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ABSTRACT

The advent of large models, also known as foundation models, has significantly
transformed the AI research landscape, with models like Segment Anything 2
(SAM2) achieving notable success in diverse image segmentation scenarios. De-
spite its advancements, SAM encountered limitations in handling some complex
low-level segmentation tasks like camouflaged object and medical imaging. This
paper introduces SAM2-Adapter, the first adapter designed to overcome the per-
sistent limitations observed in SAM2 and achieve new state-of-the-art (SOTA) re-
sults in specific downstream tasks including medical image segmentation, camou-
flaged (concealed) object detection, and shadow detection. SAM2-Adapter offers
generalizability and composability for diverse applications. We present extensive
experimental results demonstrating SAM2-Adapter’s effectiveness. We show the
potential and encourage the research community to leverage the SAM2 model
with our SAM2-Adapter for achieving superior segmentation outcomes. We have
released our code, pre-trained model, and data processing protocols, which have
benefited many researchers in this field.

1 INTRODUCTION

The AI research landscape has been transformed by foundation models trained on vast data Bom-
masani et al. (2021); Zhu et al. (2024a;c); Chen et al. (2024b). Recently, among the foundation
models, Among these, Segment Anything (SAM) Kirillov et al. (2023) stands out as a highly suc-
cessful image segmentation model with demonstrated success in diverse scenarios. However, in a
previously study, researchers found that SAM’s performance was limited in some challenging low-
level structural segmentation tasks, such as camouflaged object detection and shadow detection. To
address this, in 2023, within two weeks of SAM’s release, SAM-Adapter is proposed Chen et al.
(2023c;b), which aimed to leverage the power of the SAM model to deliver better performance on
these challenging downstream tasks. The success of the SAM-Adapter, with its training and evalu-
ation code and checkpoints made publicly available, has already been a valuable resource for many
researchers in the community to experiment with and build upon, demonstrating its effectiveness on
a variety of downstream tasks.
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Now, the research community has pushed the boundaries further with the introduction of an even
more capable and versatile successor to SAM, known as Segment Anything 2 (SAM2). Boasting
further enhancements in its network architecture and training on an even larger visual corpus, SAM2
has certainly piqued our interest. This naturally leads us to the questions:

• Do the challenges faced by SAM in downstream tasks persist in SAM2?
• Can we replicate the success of SAM-Adapter and leverage SAM2’s more powerful pre-

trained encoder and decoder to achieve new state-of-the-art (SOTA) results on these tasks?

In this paper, we answer both questions with a resounding ”Yes.” Our experiments confirm that the
challenges SAM encountered in downstream tasks do persist in SAM2, due to the inherent limita-
tions of foundation models—where training data cannot cover the entire corpus and working scenar-
ios vary Bommasani et al. (2021). However, we have devised a solution to address this challenge. By
introducing the SAM2-Adapter, we’ve created a multi-adapter configuration that leverages SAM2’s
enhanced components to achieve new SOTA results in tasks including medical image segmentation,
camouflaged object detection, and shadow detection.

This pioneering work is the first attempt to adapt the large pre-trained segmentation model
SAM2 to specific downstream tasks and achieve new SOTA performance. SAM2-Adapter builds
on the strengths of the original SAM-Adapter while introducing significant advancements.

SAM2-Adapter inherits the core advantages of SAM-Adapter, including:

• Generalizability: SAM2-Adapter can be directly applied to customized datasets of various
tasks, enhancing performance with minimal additional data. This flexibility ensures that the
model can adapt to a wide range of applications, from medical imaging to environmental
monitoring.

• Composability: SAM2-Adapter supports the easy integration of multiple conditions to
fine-tune SAM2, improving task-specific outcomes. This composability allows for the
combination of different adaptation strategies to meet the specific requirements of diverse
downstream tasks.

SAM2-Adapter enhances these benefits by adapting to SAM2’s multi-resolution hierarchical Trans-
former architecture. By employing multiple adapters working in tandem, SAM2-Adapter effectively
leverages SAM2’s multi-resolution and hierarchical features for more precise and robust segmenta-
tion, which maximizes the potential of the already-powerful SAM2. We perform extensive experi-
ments on multiple tasks and datasets, including ISTD for shadow detection Wang et al. (2018) and
COD10K Fan et al. (2020b), CHAMELEON Skurowski et al. (2018), CAMO Le et al. (2019) for
camouflaged object detection task, and kvasir-SEG Jha et al. (2020b) for polyp segmentation (med-
ical image segmentation) task. Benefiting from the capability of SAM2 and our SAM-Adapter, our
method achieves state-of-the-art (SOTA) performance on both tasks. The contributions of this work
can be summarized as follows:

• We are the first to identify and analyze the limitations of the Segment Anything 2 (SAM2)
model in specific downstream tasks, continuing our research from SAM.

• Second, we are the first to propose the adaptation approach, SAM2-Adapter, to adapt
SAM2 to downstream tasks and achieve enhanced performance. This method effectively
integrates task-specific knowledge with the general knowledge learned by the large model.

• Third, despite SAM2’s backbone being a simple plain model lacking specialized struc-
tures tailored for the specific downstream tasks, our extensive experiments demonstrate
that SAM2-Adapter achieves SOTA results on challenging segmentation tasks, setting new
benchmarks and proving its effectiveness in diverse applications.

SAM2-Adapter demonstrates the exceptional ability of the SAM2 model to transfer its knowledge to
specific data domains, pushing the boundaries of what is possible in downstream segmentation tasks.
We encourage the research community to adopt SAM2 as the backbone in conjunction with our
SAM2-Adapter, to achieve even better segmentation results in various research fields and industrial
applications. We have released our code, pre-trained model, and data processing protocols, which
have benefited many researchers in this field.

2



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

2 RELATED WORK

Semantic Segmentation. In recent years, semantic segmentation has made significant progress,
primarily due to the remarkable advancements in deep-learning-based methods such as fully convo-
lutional networks (FCN) Long et al. (2015), encoder-decoder structures Ronneberger et al. (2015);
Fan et al. (2021); Badrinarayanan et al. (2017); Ji et al. (2024d); Chen et al. (2024a); Ji et al. (2023b;
2022), dilated convolutions Chen et al. (2017; 2018); Liu & Zhu (2021); Zang et al. (2024); Hu
et al. (2020), pyramid structures Zhu et al. (2021a); Chen et al. (2017); Zhao et al. (2017); Chen
et al. (2018); Zhu et al. (2023a); Fu et al. (2022); Ji et al. (2021), attention modules Zhu et al. (2019;
2024b; 2023b); Ji et al. (2024c; 2023a), and transformers Zheng et al. (2021); Xie et al. (2021);
Strudel et al. (2021); Cheng et al. (2022); Zhu et al. (2024a). Recent advancements have improved
SAM’s performance, such as Ke et al. (2023), which introduces a High-Quality output token and
trains the model on fine-grained masks. Other efforts have focused on enhancing SAM’s efficiency
for broader real-world and mobile use, exemplified by Xiong et al. (2023); Zhang et al. (2023); Zhao
et al. (2023). The widespread success of SAM has led to its adoption in various fields, including
medical imaging Ma et al. (2024); Deng et al. (2023); Mazurowski et al. (2023); Wu et al. (2023),
remote sensing Chen et al. (2023a); Ren et al. (2023); Ji et al. (2024a), motion segmentation Xie
et al. (2024); Wang et al. (2021b;a); Feng et al. (2018), and camouflaged object detection Tang et al.
(2023). Notably, our previous work SAM-Adapter Chen et al. (2023c;b) tested camouflaged object
detection, polyp segmentation, and shadow segmentation, and provide with the first adapter-based
method to integrate the SAM’s exceptional capability to these downstream tasks.

Adapters. The concept of Adapters was first introduced in the NLP community Houlsby et al.
(2019) as a tool to fine-tune a large pre-trained model for each downstream task with a compact and
scalable model. In Stickland & Murray (2019), multi-task learning was explored with a single BERT
model shared among a few task-specific parameters. In the computer vision community, Li et al.
(2022); Ji et al. (2024b; 2019) suggested fine-tuning the ViT Dosovitskiy et al. (2020) for object
detection with minimal modifications. Recently, ViT-Adapter Chen et al. (2022) leveraged Adapters
to enable a plain ViT to perform various downstream tasks. Liu et al. (2023) introduce an Explicit
Visual Prompting (EVP) technique that can incorporate explicit visual cues to the Adapter. However,
no prior work has tried to apply Adapters to leverage pretrained image segmentation model SAM
trained at large image corpus. Here, we mitigate the research gap.

Polyp Segmentation. In recent years, there has been notable progress in polyp segmentation
Zhou et al. (2021) due to deep-learning approaches. These techniques employ deep neural net-
works to derive more discriminative features from endoscopic polyp images. Nonetheless, the use
of bounding-box detectors often leads to inaccurate polyp boundary localization. To resolve this,
Canny (1986) leveraged fully convolutional networks (FCN) with pre-trained models to identify and
segment polyps. Qadir et al. (2021) introduced a technique utilizing Fully Convolutional Neural
Networks (FCNNs) to predict 2D Gaussian shapes. Subsequently, the U-Net Kingma & Ba (2017)
architecture, featuring a contracting path for context capture and a symmetric expanding path for
precise localization, achieved favorable segmentation results. However, these strategies focus pri-
marily on entire polyp regions, neglecting boundary constraints. Therefore, Psi-Net Murugesan
et al. (2019) incorporated both region and boundary constraints for polyp segmentation, yet the in-
terplay between regions and boundaries remained underexplored. Mahmud et al. (2021) introduced
PolypSegNet, an enhanced encoder-decoder architecture designed for the automated segmentation
of polyps in colonoscopy images. To address the issue of non-equivalent images and pixels, Guo
et al. (2022) proposed a confidence-aware resampling method for polyp segmentation tasks. Specif-
ically for polyp segmentation, works done by Zhou et al. (2023) and Chen et al. (2023c) present
promising results using an unprompted SAM and a domain-adapted SAM respectively. Addition-
ally, Polyp-SAM Li et al. (2023) used SAM for the same task. Roy et al. (2023) evaluated the
zero-shot capabilities of SAM on the organ segmentation task.

Camouflaged Object Detection (COD). Camouflaged object detection, or concealed object detec-
tion is a challenging but useful task that identifies objects blend in with their surroundings. COD
has wide applications in medicine, agriculture, and art. Initially, researches of camouflage detection
relied on low-level features like texture, brightness, and color Feng et al. (2013); Pike (2018); Hou
& Li (2011); Sengottuvelan et al. (2008) to distinguish foreground from background. It is worth
noting that some of these prior knowledge is critical in identifying the objects, and is used to guide
the neural network in this paper.
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Figure 1: The architecture of the proposed SAM-Adapter.

Le et al.Le et al. (2019) first proposed an end-to-end network consisting of a classification and a
segmentation branch. Recent advances in deep learning-based methods have shown a superior ability
to detect complex camouflaged objects Fan et al. (2020b); Mei et al. (2021b); Lin et al. (2023b). In
this work, we leverage the advanced neural network backbone (a foundation model – SAM2) with
the input of task-specific prior knowledge to achieve the state-of-the-art (SOTA) performance.

Shadow Detection. Shadows can occur when an object surface is not directly exposed to light.
They offer hints on light source direction and scene illumination that can aid scene comprehension
Karsch et al. (2011); Lalonde et al. (2012). They can also negatively impact the performance of com-
puter vision tasks Nadimi & Bhanu (2004); Cucchiara et al. (2003). Early method use hand-crafted
heuristic cues like chromacity, intensity and texture Huang et al. (2011); Lalonde et al. (2012); Zhu
et al. (2010). Deep learning approaches leverage the knowledge learnt from data and use delicately
designed neural network structure to capture the information (e.g. learned attention modules) Le
et al. (2018); Cun et al. (2020); Zhu et al. (2018b). This work leverage the heuristic priors with large
neural network models to achieve the state-of-the-art (SOTA) performance.

3 METHOD

3.1 USING SAM 2 AS THE BACKBONE

The core of our SAM2-Adapter is built upon the powerful image encoder and mask decoder com-
ponents of the SAM2 model. Specifically, we leverage the MAE pre-trained Hiera image encoder
from SAM2, keeping its weights frozen to preserve the rich visual representations it has learned
from pretraining on large-scale datasets. Additionally, we utilize the mask decoder module from
the original SAM2 model, initializing its weights with the pretrained SAM2 parameters and then
fine-tuning it during the training of our adapter. We do not provide any additional prompts as input
to the original SAM2 mask decoder.

We next learn and inject task-specific knowledge F i into the network via Adapters. We employ
the concept of prompting, which utilizes the fact that foundation models like SAM2 have been
trained on large-scale datasets. Using appropriate prompts to introduce task-specific knowledge Liu
et al. (2023) can enhance the model’s generalization ability on downstream tasks, especially when
annotated data is scarce.

The architecture of the proposed SAM2-Adapter is illustrated in Figure 1. We aim to keep the
design of the adapter to be simple and efficient. Therefore, we choose to use an adapter that consists
of only two MLPs and an activate function within two MLPs Liu et al. (2023). It is worth noting
that the different from SAMKirillov et al. (2023), the image encoder of SAM2 has four stages with
hierarchical resolutions. Therefore, we initialized four different adapter and insert the four adapter
in different layers of each stage. In each stage, the weight of the adapter is shared. Specifically, each
of the adapter takes the information F i and obtains the prompt P i:

P i = MLPup

(
GELU

(
MLPi

tune (Fi)
))

(1)

in which MLPi
tune are linear layers used to generate task-specific prompts for each Adapter. MLPup

is an up-projection layer shared across all Adapters that adjusts the dimensions of transformer fea-
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tures. P i refers to the output prompt that is attached to each transformer layer of SAM model.
GELU is the GELU activation function Hendrycks & Gimpel (2016). The information F i can be
chosen to be in various forms.

3.2 INPUT TASK-SPECIFIC INFORMATION

It is worth noting that the information F i can be in various forms depending on the task and flexibly
designed. For example, it can be extracted from the given samples of the specific dataset of the task
in some form, such as texture or frequency information, or some hand-crafted rules. Moreover, the
F i can be in a composition form consisting multiple guidance information:

Fi =

N∑
1

wjFj (2)

4 EXPERIMENTS

4.1 TASKS AND DATASETS

In our experiments, we selected two challenging low-level structural segmentation tasks and one
medical imaging task to evaluate the performance of the SAM2-Adapter: camouflaged object detec-
tion and shadow detection, and polyp segmentation.

For the camouflaged object detection task, we utilized three prominent datasets: COD10K Fan
et al. (2020b), CHAMELEON Skurowski et al. (2018), and CAMO Le et al. (2019). COD10K
is the largest dataset for camouflaged object detection, containing 3,040 training and 2,026 testing
samples. CHAMELEON includes 76 images collected from the internet for testing. The CAMO
dataset consists of 1,250 images, with 1,000 for training and 250 for testing. Following the training
protocol in Fan et al. (2020b), we used the combined dataset of CAMO and the training set of
COD10K for model training. For evaluation, we used the test sets of CAMO and COD10K, as
well as the entire CHAMELEON dataset. For the shadow detection task, we employed the ISTD
dataset Wang et al. (2018), which contains 1,330 training images and 540 test images.For polyp
segmentation (medical image segmentation), we use the kvasir-SEG dataset Jha et al. (2020b). The
train-test split followed the settings of the Medico multimedia task at MediaEval 2020: Automatic
Polyp Segmentation Jha et al. (2020a).

For evaluation metrics, we followed the protocol in Liu et al. (2023) and used commonly-used met-
rics such as S-measure (Sm), mean E-measure (Eϕ), and MAE for the camouflaged object detection
task. For the shadow detection task, we used the balance error rate (BER) metric. For the polyp
segmentation task, we used mean Dice score (mDice) and mean Intersection-over-Union (mIoU) as
the evaluation measures.

4.2 IMPLEMENTATION DETAILS

In the experiment, we choose two types of visual knowledge, patch embedding Fpe and high-
frequency components Fhfc, following the same setting in Liu et al. (2023), which has been
demonstrated effective in various of vision tasks. wj is set to 1. Therefore, the Fi is derived by
Fi = Fhfc + Fpe.

The MLPi
tune has one linear layer and MLPi

up is one linear layer that maps the output from GELU
activation to the number of inputs of the transformer layer. We use hiera-large version of SAM2.
Balanced BCE loss is used for shadow detection. BCE loss and IOU loss are used for camouflaged
object detection and polyp segmentation. AdamW optimizer is used for all the experiments. The
initial learning rate is set to 2e-4. Cosine decay is applied to the learning rate. The training of
camouflaged object segmentation is performed for 20 epochs. Shadow segmentation is trained for
90 epochs. Polyp segmentation is trained for 20 epochs. The experiments are implemented using
PyTorch on three NVIDIA Tesla A100 GPUs.
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Method CHAMELEON Skurowski et al. (2018) CAMO Le et al. (2019) COD10K Fan et al. (2020b)
Sα ↑ Eϕ ↑ Fω

β ↑ MAE ↓ Sα ↑ Eϕ ↑ Fω
β ↑ MAE ↓ Sα ↑ Eϕ ↑ Fω

β ↑ MAE ↓
SINetFan et al. (2020a) 0.869 0.891 0.740 0.440 0.751 0.771 0.606 0.100 0.771 0.806 0.551 0.051
RankNetLv et al. (2021) 0.846 0.913 0.767 0.045 0.712 0.791 0.583 0.104 0.767 0.861 0.611 0.045

JCOD Li et al. (2021) 0.870 0.924 - 0.039 0.792 0.839 - 0.82 0.800 0.872 - 0.041
PFNet Mei et al. (2021a) 0.882 0.942 0.810 0.330 0.782 0.852 0.695 0.085 0.800 0.868 0.660 0.040
FBNet Lin et al. (2023a) 0.888 0.939 0.828 0.032 0.783 0.839 0.702 0.081 0.809 0.889 0.684 0.035

SAM Kirillov et al. (2023) 0.727 0.734 0.639 0.081 0.684 0.687 0.606 0.132 0.783 0.798 0.701 0.050
SAM2 Ravi et al. (2024) 0.359 0.375 0.115 0.357 0.350 0.411 0.079 0.311 0.429 0.505 0.115 0.218

SAM-Adapter Chen et al. (2023c;b) 0.896 0.919 0.824 0.033 0.847 0.873 0.765 0.070 0.883 0.918 0.801 0.025
SAM2-Adapter (Ours) 0.915 0.955 0.889 0.018 0.855 0.909 0.810 0.051 0.899 0.950 0.850 0.018

Table 1: Quantitative Segmentation Result Comparison for Camouflaged Object Detection

4.3 EXPERIMENTS FOR CAMOUFLAGED OBJECT DETECTION

We first evaluated SAM on the challenging task of camouflaged object detection, where foreground
objects often blend with visually similar background patterns. Our experiments revealed that SAM
did not perform well in this task. As shown in Figure 2, SAM failed to detect several concealed
objects. This was further confirmed by the quantitative results presented in Table 1, where SAM’s
performance was significantly lower than existing state-of-the-art methods across all evaluated met-
rics, while SAM2, on its own, had the lowest performance, which fails to produce any meaningful
results.

In contrast, Figure 3 clearly demonstrates that by introducing the SAM2-Adapter, our method sig-
nificantly elevates the model’s performance. Our approach successfully identifies concealed objects,
as evidenced by clear visual results. Quantitative results also show that our method outperforms the
existing state-of-the-art methods.

Furthermore, the SAM2-Adapter set a new SOTA performance. Visualized results show that SAM2-
Adapter segments more precisely without adding extra false information, further demonstrating the
robustness and accuracy of our approach.

Figure 2: Shadow Detection Visualization As shown in the figure, SAM often fails to detect an-
imals that are visually camouflaged within their natural environments and can sometimes produce
irrelevant results. SAM2 also struggles with similar issues and produce non-meaningful outcomes.
However, by incorporating SAM-Adapter, our approach significantly improves object segmenta-
tion performance. Furthermore, SAM2-Adapter demonstrates even better performance than SAM-
Adapter. The samples depicted are from the CHAMELEON dataset.
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Figure 3: Visualization for Camouflaged Image Segmentation in COD-10K dataset As shown
in the figure, SAM struggles to detect animals that are visually camouflaged within their natural
environments and can sometimes produce results that lack meaningful segmentation. SAM2 also
faces similar challenges, often resulting in no output or false results. However, by incorporating
SAM2-Adapter, our method significantly improves object segmentation performance, surpassing
SAM-Adapter. For other dataset, please refer to More Results section.

Method BER ↓
Stacked CNN Vicente et al. (2016) 8.60

BDRAR Zhu et al. (2018a) 2.69

DSC Hu et al. (2018) 3.42

DSD Zheng et al. (2019) 2.17

FDRNet Zhu et al. (2021b) 1.55

SAM Kirillov et al. (2023) 40.51
SAM2 Ravi et al. (2024) 50.81
SAM-Adapter 1.43
SAM2-Adapter (Ours) 1.43

Table 2: Result for Shadow Detection

4.4 EXPERIMENTS FOR SHADOW DETECTION

We also evaluated SAM on shadow detection. However, as depicted in Figure 4, SAM struggled to
differentiate between the shadow and the background, with parts missing or mistakenly added.

Similarly, SAM2 also struggled with the ”shadow” concept without proper prompting, failing to
produce meaningful results. In our study, we compared various methods for shadow detection and
found that SAM’s performance was significantly poorer than existing methods. However, by in-
tegrating the SAM-Adapter, we achieved a substantial improvement in performance. The SAM-
Adapter enhanced the detection of shadow regions, making them more clearly identifiable. Further-
more, SAM2-Adapter worked just as effectively as SAM-Adapter, delivering comparable results.
Our findings were validated through quantitative analysis, and Table 2 demonstrates the significant
performance boost provided by the SAM-Adapter and matched by the SAM2-Adapter for shadow
detection.
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Figure 4: Shadow Detection Visualized. Both SAM and SAM2 have no understanding about the
“shadow” concept without proper prompting. They produce meaningless results. SAM-Adapter and
SAM2-Adapter perform equally well in shadow detection tasks.

Method mDice ↑ mIoU ↑
UNet Ronneberger et al. (2015) 0.821 0.756

UNet++ Zhou et al. (2018) 0.824 0.753

SFA Fang et al. (2019) 0.725 0.619

SAM Kirillov et al. (2023) 0.778 0.707
SAM2 Ravi et al. (2024) 0.200 0.029
SAM-Adapter 0.850 0.776
SAM2-Adapter (Ours) 0.873 0.806

Table 3: Quantitative Result for Polyp Segmentation

4.5 EXPERIMENTS FOR POLYP SEGMENTATION

We illustrate the application of SAM2-Adapter in the context of medical image segmentation, specif-
ically focusing on polyp segmentation. Polyps, which have the potential to become malignant, are
identified during colonoscopy and removed through polypectomy. Accurate and swift detection
and removal of polyps are crucial in preventing colorectal cancer, a leading cause of cancer-related
deaths globally.

While numerous deep learning approaches have been developed for polyp identification, and the pre-
trained SAM model shows promise in identifying some polyps, its performance can be significantly
improved with our SAM-Adapter approach. However, without proper prompting, the SAM2 model
fails to produce meaningful results. Our SAM2-Adapter addresses this issue and outperforms the
original SAM-Adapter. The results of our study, presented in Table 3 and the visualization results in
Figure 6, underscore the effectiveness of SAM2-Adapter in improving the accuracy and reliability
of polyp detection.
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Figure 5: Visualization of Polyp Segmentation Results. As illustrated in the figure, although SAM
can identify some polyp structures in the image, the result is not accurate. Without proper prompting,
SAM 2 failed to deliver meaningful polyp segmentation results. By using SAM2-Adapter, our
approach significantly outperform SAM-Adapter with more accurate (and complete) segmentation
results.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced SAM2-Adapter, a novel adaptation method designed to leverage the ad-
vanced capabilities of the Segment Anything 2 (SAM2) model for specific downstream segmentation
tasks. SAM2-Adapter utilizes a multi-adapter configuration that is specifically tailored to SAM2’s
multi-resolution hierarchical Transformer architecture. This approach effectively addresses the lim-
itations encountered with SAM, enabling the achievement of new state-of-the-art (SOTA) perfor-
mance in challenging segmentation tasks such as camouflaged object detection, shadow detection,
and polyp segmentation.

Our experiments demonstrate that SAM2-Adapter not only retains the beneficial features of its pre-
decessor, including generalizability and composability but also enhances these capabilities by inte-
grating seamlessly with SAM2’s advanced architecture. This integration allows SAM2-Adapter to
outperform previous methods and set new benchmarks across various datasets and tasks.

The continued presence of challenges from SAM in SAM2 highlights the inherent complexities of
applying foundation models to diverse real-world scenarios. Nevertheless, SAM2-Adapter effec-
tively addresses these issues, showcasing its potential as a robust tool for high-quality segmentation
in a range of applications.

We encourage researchers and engineers to adopt SAM2 as the backbone for their segmentation
tasks, coupled with SAM2-Adapter, to realize improved performance and advance the field of image
segmentation. Our work not only extends the capabilities of SAM2 but also paves the way for future
innovations in adapting large pre-trained models for specialized applications.
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de Lange, Michael A Riegler, and Pål Halvorsen. Medico multimedia task at mediaeval 2020:
Automatic polyp segmentation. arXiv preprint arXiv:2012.15244, 2020a.

11



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pål Halvorsen, Thomas de Lange, Dag Johansen,
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Figure 6: Camouflaged Segmentation of CAMO dataset. The SAM and SAM 2 failed to perceive
those animals that are visually ‘hidden’/concealed in their natural surroundings. By using SAM2-
Adapter, our approach can significantly elevate the performance of object segmentation with SAM.
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