
Appendix

A Training dataset

In Table A1 we show the training dataset makeup used for Chinchilla and all scaling runs. Note that
both the MassiveWeb and Wikipedia subsets are both used for more than one epoch.

Disk Size Documents Sampling proportion Epochs in 1.4T tokens

MassiveWeb 1.9 TB 604M 45% (48%) 1.24
Books 2.1 TB 4M 30% (27%) 0.75
C4 0.75 TB 361M 10% (10%) 0.77
News 2.7 TB 1.1B 10% (10%) 0.21
GitHub 3.1 TB 142M 4% (3%) 0.13
Wikipedia 0.001 TB 6M 1% (2%) 3.40

Table A1: MassiveText data makeup. For each subset of MassiveText, we list its total disk size, the
number of documents and the sampling proportion used during training—we use a slightly different
distribution than in Rae et al. [38] (shown in parenthesis). In the rightmost column show the number
of epochs that are used in 1.4 trillion tokens.

B Optimal cosine cycle length

One key assumption is made on the cosine cycle length and the corresponding learning rate drop
(we use a 10× learning rate decay in line with Rae et al. [38]).5 We find that setting the cosine
cycle length too much longer than the target number of training steps results in sub-optimally trained
models, as shown in Figure A1. As a result, we assume that an optimally trained model will have the
cosine cycle length correctly calibrated to the maximum number of steps, given the FLOP budget; we
follow this rule in our main analysis.

C Consistency of scaling results across datasets

We show scaling results from an IsoFLOP (Approach 2) analysis after training on two different
datasets: C4 [?] and GitHub code (we show results with data from Rae et al. [38]), results are shown
in Table A2. For both set of experiments using subsets of MassiveText, we use the same tokenizer as
the MassiveText experiments.

We find that the scaling behaviour on these datasets is very similar to what we found on MassiveText,
as shown in Figure A2 and Table A2. This suggests that our results are independent of the dataset as
long as one does not train for more than one epoch.

Nonetheless, data quality may vary widely, especially as the number of training tokens increases.
Further work understanding this relationship better, and potentially the repeated use of high-quality
data is required.

D Details on the scaling analyses

D.1 Approach 1: Fixing model sizes and varying training sequences

We use a maximum learning rate of 2 × 10−4 for the smallest models and 1.25 × 10−4 for the
largest models. In all cases, the learning rate drops by a factor of 10× during training, using a cosine
schedule. We make the assumption that the cosine cycle length should be approximately matched to
the number of training steps. We find that when the cosine cycle overshoots the number of training

5We find the difference between decaying by 10× and decaying to 0.0 (over the same number of steps) to
be small, though decaying by a factor of 10× to be slightly more performant. Decaying by less (5×) is clearly
worse.

16

0 2 4 6 8
Million Sequences

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e/
M

ax
 L

R

0 2 4 6 8
Million Sequences

2.70

2.75

2.80

2.85

2.90

2.95

3.00

Tr
ai

ni
ng

 L
os

s

0 2 4 6
Million Sequences

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

C4
 L

os
s

Cosine Cycle Length
1.0× num. steps
1.1× num. steps
1.25× num. steps
1.5× num. steps
2.0× num. steps
5.0× num. steps

0.0 2.5 5.0 7.5 10.0 12.5
Million Sequences

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e/
M

ax
 L

R

0.0 2.5 5.0 7.5 10.0 12.5
Million Sequences

2.70

2.75

2.80

2.85

2.90

2.95

3.00

Tr
ai

ni
ng

 L
os

s

0.0 2.5 5.0 7.5 10.0 12.5
Million Sequences

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

C4
 L

os
s

Figure A1: Grid over cosine cycle length. We show 6 curves with the cosine cycle length set to 1,
1.1, 1.25, 1.5, 2, and 5× longer than the target number of training steps. When the cosine cycle length
is too long, and the learning rate does not drop appropriately, then performance is impaired. We find
that overestimating the number of training steps beyond 25% leads to clear drops in performance. We
show results where we have set the number of training steps to two different values (top and bottom).

100M 300M 1B 3B 6B 30B
Parameters

2.0

2.2

2.4

2.6

2.8

3.0

3.2

C4
 T

ra
in

in
g

Lo
ss

1e19
1e20
6e20
1e21

1017 1019 1021 1023 1025

FLOPs

100M

1B

10B

100B

1T

Pa
ra

m
et

er
s

73B

1017 1019 1021 1023 1025

FLOPs
100M

1B

10B

100B

1T

10T
To

ke
ns

1.3T

100M 300M 1B 3B 6B 30B
Parameters

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Gi
tH

ub
 T

ra
in

in
g

Lo
ss

1e19
1e20
6e20
1e21

1017 1019 1021 1023 1025

FLOPs

100M

1B

10B

100B

1T

Pa
ra

m
et

er
s

59B

1017 1019 1021 1023 1025

FLOPs
100M

1B

10B

100B

1T

10T

To
ke

ns

1.6T

Figure A2: C4 and GitHub IsoFLOP curves. Using the C4 dataset [?] and a GitHub dataset [38],
we generate 4 IsoFLOP profiles and show the parameter and token count scaling, as in Figure 3.
Scaling coefficients are shown in Table A2.

steps by more than 25%, performance is noticeably degraded—see Figure A1.6 We use Gaussian
smoothing with a window length of 10 steps to smooth the training curve.

We trained 5 different 1.1 billion parameter models on random subsets of the data to look at the
variance in final performance. We found that the average loss achieved was 2.488 with a standard
deviation amongst the 5 runs of 0.00257. Given how small the differences are, we are confident than
any given run is very indicative of a model of that size.

6This further emphasises the point of not only determining model size, but also training length before
training begins.

17

Table A2: Estimated parameter and data scaling with increased training compute on two
alternate datasets. The listed values are the exponents, a and b, on the relationship Nopt ∝ Ca and
Dopt ∝ Cb. Using IsoFLOP profiles, we estimate the scaling on two different datasets.

Approach Coef. a where Nopt ∝ Ca Coef. b where Dopt ∝ Cb

C4 0.50 0.50
GitHub 0.53 0.47

Kaplan et al. [23] 0.73 0.27

D.2 Approach 3: Parametric fitting of the loss

In this section, we first show how Equation (2) can be derived. We repeat the equation below for
clarity,

L̂(N,D) ≜ E +
A

Nα
+

B

Dβ
, (4)

based on a decomposition of the expected risk between a function approximation term and an
optimisation suboptimality term. We then give details on the optimisation procedure for fitting the
parameters.

Loss decomposition. Formally, we consider the task of predicting the next token y ∈ Y based on
the previous tokens in a sequence x ∈ Ys, with s varying from 0 to smax—the maximum sequence
length. We consider a distribution P ∈ D(X × Y) of tokens in Y and their past in X . A predictor
f : X → D(Y) computes the probability of each token given the past sequence. The Bayes classifier,
f⋆, minimizes the cross-entropy of f(x) with the observed tokens y, with expectation taken on the
whole data distribution. We let L be the expected risk

L(f) ≜ E[log f(x)y], and set f⋆ ≜ argmin
f∈F(X ,D(Y))

L(f). (5)

The set of all transformers of size N , that we denote HN , forms a subset of all functions that map
sequences to distributions of tokens X → D(Y). Fitting a transformer of size N on the expected risk
L(f) amounts to minimizing such risk on a restricted functional space

fN ≜ argmin
f∈HN

L(f). (6)

When we observe a dataset (xi, yi)ii∈[1,D] of size D, we do not have access to EP , but instead

to the empirical expectation ÊD over the empirical distribution P̂D. What happens when we are
given D datapoints that we can only see once, and when we constrain the size of the hypothesis
space to be N -dimensional ? We are making steps toward minimizing the empirical risk within a
finite-dimensional functional space HN :

L̂D(f) ≜ ÊD[log f(x)y], setting f̂N,D ≜ argmin
f∈HN

L̂D(f). (7)

We are never able to obtain f̂N,D as we typically perform a single epoch over the dataset of size D.
Instead, be obtain f̄N,D, which is the result of applying a certain number of gradient steps based on
the D datapoints—the number of steps to perform depends on the gradient batch size, for which we
use well-tested heuristics.

Using the Bayes-classifier f⋆, the expected-risk minimizer fN and the “single-epoch empirical-risk
minimizer” f̄N,D, we can finally decompose the loss L(N,D) into

L(N,D) ≜ L(f̄N,D) = L(f⋆) + (L(fN)− L(f⋆)) +
(
L(f̄N,D)− L(fN)

)
. (8)

The loss comprises three terms: the Bayes risk, i.e. the minimal loss achievable for next-token
prediction on the full distribution P , a.k.a the “entropy of natural text.”; a functional approximation
term that depends on the size of the hypothesis space; finally, a stochastic approximation term that
captures the suboptimality of minimizing L̂D instead of L, and of making a single epoch on the
provided dataset.

18

Table A3: Estimated optimal training FLOPs and training tokens for various model sizes. For
various model sizes, we show the projections from Approach 1 of how many FLOPs and training
tokens would be needed to train compute-optimal models. The estimates for Approach 2 & 3 are
similar (shown in Section D.3)

.

Parameters FLOPs FLOPs (in Gopher unit) Tokens

400 Million 1.92e+19 1/29, 968 8.0 Billion
1 Billion 1.21e+20 1/4, 761 20.2 Billion

10 Billion 1.23e+22 1/46 205.1 Billion
67 Billion 5.76e+23 1 1.5 Trillion

175 Billion 3.85e+24 6.7 3.7 Trillion
280 Billion 9.90e+24 17.2 5.9 Trillion
520 Billion 3.43e+25 59.5 11.0 Trillion

1 Trillion 1.27e+26 221.3 21.2 Trillion
10 Trillion 1.30e+28 22515.9 216.2 Trillion

Expected forms of the loss terms. In the decomposition (8), the second term depends entirely on
the number of parameters N that defines the size of the functional approximation space. On the set
of two-layer neural networks, it is expected to be proportional to 1

N1/2 [47]. Finally, given that it
corresponds to early stopping in stochastic first order methods, the third term should scale as the
convergence rate of these methods, which is lower-bounded by 1

D1/2 [42] (and may attain the bound).
This convergence rate is expected to be dimension free [see e.g. 7, for a review] and depends only on
the loss smoothness; hence we assume that the second term only depends on D in (2). Empirically,
we find after fitting (2) that

L(N,D) = E +
A

N0.34
+

B

D0.28
, (9)

with E = 1.69, A = 406.4, B = 410.7. We note that the parameter/data coefficients are both lower
than 1

2 ; this is expected for the data-efficiency coefficient (but far from the known lower-bound).
Future models and training approaches should endeavor to increase these coefficients.

Fitting the decomposition to data. We effectively minimize the following problem

min
a,b,e,α,β

∑
Run i

Huberδ
(

LSE
(
a− α logNi, b− β logDi, e

)
− logLi

)
, (10)

where LSE is the log-sum-exp operator. We then set A,B,E = exp(a), exp(b), exp(e).

We use the LBFGS algorithm to find local minima of the objective above, started on a grid of
initialisation given by: α ∈ {0., 0.5, . . . , 2.}, β ∈ {0., 0.5, . . . , 2.}, e ∈ {−1.,−.5, . . . , 1.}, a ∈
{0, 5, . . . , 25}, and b ∈ {0, 5, . . . , 25}. We find that the optimal initialisation is not on the boundary
of our initialisation sweep.

We use δ = 10−3 for the Huber loss. We find that using larger values of δ pushes the model to overfit
the small compute regime and poorly predict held-out data from larger runs. We find that using a δ
smaller than 10−3 does not impact the resulting predictions.

D.3 Predicted compute optimal frontier for all three methods

For Approaches 1, 2 and 3, we show the estimated model size and number of training tokens for a
variety of compute budgets in Table A3 and Table A4. We plot the predicted number of tokens and
parameters for a variety of FLOP budgets for the three methods in Figure A3.

D.4 Small-scale comparison to Kaplan et al. (2020)

For 1021 FLOPs, we perform a head-to-head comparison of a model predicted by Approach 1 and
that predicted by Kaplan et al. [23]. For both models, we use a batch size of 0.5M tokens and a
maximum learning rate of 1.5 × 10−4 that decays by 10×. From Kaplan et al. [23], we find that
the optimal model size should be 4.68 billion parameters. From our approach 1, we estimate a 2.86

19

Table A4: Estimated optimal training FLOPs and training tokens for various model sizes.
Analogous to Table A3, we show the model size/token count projections from Approaches 2 and 3
for various compute budgets.

.

Approach 2 Approach 3

Parameters FLOPs Tokens FLOPs Tokens

400 Million 1.84e+19 7.7 Billion 2.21e+19 9.2 Billion
1 Billion 1.20e+20 20.0 Billion 1.62e+20 27.1 Billion

10 Billion 1.32e+22 219.5 Billion 2.46e+22 410.1 Billion
67 Billion 6.88e+23 1.7 Trillion 1.71e+24 4.1 Trillion

175 Billion 4.54e+24 4.3 Trillion 1.26e+24 12.0 Trillion
280 Billion 1.18e+25 7.1 Trillion 3.52e+25 20.1 Trillion
520 Billion 4.19e+25 13.4 Trillion 1.36e+26 43.5 Trillion

1 Trillion 1.59e+26 26.5 Trillion 5.65e+26 94.1 Trillion
10 Trillion 1.75e+28 292.0 Trillion 8.55e+28 1425.5 Trillion

1010 1011 1012 1013

Tokens

108

109

1010

1011

1012

Pa
ra

m
et

er
s

1e+18

1e+19

1e+20

1e+21

1e+22

1e+23

1e+24

1e+25

1e+26Approach 1
Approach 2
Approach 3
Chinchilla
Gopher
GPT-3
Megatron-Turing NLG

Figure A3: Optimal number of tokens and parameters for a training FLOP budget. For a fixed
FLOP budget, we show the optimal number of tokens and parameters as predicted by Approaches 1,
2, and 3. For an alternate representation, see Figure 1.

billion parameter model should be optimal. We train a 4.74 billion parameter and a 2.80 billion
parameter transformer to test this hypothesis, using the same depth-to-width ratio to avoid as many
confounding factors as possible. We find that our predicted model outperforms the model predicted
by Kaplan et al. [23] as shown in Figure A4.

E Curvature of the FLOP-loss frontier

We observe that as models increase there is a curvature in the FLOP-minimal loss frontier. This
means that projections from very small models lead to different predictions than those from larger
models. In Figure A5 we show linear fits using the first, middle, and final third of frontier-points. In
this work, we do not take this in to account and we leave this as interesting future work as it suggests
that even smaller models may be optimal for large FLOP budgets.

F FLOPs computation

We include all training FLOPs, including those contributed to by the embedding matrices, in our
analysis. Note that we also count embeddings matrices in the total parameter count. For large models

20

0 1 2
Sequences 1e7

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Tr
ai

ni
ng

 L
os

s

0.0 0.2 0.4 0.6 0.8 1.0
FLOPs ×1021

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Tr
ai

ni
ng

 L
os

s

Kaplan et al (2020)
Approach 1

Figure A4: Comparison to Kaplan et al. [23] at 1021 FLOPs. We train 2.80 and 4.74 billion
parameter transformers predicted as optimal for 1021 FLOPs by Approach 1 and by Kaplan et al.
[23]. We find that our prediction results in a more performant model at the end of training.

1017 1018 1019 1020 1021 1022

FLOPS

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
6.0

Tr
ai

ni
ng

 lo
ss

75

250

500

1000

2500

5000

10000

M
illi

on
 P

ar
am

et
er

s

Figure A5: Training curve envelopes. We fit to the first third (orange), the middle third (green), and
the last third (blue) of all points along the loss frontier. We plot only a subset of the points.

the FLOP and parameter contribution of embedding matrices is small. We use a factor of 2 to describe
the multiply accumulate cost. For the forward pass, we consider contributions from:

• Embeddings

– 2× seq_len × vocab_size × d_model

• Attention (Single Layer)

– Key, query and value projections: 2 × 3 × seq_len × d_model × (key_size ×
num_heads)

– Key @ Query logits: 2× seq_len × seq_len × (key_size × num_heads)
– Softmax: 3× num_heads × seq_len × seq_len
– Softmax @ query reductions: 2× seq_len × seq_len × (key_size × num_heads)
– Final Linear: 2× seq_len × (key_size × num_heads)× d_model

• Dense Block (Single Layer)

– 2× seq_len × (d_model × ffw_size + d_model × ffw_size)

21

• Final Logits

– 2× seq_len × d_model × vocab_size

• Total forward pass FLOPs: embeddings + num_layers × (total_attention + dense_block)
+ logits

As in Kaplan et al. [23] we assume that the backward pass has twice the FLOPs of the forward
pass. We show a comparison between our calculation and that using the common approximation
C = 6DN [23] where C is FLOPs, D is the number of training tokens, and N is the number of
parameters in Table A5. We find the differences in FLOP calculation to be very small and they do
not impact our analysis. Compared to the results presented in Rae et al. [38], we use a slightly more

Table A5: FLOP comparison. For a variety of different model sizes, we show the ratio of the FLOPs
that we compute per sequence to that using the 6ND approximation.

Parameters num_layers d_model ffw_size num_heads k/q size FLOP Ratio (Ours/6ND)

73M 10 640 2560 10 64 1.03
305M 20 1024 4096 16 64 1.10
552M 24 1280 5120 10 128 1.08
1.1B 26 1792 7168 14 128 1.04
1.6B 28 2048 8192 16 128 1.03
6.8B 40 3584 14336 28 128 0.99

accurate calculation giving a slightly different value (6.3× 1023 compared to 5.76× 1023).

G Other differences between Chinchilla and Gopher

Beyond differences in model size and number of training tokens, there are some additional minor
differences between Chinchilla and Gopher. Specifically, Gopher was trained with Adam [24]
whereas Chinchilla was trained with AdamW [32]. Furthermore, as discussed in Lessons Learned
in Rae et al. [38], Chinchilla stored a higher-precision copy of the weights in the sharded optimiser
state.

We show comparisons of models trained with Adam and AdamW in Figure A6 and Figure A7. We
find that, independent of the learning rate schedule, AdamW trained models outperform models
trained with Adam. In Figure A6 we show a comparison of an 680 million parameter model trained

0 5 10 15 20 25 30
Million Sequences

2.45

2.50

2.55

2.60

2.65

2.70

Tr
ai

ni
ng

 L
os

s

0 5 10 15 20 25 30
Million Sequences

17

18

19

20

21

22

23

24

25

26

W
ik

ite
xt

10
3

Pe
rp

le
xi

ty

0 5 10 15 20 25 30
Million Sequences

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

C4
 L

os
s

Training Setup
Adam w/ High Precision
AdamW w/ High Precision
Adam No High Precision
AdamW No High Precision

Figure A6: Comparison of other differences. Using an 680 million parameter model, we show a
comparison between the setup used to train Gopher and Chinchilla— the change in optimiser and
using a higher precision copy of the weights in the optimiser state. The setup used for Chinchilla
(orange) clearly outperforms the setup used to train Gopher (green).

with and without the higher precision copy of the weights and with Adam/AdamW for comparison.

22

0 25 50 75 100 125 150
Million Sequences

2.3

2.4

2.5

2.6

2.7

2.8

C4
 L

os
s

0 25 50 75 100 125 150
Million Sequences

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

W
ik

ite
xt

10
3

Pe
rp

le
xi

ty

0 25 50 75 100 125 150
Million Sequences

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LA
M

BA
DA

 A
cc

ur
ac

y

417M, Adam
417M, AdamW
1.4B, Adam
1.4B, AdamW

Figure A7: Adam vs AdamW. For a 417M (blue) and 1.4B model (green), we find that training with
AdamW improves performance over training with Adam.

pu
bm

ed
_a

bs
tra

ct
s

ni
h_

ex
po

rte
r

us
pt

o_
ba

ck
gr

ou
nd

s
pu

bm
ed

_c
en

tra
l

pi
le

_c
c

bo
ok

co
rp

us
2

st
ac

ke
xc

ha
ng

e
op

en
su

bt
itl

es
op

en
we

bt
ex

t2
ha

ck
er

ne
ws

dm
_m

at
he

m
at

ics
ar

xi
v

fre
el

aw
bo

ok
s3

ph
ilp

ap
er

s
gi

th
ub

ub
un

tu
_ir

c
eu

ro
pa

rl
gu

te
nb

er
g_

pg
_1

90.00

0.02

0.04

0.06

0.08

0.10

De
cr

ea
se

 in
 b

pb

 c
om

pa
re

d
to

 G
op

he
r

Figure A8: Pile Evaluation. For the different evaluation sets in The Pile [13], we show the bits-per-
byte (bpb) improvement (decrease) of Chinchilla compared to Gopher. On all subsets, Chinchilla
outperforms Gopher.

H Results

H.1 The Pile

In Table A7 we show the bits-per-byte (bpb) on The Pile [13] of Chinchilla, Gopher, and Jurassic-1.
Chinchilla outperforms Gopher on all subsets. Jurassic-1 outperforms Chinchilla on 2 subsets—
dm_mathematics and ubuntu_irc.

H.2 MMLU

In Table A9 we show the performance of Chinchilla and Gopher on each subset of MMLU.

Table A6: All evaluation tasks. We evaluate Chinchilla on a collection of language modelling along
with downstream tasks. Those are largely the same tasks as in Rae et al. [38], to allow for direct
comparison.

Tasks Examples

Language Modelling 20 WikiText-103, The Pile: PG-19, arXiv, FreeLaw, . . .
Reading Comprehension 3 RACE-m, RACE-h, LAMBADA
Question Answering 3 Natural Questions, TriviaQA, TruthfulQA
Common Sense 5 HellaSwag, Winogrande, PIQA, SIQA, BoolQ
MMLU 57 High School Chemistry, Astronomy, Clinical Knowledge, . . .
BIG-bench 62 Causal Judgement, Epistemic Reasoning, Temporal Sequences, . . .

23

Table A7: Bits-per-Byte on The Pile. We show the bpb on The Pile for Chinchilla compared to
Gopher and Jurassic-1.

Subset Chinchilla (70B) Gopher (280B) Jurassic-1 (170B)

pile_cc 0.667 0.691 0.669
pubmed_abstracts 0.559 0.578 0.587
stackexchange 0.614 0.641 0.655
github 0.337 0.377 0.358
openwebtext2 0.647 0.677 -
arxiv 0.627 0.662 0.680
uspto_backgrounds 0.526 0.546 0.537
freelaw 0.476 0.513 0.514
pubmed_central 0.504 0.525 0.579
dm_mathematics 1.111 1.142 1.037
hackernews 0.859 0.890 0.869
nih_exporter 0.572 0.590 0.590
opensubtitles 0.871 0.900 0.879
europarl 0.833 0.938 -
books3 0.675 0.712 0.835
philpapers 0.656 0.695 0.742
gutenberg_pg_19 0.548 0.656 0.890
bookcorpus2 0.714 0.741 -
ubuntu_irc 1.026 1.090 0.857

co
lle

ge
_m

at
he

m
at

ics
ec

on
om

et
ric

s
m

or
al

_s
ce

na
rio

s
fo

rm
al

_lo
gi

c
m

ed
ica

l_g
en

et
ics

m
ac

hi
ne

_le
ar

ni
ng

pu
bl

ic_
re

la
tio

ns
gl

ob
al

_f
ac

ts
bu

sin
es

s_
et

hi
cs

el
ec

tri
ca

l_e
ng

in
ee

rin
g

co
lle

ge
_c

om
pu

te
r_

sc
ie

nc
e

wo
rld

_r
el

ig
io

ns
hi

gh
_s

ch
oo

l_u
s_

hi
st

or
y

hi
gh

_s
ch

oo
l_p

sy
ch

ol
og

y
m

an
ag

em
en

t
hi

gh
_s

ch
oo

l_c
om

pu
te

r_
sc

ie
nc

e
m

ar
ke

tin
g

hi
gh

_s
ch

oo
l_p

hy
sic

s
hi

gh
_s

ch
oo

l_m
ac

ro
ec

on
om

ics
so

cio
lo

gy
hi

gh
_s

ch
oo

l_g
ov

er
nm

en
t_

an
d_

po
lit

ics
hi

gh
_s

ch
oo

l_e
ur

op
ea

n_
hi

st
or

y
nu

tri
tio

n
co

lle
ge

_m
ed

ici
ne

as
tro

no
m

y
lo

gi
ca

l_f
al

la
cie

s
pr

of
es

sio
na

l_p
sy

ch
ol

og
y

m
isc

el
la

ne
ou

s
ju

ris
pr

ud
en

ce
cli

ni
ca

l_k
no

wl
ed

ge
hi

gh
_s

ch
oo

l_g
eo

gr
ap

hy
hi

gh
_s

ch
oo

l_b
io

lo
gy

co
lle

ge
_b

io
lo

gy
co

lle
ge

_c
he

m
ist

ry
hi

gh
_s

ch
oo

l_w
or

ld
_h

ist
or

y
us

_f
or

ei
gn

_p
ol

icy
vi

ro
lo

gy
ph

ilo
so

ph
y

m
or

al
_d

isp
ut

es
hu

m
an

_a
gi

ng
co

m
pu

te
r_

se
cu

rit
y

se
cu

rit
y_

st
ud

ie
s

in
te

rn
at

io
na

l_l
aw

hi
gh

_s
ch

oo
l_m

icr
oe

co
no

m
ics

hi
gh

_s
ch

oo
l_s

ta
tis

tic
s

pr
of

es
sio

na
l_a

cc
ou

nt
in

g
pr

of
es

sio
na

l_m
ed

ici
ne

pr
eh

ist
or

y
hi

gh
_s

ch
oo

l_c
he

m
ist

ry
el

em
en

ta
ry

_m
at

he
m

at
ics

ab
st

ra
ct

_a
lg

eb
ra

an
at

om
y

pr
of

es
sio

na
l_l

aw
hu

m
an

_s
ex

ua
lit

y
co

lle
ge

_p
hy

sic
s

hi
gh

_s
ch

oo
l_m

at
he

m
at

ics
co

nc
ep

tu
al

_p
hy

sic
s

10

0

10

20

30

Re
la

tiv
e

Im
pr

ov
em

en
t

 o
ve

r G
op

he
r

Figure A9: MMLU results compared to Gopher We find that Chinchilla outperforms Gopher by
7.6% on average (see Table A8) in addition to performing better on 51/57 individual tasks, the same
on 2/57, and worse on only 4/57 tasks.

H.3 Winogender Setup

We follow the same setup as in Rae et al. [38]. To test coreference resolution in Chinchilla, we
input a sentence which includes a pronoun reference (e.g., “The librarian helped the child pick out a
book because {pronoun} liked to encourage reading.”), then measure the probability of the model
completing the sentence “‘{Pronoun}’ refers to the” with different sentence roles (“librarian” and
“child” in this example). Each example is annotated with the correct pronoun resolution (the pronoun
corresponds to the librarian in this example). Each sentence is tested with a female, male, and
gender-neutral pronoun. An unbiased model would correctly predict which word the pronoun refers
to regardless of pronoun gender.

24

Table A8: Massive Multitask Language Understanding (MMLU). We report the average 5-shot
accuracy over 57 tasks with model and human accuracy comparisons taken from Hendrycks et al.
[16]. We also include the average prediction for state of the art accuracy in June 2022/2023 made by
73 competitive human forecasters in Steinhardt [50].

Random 25.0%
Average human rater 34.5%
GPT-3 5-shot 43.9%
Gopher 5-shot 60.0%
Chinchilla 5-shot 67.6%
Average human expert performance 89.8%

June 2022 Forecast 57.1%
June 2023 Forecast 63.4%

Table A9: Chinchilla MMLU results. For each subset of MMLU [16], we show Chinchilla’s
accuracy compared to Gopher.

Task Chinchilla Gopher Task Chinchilla Gopher

abstract_algebra 31.0 25.0 anatomy 70.4 56.3
astronomy 73.0 65.8 business_ethics 72.0 70.0
clinical_knowledge 75.1 67.2 college_biology 79.9 70.8
college_chemistry 51.0 45.0 college_computer_science 51.0 49.0
college_mathematics 32.0 37.0 college_medicine 66.5 60.1
college_physics 46.1 34.3 computer_security 76.0 65.0
conceptual_physics 67.2 49.4 econometrics 38.6 43.0
electrical_engineering 62.1 60.0 elementary_mathematics 41.5 33.6
formal_logic 33.3 35.7 global_facts 39.0 38.0
high_school_biology 80.3 71.3 high_school_chemistry 58.1 47.8
high_school_computer_science 58.0 54.0 high_school_european_history 78.8 72.1
high_school_geography 86.4 76.8 high_school_gov_and_politics 91.2 83.9
high_school_macroeconomics 70.5 65.1 high_school_mathematics 31.9 23.7
high_school_microeconomics 77.7 66.4 high_school_physics 36.4 33.8
high_school_psychology 86.6 81.8 high_school_statistics 58.8 50.0
high_school_us_history 83.3 78.9 high_school_world_history 85.2 75.1
human_aging 77.6 66.4 human_sexuality 86.3 67.2
international_law 90.9 77.7 jurisprudence 79.6 71.3
logical_fallacies 80.4 72.4 machine_learning 41.1 41.1
management 82.5 77.7 marketing 89.7 83.3
medical_genetics 69.0 69.0 miscellaneous 84.5 75.7
moral_disputes 77.5 66.8 moral_scenarios 36.5 40.2
nutrition 77.1 69.9 philosophy 79.4 68.8
prehistory 81.2 67.6 professional_accounting 52.1 44.3
professional_law 56.5 44.5 professional_medicine 75.4 64.0
professional_psychology 75.7 68.1 public_relations 73.6 71.8
security_studies 75.9 64.9 sociology 91.0 84.1
us_foreign_policy 92.0 81.0 virology 53.6 47.0
world_religions 87.7 84.2

H.4 BIG-bench

In Table A10 we show Chinchilla and Gopher performance on each subset of BIG-bench that we
consider.

H.5 Question Answering

In Table A11 we show results on closed book QA.

25

cr
as

h_
bl

os
so

m
da

rk
_h

um
or

_d
et

ec
tio

n
m

at
he

m
at

ica
l_i

nd
uc

tio
n

lo
gi

ca
l_a

rg
s

ge
ne

ra
l_k

no
wl

ed
ge

_js
on

Hu
m

an
_o

rg
an

s_
se

ns
es

_m
ul

tip
le

_c
ho

ice
fo

rm
al

_f
al

la
cie

s_
sy

llo
gi

sm
s_

ne
ga

tio
n

kn
ow

n_
un

kn
ow

ns
na

vi
ga

te
se

nt
en

ce
_a

m
bi

gu
ity

m
or

al
_p

er
m

iss
ib

ilit
y

in
te

nt
_r

ec
og

ni
tio

n
iro

ny
_id

en
tif

ica
tio

n
en

ta
ile

d_
po

la
rit

y
hy

pe
rb

at
on

m
isc

on
ce

pt
io

ns
ev

al
ua

tin
g_

in
fo

rm
at

io
n_

es
se

nt
ia

lit
y

sim
ila

rit
ie

s_
ab

st
ra

ct
io

n
ep

ist
em

ic_
re

as
on

in
g

fa
nt

as
y_

re
as

on
in

g
m

ov
ie

_d
ia

lo
g_

sa
m

e_
or

_d
iff

er
en

t
wi

no
wh

y
no

ve
l_c

on
ce

pt
s

di
sc

ou
rs

e_
m

ar
ke

r_
pr

ed
ict

io
n

st
ra

te
gy

qa
ca

us
al

_ju
dg

m
en

t
hi

nd
u_

kn
ow

le
dg

e
ph

ra
se

_r
el

at
ed

ne
ss

al
ig

nm
en

t_
qu

es
tio

nn
ai

re
re

as
on

in
g_

ab
ou

t_
co

lo
re

d_
ob

je
ct

s
da

te
_u

nd
er

st
an

di
ng

pe
ng

ui
ns

_in
_a

_t
ab

le
fig

ur
e_

of
_s

pe
ec

h_
de

te
ct

io
n

di
sa

m
bi

gu
at

io
n_

q
im

pl
ica

tu
re

s
SN

AR
KS

ru
in

_n
am

es
lo

gi
ca

l_f
al

la
cy

_d
et

ec
tio

n
an

ac
hr

on
ism

s
lo

gi
c_

gr
id

_p
uz

zle
rid

dl
e_

se
ns

e
an

al
yt

ic_
en

ta
ilm

en
t

qu
es

tio
n_

se
le

ct
io

n
no

ns
en

se
_w

or
ds

_g
ra

m
m

ar
ph

ys
ics

_m
c

em
pi

ric
al

_ju
dg

m
en

ts
sp

or
ts

_u
nd

er
st

an
di

ng
cr

as
s_

ai
ph

ys
ica

l_i
nt

ui
tio

n
tim

ed
ia

l
im

pl
ici

t_
re

la
tio

ns
en

gl
ish

_p
ro

ve
rb

s
pr

es
up

po
sit

io
ns

_a
s_

nl
i

m
ov

ie
_r

ec
om

m
en

da
tio

n
un

de
rs

ta
nd

in
g_

fa
bl

es
m

et
ap

ho
r_

bo
ol

ea
n

te
m

po
ra

l_s
eq

ue
nc

es
lo

gi
ca

l_s
eq

ue
nc

e
id

en
tif

y_
od

d_
m

et
ap

ho
r

gr
e_

re
ad

in
g_

co
m

pr
eh

en
sio

n
od

d_
on

e_
ou

t
an

al
og

ica
l_s

im
ila

rit
y

20

0

20

40

60

80

100

120

Re
la

tiv
e

Im
pr

ov
em

en
t

 o
ve

r G
op

he
r

Figure A10: BIG-bench results compared to Gopher Chinchilla out performs Gopher on all but
four BIG-bench tasks considered. Full results are in Table A10.

I Gender bias and toxicity

Large Language Models carry potential risks such as outputting offensive language, propagating
social biases, and leaking private information [54, 2]. We expect Chinchilla to carry risks similar to
Gopher because Chinchilla is trained on the same data, albeit with slightly different relative weights,
and because it has a similar architecture. Here, we examine gender bias (particularly gender and
occupation bias) and generation of toxic language. We select a few common evaluations to highlight
potential issues, but stress that our evaluations are not comprehensive and much work remains to
understand, evaluate, and mitigate risks in LLMs.

Gender bias. As discussed in Rae et al. [38], large language models reflect contemporary and
historical discourse about different groups (such as gender groups) from their training dataset, and
we expect the same to be true for Chinchilla. Here, we test if potential gender and occupation biases
manifest in unfair outcomes on coreference resolutions, using the Winogender dataset [43] in a
zero-shot setting. Winogender tests whether a model can correctly determine if a pronoun refers to
different occupation words. An unbiased model would correctly predict which word the pronoun
refers to regardless of pronoun gender. We follow the same setup as in Rae et al. [38] (described
further in Section H.3).

As shown in Table A12, Chinchilla correctly resolves pronouns more frequently than Gopher across
all groups. Interestingly, the performance increase is considerably smaller for male pronouns (increase
of 3.2%) than for female or neutral pronouns (increases of 8.3% and 9.2% respectively). We also
consider gotcha examples, in which the correct pronoun resolution contradicts gender stereotypes
(determined by labor statistics). Again, we see that Chinchilla resolves pronouns more accurately
than Gopher. When breaking up examples by male/female gender and gotcha/not gotcha, the
largest improvement is on female gotcha examples (improvement of 10%). Thus, though Chinchilla
uniformly overcomes gender stereotypes for more coreference examples than Gopher, the rate of
improvement is higher for some pronouns than others, suggesting that the improvements conferred
by using a more compute-optimal model can be uneven.

Sample toxicity. Language models are capable of generating toxic language—including insults,
hate speech, profanities and threats [14, 38]. While toxicity is an umbrella term, and its evaluation in
LMs comes with challenges [56, 55], automatic classifier scores can provide an indication for the
levels of harmful text that a LM generates. Rae et al. [38] found that improving language modelling
loss by increasing the number of model parameters has only a negligible effect on toxic text generation
(unprompted); here we analyze whether the same holds true for a lower LM loss achieved via more
compute-optimal training. Similar to the protocol of Rae et al. [38], we generate 25,000 unprompted
samples from Chinchilla, and compare their PerspectiveAPI toxicity score distribution to that of

26

Task Chinchilla Gopher Task Chinchilla Gopher

hyperbaton 54.2 51.7 movie_dialog_same_or_diff 54.5 50.7
causal_judgment 57.4 50.8 winowhy 62.5 56.7
formal_fallacies_syllogisms_neg 52.1 50.7 movie_recommendation 75.6 50.5
crash_blossom 47.6 63.6 moral_permissibility 57.3 55.1
discourse_marker_prediction 13.1 11.7 strategyqa 68.3 61.0
general_knowledge_json 94.3 93.9 nonsense_words_grammar 78.0 61.4
sports_understanding 71.0 54.9 metaphor_boolean 93.1 59.3
implicit_relations 49.4 36.4 navigate 52.6 51.1
penguins_in_a_table 48.7 40.6 presuppositions_as_nli 49.9 34.0
intent_recognition 92.8 88.7 temporal_sequences 32.0 19.0
reasoning_about_colored_objects 59.7 49.2 question_selection 52.6 41.4
logic_grid_puzzle 44.0 35.1 logical_fallacy_detection 72.1 58.9
timedial 68.8 50.9 physical_intuition 79.0 59.7
epistemic_reasoning 60.6 56.4 physics_mc 65.5 50.9
ruin_names 47.1 38.6 identify_odd_metaphor 68.8 38.6
hindu_knowledge 91.4 80.0 understanding_fables 60.3 39.6
misconceptions 65.3 61.7 logical_sequence 64.1 36.4
implicatures 75.0 62.0 mathematical_induction 47.3 57.6
disambiguation_q 54.7 45.5 fantasy_reasoning 69.0 64.1
known_unknowns 65.2 63.6 SNARKS 58.6 48.3
dark_humor_detection 66.2 83.1 crass_ai 75.0 56.8
analogical_similarity 38.1 17.2 entailed_polarity 94.0 89.5
sentence_ambiguity 71.7 69.1 irony_identification 73.0 69.7
riddle_sense 85.7 68.2 evaluating_info_essentiality 17.6 16.7
date_understanding 52.3 44.1 phrase_relatedness 94.0 81.8
analytic_entailment 67.1 53.0 novel_concepts 65.6 59.1
odd_one_out 70.9 32.5 empirical_judgments 67.7 52.5
logical_args 56.2 59.1 figure_of_speech_detection 63.3 52.7
alignment_questionnaire 91.3 79.2 english_proverbs 82.4 57.6
similarities_abstraction 87.0 81.8 Human_organs_senses_mcc 85.7 84.8
anachronisms 69.1 56.4 gre_reading_comprehension 53.1 27.3

Table A10: Chinchilla BIG-bench results. For each subset of BIG-bench [49], we show Chinchilla
and Gopher’s accuracy.

Gopher-generated samples. Several summary statistics indicate an absence of major differences: the
mean (median) toxicity score for Gopher is 0.081 (0.064), compared to 0.087 (0.066) for Chinchilla,
and the 95th percentile scores are 0.230 for Gopher, compared to 0.238 for Chinchilla. That is,
the large majority of generated samples are classified as non-toxic, and the difference between the
models is negligible. In line with prior findings [38], this suggests that toxicity levels in unconditional
text generation are largely independent of the model quality (measured in language modelling loss),
i.e. that better models of the training dataset are not necessarily more toxic.

J Model Card

We present the Chinchilla model card in Table A13, following the framework presented by Mitchell
et al. [35].

Model Details

Model Date March 2022

Model Type Autoregressive Transformer Language Model (Section 4.1
for details)

Intended Uses

27

Out-of-Scope Uses Uses of the language model for language generation in harm-
ful or deceitful settings. More generally, the model should
not be used for downstream applications without further
safety and fairness mitigations.

Factors

Card Prompts – Relevant Factor Relevant factors include which language is used. Our model
is trained on English data. Furthermore, in the analysis of
models trained on the same corpus in Rae et al. [38], we
found it has unequal performance when modelling some
dialects (e.g., African American English). Our model is
designed for research. The model should not be used for
downstream applications without further analysis on factors
in the proposed downstream application.

Card Prompts – Evaluation Factors See the results in Rae et al. [38] which analyzes models
trained on the same text corpus.

Metrics

Model Performance Measures
• Perplexity and bits per byte on language modelling

datasets

• Accuracy on completion tasks, reading comprehen-
sion, MMLU, BIG-bench and fact checking.

• Exact match accuracy for question answering.

• Generation toxicity from Real Toxicity Prompts
(RTP) alongside toxicity classification accuracy.

• Gender and occupation bias. Test include compar-
ing the probability of generating different gender
terms and the Winogender coreference resolution
task.

We principally focus on Chinchilla’s performance compared
to Gopher on text likelihood prediction.

Decision thresholds N/A

Approaches to Uncertainty and
Variability

Due to the costs of training large language models, we did
not train Chinchilla multiple times. However, the breadth
of our evaluation on a range of different task types gives a
reasonable estimate of the overall performance of the model.
Furthermore, the existence of another large model trained on
the same dataset (Gopher) provides a clear point of compari-
son.

Evaluation Data

28

Datasets
• Language modelling on LAMBADA, Wiki-

text103 [34], C4 [40], PG-19 [39] and the Pile [13].

• Language understanding, real world knowledge,
mathematical and logical reasoning on the Mas-
sive Multitask Language Understanding (MMLU)
benchmark [16] and on the “Beyond the Imitation
Game Benchmark” (BIG-bench) [49].

• Question answering (closed book) on Natural Ques-
tions [26] and TriviaQA [21].

• Reading comprehension on RACE [27]

• Common sense understanding on HellaSwag [58],
PIQA [3], Winogrande [44], SIQA [45],
BoolQ [10], and TruthfulQA [31].

Motivation We chose evaluations from Rae et al. [38] to allow us to most
directly compare to Gopher.

Preprocessing Input text is tokenized using a SentencePiece tokenizer with
a vocabulary of size 32,000. Unlike the tokenizer used for
Gopher, the tokenizer used for Chinchilla does not perform
NFKC normalization.

Training Data

The same dataset is used as in Rae et al. [38]. Differences in sampling are shown in Table A1.

Quantitative Analyses

Unitary Results Section 4.2 gives a detailed description of our analysis. Main
take-aways include:

• Our model is capable of outputting toxic language
as measured by the PerspectiveAPI. This is partic-
ularly true when the model is prompted with toxic
prompts.

• Gender: Our model emulates stereotypes found
in our dataset, with occupations such as “dieti-
cian” and “receptionist” being more associated with
women and “carpenter” and “sheriff” being more
associated with men.

• Race/religion/country sentiment: Prompting our
model to discuss some groups leads to sentences
with lower or higher sentiment, likely reflecting text
in our dataset.

Intersectional Results We did not investigate intersectional biases.

Ethical Considerations

Data The data is the same as described in Rae et al. [38].

Human Life The model is not intended to inform decisions about matters
central to human life or flourishing.

29

Mitigations We considered filtering the dataset to remove toxic content
but decided against it due to the observation that this can
introduce new biases as studied by Welbl et al. [55]. More
work is needed on mitigation approaches to toxic content and
other types of risks associated with language models, such
as those discussed in Weidinger et al. [54].

Risks and Harms The data is collected from the internet, and thus undoubtedly
there is toxic/biased content in our training dataset. Fur-
thermore, it is likely that personal information is also in the
dataset that has been used to train our models. We defer to
the more detailed discussion in Weidinger et al. [54].

Use Cases Especially fraught use cases include the generation of fac-
tually incorrect information with the intent of distributing
it or using the model to generate racist, sexist or otherwise
toxic text with harmful intent. Many more use cases that
could cause harm exist. Such applications to malicious use
are discussed in detail in Weidinger et al. [54].

Table A13: Chinchilla model card. We follow the framework presented in Mitchell et al. [35].

K List of trained models

In Table A14 we list the model size and configuration of all models used in this study. Many models
have been trained multiple times, for a different number of training steps.

30

Table A11: Closed-book question answering. For Natural Questions [26] and TriviaQA [21],
Chinchilla outperforms Gopher in all cases. On Natural Questions, Chinchilla outperforms GPT-3.
On TriviaQA we show results on two different evaluation sets to allow for comparison to GPT-3 and
to open book SOTA (FiD + Distillation [20]).

Method Chinchilla Gopher GPT-3 SOTA (open book)

Natural Questions (dev)
0-shot 16.6% 10.1% 14.6%

54.4%5-shot 31.5% 24.5% -
64-shot 35.5% 28.2% 29.9%

TriviaQA (unfiltered, test)
0-shot 67.0% 52.8% 64.3 %

-5-shot 73.2% 63.6% -
64-shot 72.3% 61.3% 71.2%

TriviaQA (filtered, dev)
0-shot 55.4% 43.5% -

72.5%5-shot 64.1% 57.0% -
64-shot 64.6% 57.2% -

Table A12: Winogender results. Left: Chinchilla consistently resolves pronouns better than
Gopher. Right: Chinchilla performs better on examples which contradict gender stereotypes (gotcha
examples). However, difference in performance across groups suggests Chinchilla exhibits bias.

Chinchilla Gopher

All 78.3% 71.4%
Male 71.2% 68.0%
Female 79.6% 71.3%
Neutral 84.2% 75.0%

Chinchilla Gopher

Male gotcha 62.5% 59.2%
Male not gotcha 80.0% 76.7%
Female gotcha 76.7% 66.7%
Female not gotcha 82.5% 75.8%

31

Parameters (million) d_model ffw_size kv_size n_heads n_layers

44 512 2048 64 8 8
57 576 2304 64 9 9
74 640 2560 64 10 10
90 640 2560 64 10 13

106 640 2560 64 10 16
117 768 3072 64 12 12
140 768 3072 64 12 15
163 768 3072 64 12 18
175 896 3584 64 14 14
196 896 3584 64 14 16
217 896 3584 64 14 18
251 1024 4096 64 16 16
278 1024 4096 64 16 18
306 1024 4096 64 16 20
425 1280 5120 128 10 18
489 1280 5120 128 10 21
509 1408 5632 128 11 18
552 1280 5120 128 10 24
587 1408 5632 128 11 21
632 1536 6144 128 12 19
664 1408 5632 128 11 24
724 1536 6144 128 12 22
816 1536 6144 128 12 25
893 1792 7168 128 14 20

1,018 1792 7168 128 14 23
1,143 1792 7168 128 14 26
1,266 2048 8192 128 16 22
1,424 2176 8704 128 17 22
1,429 2048 8192 128 16 25
1,593 2048 8192 128 16 28
1,609 2176 8704 128 17 25
1,731 2304 9216 128 18 24
1,794 2176 8704 128 17 28
2,007 2304 9216 128 18 28
2,283 2304 9216 128 18 32
2,298 2560 10240 128 20 26
2,639 2560 10240 128 20 30
2,980 2560 10240 128 20 34
3,530 2688 10752 128 22 36
3,802 2816 11264 128 22 36
4,084 2944 11776 128 22 36
4,516 3072 12288 128 24 36
6,796 3584 14336 128 28 40
9,293 4096 16384 128 32 42

11,452 4352 17408 128 32 47
12,295 4608 18432 128 36 44
12,569 4608 18432 128 32 47
13,735 4864 19456 128 32 47
14,940 4992 19968 128 32 49
16,183 5120 20480 128 40 47

Table A14: All models. We list the hyperparameters and size of all models trained as part of this work.
Many shown models have been trained with multiple learning rate schedules/number of training
tokens.

32

