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A Experimental settings

In the choice of network architectures, we employed di�erent deep neural architectures: CNN, ResNet18,
and small vision transformers (ViTs), as presented in Table 1. If not specifically mentioned otherwise, we
optimized the network for the cross-entropy loss with SGD Kiefer & Wolfowitz (1952); Sutskever et al. (2013)
optimizer at the learning rate 1e-3, momentum 0.9, weight decay 5e-4 for non-pre-trained models. The Adam
Kingma & Ba (2014) optimizer with learning rate 1e-3 is used for pre-trained models. For methods that
include VAE training, we use Adam optimizer with a 5e-4 learning rate by default. For all experiments, we
adopted an early stopping criterion for epochs iterations with patience 10. For all the methods that need a
data embedding feature space (i.e. CoreSet, SEALS, and BADGE) from the task model at each round, we
added a linear layer at each network architecture of size 50 before the output layer, which is extracted by
Pytorch Hooks. All the experiments were carried out on a NVIDIA RTX A6000. All the datasets and neural
network information in the appendix follow the same details as shown in Table 1 in the main text.

Data and architecture details are provided in table Table 1.

Table 1: A summary of data and experimental settings that we used in our paper. Here ‘Pre_n’ is the size of
a restricted subset D

Õ
sub in Algorithm 2. ‘Budget’ is the number of queried data points per round, i.e., the

size of D
ı. ‘Round’ stands for the total sampling rounds.

Dataset Pool
size

Label
size Input Initial #

of data DimVAE Pre_n/Budget
/Round Architectures Pre-

trained
Test
size

MNIST 60,000 10 28x28 10 50 100/10/30 CNN False 10,000

EMNIST

letter
124,800 26 28x28 20 256 200/20/50 ResNet18 True 20,800

SVHN 73,257 10 32x32 100 100 500/50/50 ResNet50 False 26,032

CIFAR10 50,000 10 32x32 100 100 5k/200/20 ResNet50 True 10,000

CIFAR100 50,000 100 32x32 100 100 5k/200/20 ViT-Small True 10,000

Mini-

ImageNet
48,000 100 84x84 100 100 5k/200/20 ViT-Small True 10,000

ImageNet 1,281,167 1000 224x224 100 100 10k/1000/20 ViT-Small True 50,000

Latent space generation. To get a representative latent space from data, we use a ResNet18-based
encoder for CIFAR100 and MiniImageNet and a CNN-based VAE for the rest of the datasets. We use an
Adam optimizer with a learning rate of 5e-4 and epoch 300. An early stopping criterion is used with patience
20. For the training of GANVAE, we use the same VAE and discriminator with learning rate 1e-4, total
epochs 100, and no early stopping.

B Variants of multi-class extension

We propose the following other possible formulations to extend the di�usion-based active learning criterion to
the multi-class setting.

One-vs-all approach In the one-vs-all setting the batch is queried according to

X̂ = arg minB
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for some chosen function q which measures a notion of uncertainty at point xi, given the matrix ‰
(T ). In

Section 4.2, we chose q to be
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for some p œ [1, Œ].

Multivariate di�usion approach Moving from the one-vs-all approach, we can perform the query as
follows, using the property that M is a stochastic matrix. For each data point xi, we propagate a probability
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vector ‰
(t)

i œ �C . This vector can be initialized as

‰
(0)

i,c =

Y
_]

_[

1 if i œ X¸ and c = yi

0 if i œ X¸ and c ”= yi
1

C otherwise

We can therefore di�use the matrix aggregating the signal for all the points, ‰
(t) œ RN◊C , and di�use it as in

the binary case:
‰

(t) = M‰
(t≠1)

, ‰
(t)|X¸ = ‰

(0)|X¸

Since M is stochastic, it holds that ‰
(t) œ �C at each iteration t. Therefore we can interpret each vector ‰

(t)

i
as a probability vector of the data point xi belonging to di�erent classes, obtained by the di�usion above. It
therefore makes sense to choose the points to query as

X̂ = arg minB
kœXu

q

1
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where q : �C æ R is some measure of uncertainty. Possible choices include:

• Uncertainty: q(p) = pcú , where c
ú = arg maxc pc;

• Margin: q(p) = pcú ≠ pcú
2
, where c

ú is defined as above and c
ú
2

= arg maxcœ[C]\{cú} pc;

• Negative entropy: q(p) =
q

cœ[C]
pc log pc.

C VAE training and graph building time

Here we provide the total training time for VAE and graph construction time with latent variables.

Table 2: A summary of the VAE training time and graph building time for DGAL (measured in seconds).

Dataset VAE training Graph construction

MNIST 182 139
EMNIST

letter 478 731

SVHN 276 207
CIFAR10 208 108
CIFAR100 1134 125

MiniImageNet 864 133

D Extended experiments and ablation study

D.1 DGMG vs. VAE-SEALS
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(a) MNIST (b) EMNIST (c) SVHN

(d) CIFAR10 (e) CIFAR100 (f) Mini ImageNet

Figure 10: Test accuracy vs. size of queried data for VAE-SEALS, DGMG, DGLC, and Random Sampling
(RS) over a limited total number of labels. Each experiment is run at fixed query rounds for di�erent methods
and repeated 5 times.

(a) MNIST (b) EMNIST (c) SVHN

(d) CIFAR10 (e) CIFAR100 (f) Mini ImageNet

Figure 11: Query time for DGAL methods, VAE-SEALS, and Random Sampling (RS), averaged over a fixed
number of rounds for each method. The average time is averaged over 5 repetitions for each experiment.
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D.2 DGMG vs. non-DG based confident methods

In this section, we compare DGMG with RSMG, Margin, and the baseline Random Sampling (RS). In RSMG,
the pre-selection is random sampling while in DGMG it’s based on label di�usion.

In Figure 12 we plot the test accuracy vs. size of queried data and observe DGMGs advantage at the early
stage of learning. For example, in Figure 12d, DGMG is above RSMG and RS from 100 to 700 at the total
number of labels. Similar trend exists also in Figure 12b, Figure 12c, and Figure 12e. It demonstrates how the
latent di�usion graph pre-selects better than random sampling. In Mini-ImageNet, DGMG is close to RSMG,
perhaps because the random baseline is a good explorer criterion. Margin sometimes achieves worse results
in early learning. Yet it achieves similar accuracy as in DGMG at later stages of learning as it essentially
uses a similar criterion but without restriction. Yet, Margin’s query time is worse than DGMG and RSMG
as seen consistently in Figure 13.

In Figure 13 we provide the average query time for each method. We observe an advantage for DGMG and
RSMG in query time in comparison with Margin, mostly due to the e�ciency of the restriction method.
DGMG uses about 1/8th time of Margin’s while achieving better test accuracy. While RSMG uses short
query time, DGMG, in most cases, trades better additional time for better accuracy, as seen in Figure 12.

(a) MNIST (b) EMNIST (c) SVHN

(d) CIFAR10 (e) CIFAR100 (f) Mini ImageNet

Figure 12: Test accuracy vs. size of queried data for 3 baselines and DGMG. Each experiment is run at fixed
query rounds for di�erent methods and has been repeated 5 times.
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(a) MNIST (b) EMNIST (c) SVHN

(d) CIFAR10 (e) CIFAR100 (f) Mini ImageNet

Figure 13: Query time for 3 baselines and DGMG, averaged over fixed rounds for each method. The average
time is averaged over 5 repetitions for each experiment.

D.3 DGAL with di�erent deep AL criteria

We provide results of using additional AL criteria in the deep net architecture to test the acceleration based
on the VAE and graph di�usion-based restriction.

It can be seen that DGBADGE may reach accuracy similar to DGMG but the trade-o� with query time still
renders it slower even on the restricted set in some of the tested data sets. For DGCoreSet, the situation is
even worse as we can see a slower query time trade-o� with accuracy consistently for all data sets.

As seen deep net AL criteria that are fast to compute and accurate enough are still showing the best tradeo�.
this is probably due to the informative selection in the graph di�usion AL. Nevertheless, all methods combined
with VAE di�usion active learning are faster than running the active learning method alone, as seen in Fig. 5.
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(a) MNIST (b) EMNIST (c) SVHN

(d) CIFAR10 (e) CIFAR100 (f) Mini ImageNet

Figure 14: Query time for 3 baselines and DGMG, averaged over fixed rounds for each method. The average
time is averaged over 5 repetitions for each experiment.

D.4 Study of nearest neighbor parameter in DGMG

We conducted a KNN ablation study to examine the e�ect of changing the number of neighbors in the
di�usion graph. As observed, the accuracy of our method is not a�ected by the parameter K for several
sampled data sets that we examined in Figure 15. Changing k will a�ect the query time, as the di�usion
kernel will become denser which will result in longer multiplication times. However, yet in terms of active
learning, the accuracy shows fairly robust behavior.

(a) MNIST (b) SVHN (c) CIFAR100

Figure 15: Query time for 3 baselines and DGMG, averaged over fixed rounds for each method. The average
time is averaged over 5 repetitions for each experiment.

23


