exp(e)$.

We use the LBFGS algorithm to find local minima of the objective above, started on a grid of initialisation given by: $\alpha \in \{0, 0.5, \ldots, 2.\}, \beta \in \{0., 0.5, \ldots, 2.\}, e \in \{-1, -.5, \ldots, 1.\}, a \in \{0, 5, \ldots, 25\}$, and $b \in \{0, 5, \ldots, 25\}$. We find that the optimal initialisation is not on the boundary of our initialisation sweep.

We use $\delta = 10^{-3}$ for the Huber loss. We find that using larger values of δ pushes the model to overfit the small compute regime and poorly predict held-out data from larger runs. We find that using a δ smaller than 10^{-3} does not impact the resulting predictions.

D.3 Predicted compute optimal frontier for all three methods

For Approaches 1, 2 and 3, we show the estimated model size and number of training tokens for a variety of compute budgets in Table A3 and Table A4. We plot the predicted number of tokens and parameters for a variety of FLOP budgets for the three methods in Figure A3.

D.4 Small-scale comparison to Kaplan et al. (2020)

For 10^{21} FLOPs, we perform a head-to-head comparison of a model predicted by Approach 1 and that predicted by Kaplan et al. [23]. For both models, we use a batch size of 0.5M tokens and a maximum learning rate of 1.5×10^{-4} that decays by $10 \times$. From Kaplan et al. [23], we find that the optimal model size should be 4.68 billion parameters. From our approach 1, we estimate a 2.86

		App	proach 2	Ар	proach 3
	Parameters	FLOPs	Tokens	FLOPs	Tokens
	400 Million	1.84e+19	7.7 Billion	2.21e+19	9.2 Billion
	1 Billion	1.20e+20	20.0 Billion	1.62e+20	27.1 Billion
	10 Billion	1.32e+22	219.5 Billion	2.46e+22	410.1 Billion
•	67 Billion	6.88e+23	1.7 Trillion	1.71e+24	4.1 Trillion
	175 Billion	4.54e+24	4.3 Trillion	1.26e+24	12.0 Trillion
	280 Billion	1.18e+25	7.1 Trillion	3.52e+25	20.1 Trillion
	520 Billion	4.19e+25	13.4 Trillion	1.36e+26	43.5 Trillion
	1 Trillion	1.59e+26	26.5 Trillion	5.65e+26	94.1 Trillion
	10 Trillion	1.75e+28	292.0 Trillion	8.55e+28	1425.5 Trillion

Table A4: Estimated optimal training FLOPs and training tokens for various model sizes. Analogous to Table A3, we show the model size/token count projections from Approaches 2 and 3 for various compute budgets.

Figure A3: **Optimal number of tokens and parameters for a training FLOP budget.** For a fixed FLOP budget, we show the optimal number of tokens and parameters as predicted by Approaches 1, 2, and 3. For an alternate representation, see Figure 1.

billion parameter model should be optimal. We train a 4.74 billion parameter and a 2.80 billion parameter transformer to test this hypothesis, using the same depth-to-width ratio to avoid as many confounding factors as possible. We find that our predicted model outperforms the model predicted by Kaplan et al. [23] as shown in Figure A4.

E Curvature of the FLOP-loss frontier

We observe that as models increase there is a curvature in the FLOP-minimal loss frontier. This means that projections from very small models lead to different predictions than those from larger models. In Figure A5 we show linear fits using the first, middle, and final third of frontier-points. In this work, we do not take this in to account and we leave this as interesting future work as it suggests that even smaller models may be optimal for large FLOP budgets.

F FLOPs computation

We include all training FLOPs, including those contributed to by the embedding matrices, in our analysis. Note that we also count embeddings matrices in the total parameter count. For large models

Figure A4: Comparison to Kaplan et al. [23] at 10^{21} FLOPs. We train 2.80 and 4.74 billion parameter transformers predicted as optimal for 10^{21} FLOPs by Approach 1 and by Kaplan et al. [23]. We find that our prediction results in a more performant model at the end of training.

Figure A5: **Training curve envelopes.** We fit to the first third (orange), the middle third (green), and the last third (blue) of all points along the loss frontier. We plot only a subset of the points.

the FLOP and parameter contribution of embedding matrices is small. We use a factor of 2 to describe the multiply accumulate cost. For the forward pass, we consider contributions from:

- Embeddings
 - $2 \times \text{seq_len} \times \text{vocab_size} \times \text{d_model}$
- Attention (Single Layer)
 - Key, query and value projections: $2\times 3\times seq_len\times d_model\times (key_size\times num_heads)$
 - Key @ Query logits: $2 \times \text{seq_len} \times \text{seq_len} \times (\text{key_size} \times \text{num_heads})$
 - Softmax: 3 × num_heads × seq_len × seq_len
 - Softmax @ query reductions: $2 \times \text{seq_len} \times \text{seq_len} \times (\text{key_size} \times \text{num_heads})$
 - Final Linear: $2 \times \text{seq_len} \times (\text{key_size} \times \text{num_heads}) \times \text{d_model}$
- Dense Block (Single Layer)
 - $2 \times \text{seq_len} \times (d_\text{model} \times \text{ffw_size} + d_\text{model} \times \text{ffw_size})$

- Final Logits
 - $2 \times \text{seq_len} \times \text{d_model} \times \text{vocab_size}$
- Total forward pass FLOPs: embeddings + num_layers × (total_attention + dense_block) + logits

As in Kaplan et al. [23] we assume that the backward pass has twice the FLOPs of the forward pass. We show a comparison between our calculation and that using the common approximation C = 6DN [23] where C is FLOPs, D is the number of training tokens, and N is the number of parameters in Table A5. We find the differences in FLOP calculation to be very small and they do not impact our analysis. Compared to the results presented in Rae et al. [38], we use a slightly more

Table A5: **FLOP comparison.** For a variety of different model sizes, we show the ratio of the FLOPs that we compute per sequence to that using the 6ND approximation.

Parameters	num_layers	d_model	ffw_size	num_heads	k/q size	FLOP Ratio (Ours/6ND)
73M	10	640	2560	10	64	1.03
305M	20	1024	4096	16	64	1.10
552M	24	1280	5120	10	128	1.08
1.1B	26	1792	7168	14	128	1.04
1.6B	28	2048	8192	16	128	1.03
6.8B	40	3584	14336	28	128	0.99

accurate calculation giving a slightly different value (6.3×10^{23} compared to 5.76×10^{23}).

G Other differences between Chinchilla and Gopher

Beyond differences in model size and number of training tokens, there are some additional minor differences between *Chinchilla* and *Gopher*. Specifically, *Gopher* was trained with Adam [24] whereas *Chinchilla* was trained with AdamW [32]. Furthermore, as discussed in *Lessons Learned* in Rae et al. [38], *Chinchilla* stored a higher-precision copy of the weights in the sharded optimiser state.

We show comparisons of models trained with Adam and AdamW in Figure A6 and Figure A7. We find that, independent of the learning rate schedule, AdamW trained models outperform models trained with Adam. In Figure A6 we show a comparison of an 680 million parameter model trained

Figure A6: **Comparison of other differences.** Using an 680 million parameter model, we show a comparison between the setup used to train *Gopher* and *Chinchilla*— the change in optimiser and using a higher precision copy of the weights in the optimiser state. The setup used for *Chinchilla* (orange) clearly outperforms the setup used to train *Gopher* (green).

with and without the higher precision copy of the weights and with Adam/AdamW for comparison.

Figure A7: Adam vs AdamW. For a 417M (blue) and 1.4B model (green), we find that training with AdamW improves performance over training with Adam.

Figure A8: **Pile Evaluation.** For the different evaluation sets in The Pile [13], we show the bits-perbyte (bpb) improvement (decrease) of *Chinchilla* compared to *Gopher*. On all subsets, *Chinchilla* outperforms *Gopher*.

H Results

H.1 The Pile

In Table A7 we show the bits-per-byte (bpb) on The Pile [13] of *Chinchilla*, *Gopher*, and Jurassic-1. *Chinchilla* outperforms *Gopher* on all subsets. Jurassic-1 outperforms *Chinchilla* on 2 subsets—dm_mathematics and ubuntu_irc.

H.2 MMLU

In Table A9 we show the performance of *Chinchilla* and *Gopher* on each subset of MMLU.

Table A6: **All evaluation tasks.** We evaluate *Chinchilla* on a collection of language modelling along with downstream tasks. Those are largely the same tasks as in Rae et al. [38], to allow for direct comparison.

	# Tasks	Examples
Language Modelling	20	WikiText-103, The Pile: PG-19, arXiv, FreeLaw,
Reading Comprehension	3	RACE-m, RACE-h, LAMBADA
Question Answering	3	Natural Questions, TriviaQA, TruthfulQA
Common Sense	5	HellaSwag, Winogrande, PIQA, SIQA, BoolQ
MMLU	57	High School Chemistry, Astronomy, Clinical Knowledge,
BIG-bench	62	Causal Judgement, Epistemic Reasoning, Temporal Sequences,

Subset	Chinchilla (70B)	Gopher (280B)	Jurassic-1 (170B)
pile_cc	0.667	0.691	0.669
pubmed_abstracts	0.559	0.578	0.587
stackexchange	0.614	0.641	0.655
github	0.337	0.377	0.358
openwebtext2	0.647	0.677	-
arxiv	0.627	0.662	0.680
uspto_backgrounds	0.526	0.546	0.537
freelaw	0.476	0.513	0.514
pubmed_central	0.504	0.525	0.579
dm_mathematics	1.111	1.142	1.037
hackernews	0.859	0.890	0.869
nih_exporter	0.572	0.590	0.590
opensubtitles	0.871	0.900	0.879
europarl	0.833	0.938	-
books3	0.675	0.712	0.835
philpapers	0.656	0.695	0.742
gutenberg_pg_19	0.548	0.656	0.890
bookcorpus2	0.714	0.741	-
ubuntu_irc	1.026	1.090	0.857

Table A7: **Bits-per-Byte on The Pile.** We show the bpb on The Pile for *Chinchilla* compared to *Gopher* and Jurassic-1.

Figure A9: **MMLU results compared to** *Gopher* We find that *Chinchilla* outperforms *Gopher* by 7.6% on average (see Table A8) in addition to performing better on 51/57 individual tasks, the same on 2/57, and worse on only 4/57 tasks.

H.3 Winogender Setup

We follow the same setup as in Rae et al. [38]. To test coreference resolution in *Chinchilla*, we input a sentence which includes a pronoun reference (e.g., "The librarian helped the child pick out a book because {pronoun} liked to encourage reading."), then measure the probability of the model completing the sentence "'{Pronoun}' refers to the" with different sentence roles ("librarian" and "child" in this example). Each example is annotated with the correct pronoun resolution (the pronoun corresponds to the librarian in this example). Each sentence is tested with a female, male, and gender-neutral pronoun. An unbiased model would correctly predict which word the pronoun refers to regardless of pronoun gender.

Table A8: **Massive Multitask Language Understanding (MMLU).** We report the average 5-shot accuracy over 57 tasks with model and human accuracy comparisons taken from Hendrycks et al. [16]. We also include the average prediction for state of the art accuracy in June 2022/2023 made by 73 competitive human forecasters in Steinhardt [50].

Random	25.0%
Average human rater	34.5%
GPT-3 5-shot	43.9%
Gopher 5-shot	60.0%
Chinchilla 5-shot	67.6%
Average human expert performance	89.8%
June 2022 Forecast	57.1%
June 2023 Forecast	63.4%

Table A9: *Chinchilla* MMLU results. For each subset of MMLU [16], we show *Chinchilla*'s accuracy compared to *Gopher*.

Task	Chinchilla	Gopher	Task	Chinchilla	Gopher
abstract_algebra	31.0	25.0	anatomy	70.4	56.3
astronomy	73.0	65.8	business_ethics	72.0	70.0
clinical_knowledge	75.1	67.2	college_biology	79.9	70.8
college_chemistry	51.0	45.0	college_computer_science	51.0	49.0
college_mathematics	32.0	37.0	college_medicine	66.5	60.1
college_physics	46.1	34.3	computer_security	76.0	65.0
conceptual_physics	67.2	49.4	econometrics	38.6	43.0
electrical_engineering	62.1	60.0	elementary_mathematics	41.5	33.6
formal_logic	33.3	35.7	global_facts	39.0	38.0
high_school_biology	80.3	71.3	high_school_chemistry	58.1	47.8
high_school_computer_science	58.0	54.0	high_school_european_history	78.8	72.1
high_school_geography	86.4	76.8	high_school_gov_and_politics	91.2	83.9
high_school_macroeconomics	70.5	65.1	high_school_mathematics	31.9	23.7
high_school_microeconomics	77.7	66.4	high_school_physics	36.4	33.8
high_school_psychology	86.6	81.8	high_school_statistics	58.8	50.0
high_school_us_history	83.3	78.9	high_school_world_history	85.2	75.1
human_aging	77.6	66.4	human_sexuality	86.3	67.2
international_law	90.9	77.7	jurisprudence	79.6	71.3
logical_fallacies	80.4	72.4	machine_learning	41.1	41.1
management	82.5	77.7	marketing	89.7	83.3
medical_genetics	69.0	69.0	miscellaneous	84.5	75.7
moral_disputes	77.5	66.8	moral_scenarios	36.5	40.2
nutrition	77.1	69.9	philosophy	79.4	68.8
prehistory	81.2	67.6	professional_accounting	52.1	44.3
professional_law	56.5	44.5	professional_medicine	75.4	64.0
professional_psychology	75.7	68.1	public_relations	73.6	71.8
security_studies	75.9	64.9	sociology	91.0	84.1
us_foreign_policy	92.0	81.0	virology	53.6	47.0
world_religions	87.7	84.2			

H.4 BIG-bench

In Table A10 we show *Chinchilla* and *Gopher* performance on each subset of BIG-bench that we consider.

H.5 Question Answering

In Table A11 we show results on closed book QA.

Figure A10: **BIG-bench results compared to** *Gopher Chinchilla* out performs *Gopher* on all but four BIG-bench tasks considered. Full results are in Table A10.

I Gender bias and toxicity

Large Language Models carry potential risks such as outputting offensive language, propagating social biases, and leaking private information [54, 2]. We expect *Chinchilla* to carry risks similar to *Gopher* because *Chinchilla* is trained on the same data, albeit with slightly different relative weights, and because it has a similar architecture. Here, we examine gender bias (particularly gender and occupation bias) and generation of toxic language. We select a few common evaluations to highlight potential issues, but stress that our evaluations are not comprehensive and much work remains to understand, evaluate, and mitigate risks in LLMs.

Gender bias. As discussed in Rae et al. [38], large language models reflect contemporary and historical discourse about different groups (such as gender groups) from their training dataset, and we expect the same to be true for *Chinchilla*. Here, we test if potential gender and occupation biases manifest in unfair outcomes on coreference resolutions, using the Winogender dataset [43] in a zero-shot setting. Winogender tests whether a model can correctly determine if a pronoun refers to different occupation words. An unbiased model would correctly predict which word the pronoun refers to regardless of pronoun gender. We follow the same setup as in Rae et al. [38] (described further in Section H.3).

As shown in Table A12, *Chinchilla* correctly resolves pronouns more frequently than *Gopher* across all groups. Interestingly, the performance increase is considerably smaller for male pronouns (increase of 3.2%) than for female or neutral pronouns (increases of 8.3% and 9.2% respectively). We also consider *gotcha* examples, in which the correct pronoun resolution contradicts gender stereotypes (determined by labor statistics). Again, we see that *Chinchilla* resolves pronouns more accurately than *Gopher*. When breaking up examples by male/female gender and *gotcha/not gotcha*, the largest improvement is on female *gotcha* examples (improvement of 10%). Thus, though *Chinchilla* uniformly overcomes gender stereotypes for more coreference examples than *Gopher*, the rate of improvement is higher for some pronouns than others, suggesting that the improvements conferred by using a more compute-optimal model can be uneven.

Sample toxicity. Language models are capable of generating toxic language—including insults, hate speech, profanities and threats [14, 38]. While toxicity is an umbrella term, and its evaluation in LMs comes with challenges [56, 55], automatic classifier scores can provide an indication for the levels of harmful text that a LM generates. Rae et al. [38] found that improving language modelling loss by increasing the number of model parameters has only a negligible effect on toxic text generation (unprompted); here we analyze whether the same holds true for a lower LM loss achieved via more compute-optimal training. Similar to the protocol of Rae et al. [38], we generate 25,000 unprompted samples from *Chinchilla*, and compare their *PerspectiveAPI* toxicity score distribution to that of

Task	Chinchilla	Gopher	Task	Chinchilla	Gopher
hyperbaton	54.2	51.7	movie_dialog_same_or_diff	54.5	50.7
causal_judgment	57.4	50.8	winowhy	62.5	56.7
formal_fallacies_syllogisms_neg	52.1	50.7	movie_recommendation	75.6	50.5
crash_blossom	47.6	63.6	moral_permissibility	57.3	55.1
discourse_marker_prediction	13.1	11.7	strategyqa	68.3	61.0
general_knowledge_json	94.3	93.9	nonsense_words_grammar	78.0	61.4
sports_understanding	71.0	54.9	metaphor_boolean	93.1	59.3
implicit_relations	49.4	36.4	navigate	52.6	51.1
penguins_in_a_table	48.7	40.6	presuppositions_as_nli	49.9	34.0
intent_recognition	92.8	88.7	temporal_sequences	32.0	19.0
reasoning_about_colored_objects	59.7	49.2	question_selection	52.6	41.4
logic_grid_puzzle	44.0	35.1	logical_fallacy_detection	72.1	58.9
timedial	68.8	50.9	physical_intuition	79.0	59.7
epistemic_reasoning	60.6	56.4	physics_mc	65.5	50.9
ruin_names	47.1	38.6	identify_odd_metaphor	68.8	38.6
hindu_knowledge	91.4	80.0	understanding_fables	60.3	39.6
misconceptions	65.3	61.7	logical_sequence	64.1	36.4
implicatures	75.0	62.0	mathematical_induction	47.3	57.6
disambiguation_q	54.7	45.5	fantasy_reasoning	69.0	64.1
known_unknowns	65.2	63.6	SNARKS	58.6	48.3
dark_humor_detection	66.2	83.1	crass_ai	75.0	56.8
analogical_similarity	38.1	17.2	entailed_polarity	94.0	89.5
sentence_ambiguity	71.7	69.1	irony_identification	73.0	69.7
riddle_sense	85.7	68.2	evaluating_info_essentiality	17.6	16.7
date_understanding	52.3	44.1	phrase_relatedness	94.0	81.8
analytic_entailment	67.1	53.0	novel_concepts	65.6	59.1
odd_one_out	70.9	32.5	empirical_judgments	67.7	52.5
logical_args	56.2	59.1	figure_of_speech_detection	63.3	52.7
alignment_questionnaire	91.3	79.2	english_proverbs	82.4	57.6
similarities_abstraction	87.0	81.8	Human_organs_senses_mcc	85.7	84.8
anachronisms	69.1	56.4	gre_reading_comprehension	53.1	27.3

Table A10: *Chinchilla* **BIG-bench results.** For each subset of BIG-bench [49], we show *Chinchilla* and *Gopher*'s accuracy.

Gopher-generated samples. Several summary statistics indicate an absence of major differences: the mean (median) toxicity score for *Gopher* is 0.081 (0.064), compared to 0.087 (0.066) for *Chinchilla*, and the 95th percentile scores are 0.230 for *Gopher*, compared to 0.238 for *Chinchilla*. That is, the large majority of generated samples are classified as non-toxic, and the difference between the models is negligible. In line with prior findings [38], this suggests that toxicity levels in unconditional text generation are largely independent of the model quality (measured in language modelling loss), i.e. that better models of the training dataset are not necessarily more toxic.

J Model Card

We present the *Chinchilla* model card in Table A13, following the framework presented by Mitchell et al. [35].

Model Details			
Model Date	March 2022		
Model Type	Autoregressive Transformer Language Model (Section 4.1 for details)		
Intended Uses			

	Factors Relevant factors include which language is used. Our model is trained on English data. Furthermore, in the analysis of models trained on the same corpus in Rae et al. [38], we found it has unequal performance when modelling some dialects (e.g., African American English). Our model is designed for research. The model should not be used for
	is trained on English data. Furthermore, in the analysis of models trained on the same corpus in Rae et al. [38], we found it has unequal performance when modelling some dialects (e.g., African American English). Our model is
	downstream applications without further analysis on factors in the proposed downstream application.
	See the results in Rae et al. [38] which analyzes models trained on the same text corpus.
	Metrics
	 Perplexity and bits per byte on language modelling datasets Accuracy on completion tasks, reading comprehension, MMLU, BIG-bench and fact checking. Exact match accuracy for question answering. Generation toxicity from Real Toxicity Prompts (RTP) alongside toxicity classification accuracy. Gender and occupation bias. Test include comparing the probability of generating different gender terms and the Winogender coreference resolution task. We principally focus on <i>Chinchilla</i>'s performance compared to <i>Gopher</i> on text likelihood prediction.
	N/A
Variability	Due to the costs of training large language models, we did not train <i>Chinchilla</i> multiple times. However, the breadth of our evaluation on a range of different task types gives a reasonable estimate of the overall performance of the model. Furthermore, the existence of another large model trained on the same dataset (<i>Gopher</i>) provides a clear point of compari- son.
	Evaluation Data

Datasets	
	• Language modelling on LAMBADA, Wiki-text103 [34], C4 [40], PG-19 [39] and the Pile [13].
	• Language understanding, real world knowledge, mathematical and logical reasoning on the Mas- sive Multitask Language Understanding (MMLU) benchmark [16] and on the "Beyond the Imitation Game Benchmark" (BIG-bench) [49].
	• Question answering (closed book) on Natural Ques- tions [26] and TriviaQA [21].
	• Reading comprehension on RACE [27]
	• Common sense understanding on HellaSwag [58], PIQA [3], Winogrande [44], SIQA [45], BoolQ [10], and TruthfulQA [31].
Motivation	We chose evaluations from Rae et al. [38] to allow us to most directly compare to <i>Gopher</i> .
Preprocessing	Input text is tokenized using a SentencePiece tokenizer with a vocabulary of size 32,000. Unlike the tokenizer used for <i>Gopher</i> , the tokenizer used for <i>Chinchilla</i> does not perform NFKC normalization.

Training Data

The same dataset is used as in Rae et al. [38]. Differences in sampling are shown in Table A1.

Quantitative Analyses

Unitary Results	Section 4.2 gives a detailed description of our analysis. Main take-aways include:
	• Our model is capable of outputting toxic language as measured by the PerspectiveAPI. This is partic- ularly true when the model is prompted with toxic prompts.
	• Gender: Our model emulates stereotypes found in our dataset, with occupations such as "dieti- cian" and "receptionist" being more associated with women and "carpenter" and "sheriff" being more associated with men.
	• Race/religion/country sentiment: Prompting our model to discuss some groups leads to sentences with lower or higher sentiment, likely reflecting text in our dataset.
Intersectional Results	We did not investigate intersectional biases.
	Ethical Considerations
Data	The data is the same as described in Rae et al. [38].
Human Life	The model is not intended to inform decisions about matters central to human life or flourishing.

Mitigations	We considered filtering the dataset to remove toxic content but decided against it due to the observation that this can introduce new biases as studied by Welbl et al. [55]. More work is needed on mitigation approaches to toxic content and other types of risks associated with language models, such as those discussed in Weidinger et al. [54].
Risks and Harms	The data is collected from the internet, and thus undoubtedly there is toxic/biased content in our training dataset. Fur- thermore, it is likely that personal information is also in the dataset that has been used to train our models. We defer to the more detailed discussion in Weidinger et al. [54].
Use Cases	Especially fraught use cases include the generation of fac- tually incorrect information with the intent of distributing it or using the model to generate racist, sexist or otherwise toxic text with harmful intent. Many more use cases that could cause harm exist. Such applications to malicious use are discussed in detail in Weidinger et al. [54].

Table A13: *Chinchilla* model card. We follow the framework presented in Mitchell et al. [35].

K List of trained models

In Table A14 we list the model size and configuration of all models used in this study. Many models have been trained multiple times, for a different number of training steps.

Table A11: **Closed-book question answering.** For Natural Questions [26] and TriviaQA [21], *Chinchilla* outperforms *Gopher* in all cases. On Natural Questions, *Chinchilla* outperforms GPT-3. On TriviaQA we show results on two different evaluation sets to allow for comparison to GPT-3 and to open book SOTA (FiD + Distillation [20]).

	Method	Chinchilla	Gopher	GPT-3	SOTA (open book)
Natural Questions (dev)	0-shot 5-shot	16.6% 31.5%	10.1% 24.5%	14.6%	54.4%
Natural Questions (dev)	64-shot	35.5%	24.3 <i>%</i> 28.2%	_ 29.9%	54.470
TriviaQA (unfiltered, test)	0-shot	67.0%	52.8%	64.3 %	
	5-shot	73.2%	63.6%	-	-
	64-shot	72.3%	61.3%	71.2%	
TriviaQA (filtered, dev)	0-shot	55.4%	43.5%	-	
	5-shot	64.1%	57.0%	-	72.5%
	64-shot	64.6%	57.2%	-	

Table A12: **Winogender results. Left:** *Chinchilla* consistently resolves pronouns better than *Gopher*. **Right:** *Chinchilla* performs better on examples which contradict gender stereotypes (gotcha examples). However, difference in performance across groups suggests *Chinchilla* exhibits bias.

	Chinchilla	Gopher			Chinchille	a Gopher
All	78.3%	71.4%	-	Male gotcha	62.5%	59.2%
Male	71.2%	68.0%		Male not gotcha	80.0%	76.7%
Female	79.6%	71.3%		Female gotcha	76.7%	66.7%
Neutral	84.2%	75.0%		Female not gotcha	82.5%	75.8%

Parameters (million)	d_model	ffw_size	kv_size	n_heads	n_layers
44	512	2048	64	8	8
57	576	2304	64	9	9
74	640	2560	64	10	10
90	640	2560	64	10	13
106	640	2560	64	10	16
117	768	3072	64	12	12
140	768	3072	64	12	15
163	768	3072	64	12	18
175	896	3584	64	14	14
196	896	3584	64	14	16
217	896	3584	64	14	18
251	1024	4096	64	16	16
278	1024	4096	64	16	18
306	1024	4096	64	16	20
425	1280	5120	128	10	18
489	1280	5120	128	10	21
509	1408	5632	128	11	18
552	1280	5120	128	10	24
587	1408	5632	128	11	21
632	1536	6144	128	12	19
664	1408	5632	128	11	24
724	1536	6144	128	12	22
816	1536	6144	128	12	25
893	1792	7168	128	14	20
1,018	1792	7168	128	14	23
1,143	1792	7168	128	14	26
1,266	2048	8192	128	16	22
1,424	2176	8704	128	17	22
1,429	2048	8192	128	16	25
1,593	2048	8192	128	16	28
1,609	2176	8704	128	17	25
1,731	2304	9216	128	18	24
1,794	2176	8704	128	17	28
2,007	2304	9216	128	18	28
2,283	2304	9216	128	18	32
2,298	2560	10240	128	20	26
2,639	2560	10240	128	20	30
2,980	2560	10240	120	20	34
3,530	2688	10752	128	22	36
3,802	2816	11264	128	22	36
4,084	2944	11776	128	22	36
4,516	3072	12288	120	24	36
6,796	3584	14336	128	24	40
9,293	4096	16384	120	32	40
11,452	4352	17408	128	32	47
12,295	4608	18432	128	36	44
12,295	4608	18432	128	30	44
13,735	4864	19456	128	32	47
14,940	4804	19450	128	32 32	47
16,183	5120	20480	128	32 40	49

Table A14: **All models.** We list the hyperparameters and size of all models trained as part of this work. Many shown models have been trained with multiple learning rate schedules/number of training tokens.